首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA-dependent DNA polymerases were partially purified from nuclei of cells from the occipital lobe of human brain. The purification procedure included successive DEAE-cellulose and phosphocellulose column chromatography, gel filtration and sucrose density gradient centrifugation steps. Four enzymes corresponding to DNA polymerases-α, β, γ, and terminal deoxynucleotidyl transferase were found. Brain DNA polymerases could be differentiated from one another by size, template preferences and sensitivity to sulfhydryl blocking agents.  相似文献   

2.
3.
The incorporation of uridine into RNA in brain slices was studied. Optimal conditions for uridine incorporation were determined. The characteristics of the product suggest that de novo DNA-directcd synthesis of fairly high molecular weight material takes place. Incorporation into RNA of several areas of brain was studied. The incorporation was also studied as a function of the age of the animal. Finally, an apparent correlation was observed between the decrease in uridine incorporation with age and the increase of the enzyme uridine nucleosidase which hydrolyses uridine to uracil, a material which cannot be incorporated into RNA.  相似文献   

4.
—Nipecotic acid, a potent inhibitor of GABA uptake, is taken up by slices of rat cerebral cortex by a sodium-dependent, ‘high affinity’ system (Km 11 μM), and can be released from these slices by an increased potassium ion concentration in a calcium-dependent manner. Nipecotic acid and GABA appear to be taken up by the same osmotically-sensitive structures. GABA and substances which inhibit GABA uptake also inhibit the uptake of nipecotic acid. GABA can release preloaded nipecotic acid from brain slices, and nipecotic acid can release preloaded GABA. This indicates that GABA and nipecotic acid can be counter-transported using the same mobile carrier. Nipecotic acid appears to have a higher affinity than GABA for this carrier.  相似文献   

5.
The formation of ammonia and changes in the contents of free amino acids have been investigated in slices of guinea pig cerebral cortex incubated under the following conditions: (1) aerobically in glucose-free saline; (2) aerobically in glucose-free saline containing 10 mM-bromofuroic acid, an inhibitor of glutamate dehydrogenase (EC 1.4.1.2); (3) aerobically in saline containing 11-1 mM-glucose and (4) anaerobically in glucose-free saline. Ammonia was formed at a steady rate aerobically in glucose-free medium. The formation of ammonia was largely suppressed in the absence of oxygen or in the presence of glucose whereas the inhibitor of glutamate dehydrogenase produced about 50 per cent inhibition. Other inhibitors of glutamate dehydrogenase exerted a similar effect. Ammonia formation was also inhibited by some inhibitors of aminotransferases but not by others. Inhibition was generally more pronounced during the second and third hour of incubation. With the exception of glutamine which decreased slightly, the contents of all amino acids increased markedly during the anaerobic incubation. During aerobic incubation in a glucose-free medium, there was an almost complete disappearance of glutamic acid and GABA. Glutamine also decreased, but to a relatively smaller extent. The content of all other amino acids increased during aerobic incubation in glucose-free medium, although to a lesser extent than under anaerobic conditions. The greater increase of amino acids appearing anaerobically in comparison to the increase or decrease occurring under aerobic conditions corresponded closely to the greater amount of ammonia formed aerobically over that formed anaerobically. This finding is interpreted as indicating a similar degree of proteolysis under anaerobic and aerobic conditions; aerobically, the amino acids are partly metabolized with the concomitant liberation of ammonia. In glucose-supplemented medium, the content of glutamine was markedly increased. The content of glutamate and aspartate remained unchanged, whereas that of some other amino acids increased but to a lesser extent than in the absence of glucose. Proteolysis in the presence of glucose was estimated at about 65 per cent of that in its absence. In the presence of bromofuroate the rate of disappearance of glutamate was unchanged, but there was a larger increase in the content of aspartate and a smaller decrease of GABA and glutamine. Other changes did not differ significantly from those observed in the absence of bromofuroate. We conclude that the metabolism of amino acids in general and of glutamic acid in particular differs according to whether they are already present within the brain slice or are added to the incubation medium. Only the endogenous amino acids appear to be able to serve as precursors of ammonia and as substrates for energy production.  相似文献   

6.
Labeled malonic acid ([1-14C] and [2-14C]) was injected into the left cerebral hemisphere of anesthetized adult rats in order to determine the metabolic fate of this dicarboxylic acid in central nervous tissue. The animals were allowed to survive for 2, 5, 10. 15 or 30min. Blood was sampled from the torcular during the experimental period and labeled metabolites were extracted from the brain after intracardiac perfusion. There was a very rapid efflux of unreacted malonate in the cerebral venous blood. Labeled CO2 was recovered from the venous blood and the respired air after the injection of [1-14C]malonate but not after [2-14C]malonate. The tissue extracts prepared from the brain showed only minimal labeling of fatty acids and sterols. Much higher radioactivity was present in glutamate, glutamine, aspartate, and GABA. The relative specific activities (RSA) of glutamine never rose above 1.00. Aspartate was labeled very rapidly and revealed evidence of 14CO2 fixation in addition to labeling through the Krebs cycle. GABA revealed higher RSA after [1-14C]malonate than after [2-14C]malonate. Sequential degradations of glutamate and aspartate proved that labeling of these amino acids occurred from [1-14C] acetyl-CoA and [2-14C] acetyl-CoA, respectively, via the Krebs cycle. Malonate activation and malonyl-CoA decarboxylation in vivo were similar to experiments with isolated mitochondria. However, labeled malonate was not incorporated into the amino acids of free mitochondria. The results were compared to data obtained after intracerebral injection of [1-14C]acetate and [2-14C]acetate.  相似文献   

7.
The metabolism of N-acetyl-l -aspartic acid (NAA) was studied in rat brain. [Aspartyl-U-14C]NAA was metabolized predominantly by deacylation. Studies of NAA biosynthesis from l -[U-14C]aspartic acid have confirmed previous reports that NAA turns over slowly in rat brain. However, intracerebrally-injected N-acetyl-l -[U-14C]asparticacid was rapidly metabolized. Exogenous NAA appears to be taken up rapidly into a small, metabolically-active pool. This pool serves as substrate for a tricarboxylic acid cycle associated with the production of glutamate for the biosynthesis of glutamine. The bulk of the NAA content in brain appears to be relatively inactive metabolically.  相似文献   

8.
—A variety of isoxazoles structurally related to muscimol (3-hydroxy-5-aminomethylisoxazole) were tested as inhibitors of the uptake of GABA and some other amino acids in rat brain slices, and of the activity of the GABA-metabolizing enzymes l -glutamate 1-carboxylyase and GABA:2-oxo-glutarate aminotransferase. A bicyclic derivative, 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol, proved to be a more potent inhibitor of GABA uptake than muscimol. Structure-activity studies on this derivative, which appeared to be a competitive inhibitor of GABA uptake, led to the findings that nipecotic acid (piperidine-3-carboxylic acid) is a powerful non-competitive inhibitor of GABA uptake, and that perhydro-1,2-oxazine-6-carboxylic acid is a relatively weak competitive inhibitor of GABA uptake.  相似文献   

9.
METABOLISM OF HEXOSES IN RAT CEREBRAL CORTEX SLICES   总被引:3,自引:0,他引:3  
Abstract—
  • 1 The metabolism of two 14C-labelled hexoses and one hexose analogue, viz. mannose, fructose and glucosamine, has been compared with that of glucose for slices of rat cerebral cortex incubated in vitro.
  • 2 The metabolism of [U-14C]mannose was essentially identical to that of glucose; oxygen consumption and CO3 production were similar and maximal at a substrate concentration of 2·75 mM. Incorporation of label into lactate, aspartate, glutamate and GABA was similar for the two substrates at 5·5 mM substrate concentration.
  • 3 With [U-14C]fructose, maximal oxygen consumption and CO3 production were obtained at a substrate concentration of 11 mM. At 5·5 mM, incorporation into lactate was 5 per cent, into glutamate and GABA 30 per cent, into alanine 63 per cent and into aspartate 152 per cent of that from glucose. Increasing substrate concentration to 27·5 mm was without effect on incorporation into amino acids from glucose and raised incorporation from fructose into glutamate, GABA and alanine to a level similar to that found with glucose; at the higher substrate concentration aspartate incorporation from fructose was 200 per cent and lactate 42 per cent of that with glucose. Unlabelled fructose was without effect on incorporation of radioactivity from [3-14C]pyruvate into CO2 or amino acids; it increased incorporation into lactate by 36 per cent. Unlabelled glucose diminished incorporation into CO2 from [U-14C]fructose to 35 per cent; incorporation into lactate was stimulated 178 per cent at 5·5 mM fructose; at 27·5 mM it was diminished to 75 per cent.
  • 4 By comparison with [1-14C]glucose, incorporation of radioactivity from [1-14C]-glucosamine into lactate, CO2, alanine, GABA and glutamine was very low; incorporation into aspartate was similar to glucose. Thus the metabolism of glucosamine resembled that of fructose. Glucosamine-1-phosphate, glucosamine-6-phosphate, and an unidentified metabolite, all accumulated.
  相似文献   

10.
Kainic acid is a linear competitive inhibitor (Kis 250 μm ) of the ‘high affinity’ uptake of l -glutamic acid into rat brain slices. Kainic acid inhibits the ‘high affinity’ uptake of l -glutamic, d -aspartic and l -aspartic acids to a similar extent. Kainic acid is not actively taken up into rat brain slices and is thus not a substrate for the ‘high affinity’ acidic amino acid transport system or any other transport system in rat brain slices. Kainic acid (300 μm ) does not influence the steady-state release or potassium-stimulated release of preloaded d -aspartic acid from rat brain slices. Kainic acid binds to rat brain membranes in the absence of sodium ions in a manner indicating binding to a population of receptor sites for l -glutamic acid. Only quisqualic and l -glutamic acid inhibit kainic acid binding in a potent manner. The affinity of kainic acid for these receptor sites appears to be some 4 orders of magnitude higher than for the ‘high affinity’l -glutamic acid transport carrier. Dihydrokainic acid is approximately twice as potent as kainic acid as an inhibitor of ‘high affinity’l -glutamic acid uptake but is some 500 times less potent as an inhibitor of kainic acid binding and at least 1000 times less potent as a convulsant of immature rats on intraperitoneal injection. Dihydrokainic acid might be useful as a ‘control uptake inhibitor’ for the effects of kainic acid on ‘high affinity’l -glutamic acid uptake since it appears to have little action on excitatory receptors. N-Methyl-d -aspartic acid is a potent convulsant of immature rats, but does not inhibit kainic acid binding or ‘high affinity’l -glutamic acid uptake. N-Methyl-d -aspartic acid might be useful as a ‘control excitant’ that activates different excitatory receptors to kainic acid and does not influence ‘high affinity’l -glutamic acid uptake.  相似文献   

11.
12.
Abstract— —The uptake of the glucose analogue 2-deoxy- d -glucose by rat brain cortex slices was studied in order to compare the rate of membrane transport with the rate of phosphorylation in the concentration range 5–12 mM-glucose plus 0.5–15 mM-2-deoxy-glucose. The comparison was carried out by fitting a model of the brain slice to uptake data and by determination of 2-deoxy-glucose and 2-deoxy-glucose-6-phosphate by ion exchange chromatography.
The rate of membrane transport exceeded the rate of phosphorylation by at least one order of magnitude. The membrane transport was so rapid that the extracellular diffusion became rate limiting for the uptake. The membrane transport could therefore only be determined as a minimum value and it was not possible to determine unidirectional flux across the cell membranes (initial rate). Accordingly, characterization of the membrane tranport with respect to maximal transport rate and affinity was not possible. The phosphorylation reaction, however, was so slow that it was accessible for exact determination and only the phosphorylation reaction was responsible for the fact that the cellular uptake of 2-deoxy-glucose was of the Michaelis-Menten type, thus emphasizing the importance of dissociation between membrane transport and metabolism when transport is studied of a substance which can undergo metabolism.
The data indicate that glucose transport across glial and neuronal membranes is not rate limiting for glucose metabolism of brain tissue in vitro.  相似文献   

13.
Abstract— (1) The sum of the values of total (tissue + medium) amino acid-N of glutamate, glutamine, γ-aminobutyrate, and aspartate (referred to as the glutamate system) and of ammonia-N of incubated rat brain cortex slices is approximately constant under a variety of metabolic conditions (presence or absence of glucose or of oxygen or in the presence of metabolic inhibitors such as aminooxyacetate, malonate, methionine sulfoximine, fluoroacetate, ouabain, 2:4 dinitrophenol, or Amytal). Fluctuations in the value of one constituent are compensated by fluctuations in the values of other constituents. The same applies to infant rat brain cortex slices and to rat brain synaptosome preparations. It is suggested that the constancy of the glutamate-ammonia system implies a coupling of neurons and glia in such a manner that glutamate released from the neurons during excitation is taken up by the glia and there converted to glutamine. The glutamine is returned to the neurons where it is hydrolysed to glutamate and ammonia. The glia, on this view, exercise an important buffering effect on the extracellular content of the excitatory amino acid, glutamate, and possibly on that of other functionally active amino acids emanating from the neurons. (2) The magnitude of the glutamate-ammonia system in the infant rat brain cortex is about 43% of that in the adult. It is suggested that, with maturity, the development of the glutamate-ammonia system is linked with the development of the citric acid cycle of operations. (3) The ammonia in the system is tightly linked to the activity of the ATP-controlled glutamine synthetase. (4) Proteolytic ammonia and amino acids are formed, during the incubation, to values that seem to be independent of a wide variety of metabolic conditions. The total value is approximately 10 μmol/g in the first h of incubation. (5) As the ammonium ion is necessary for the return of glutamate to the neuron in the form of glutamine, it is inferred that the ion plays a functional role in the nervous system by helping to maintain the steady state of glutamate in the neuron.  相似文献   

14.
—A superfusion system has been used to examine the effects of choline and the utilization of [3H]choline during resting and potassium-stimulated release of ACh from rat cerebrum slices. The rate of ACh release from unstimulated tissue, 0·25 nmol/g per min, increased 8-fold when the concentration of KCl in the superfusing medium was increased from 5 to 50 mm . This rate was not maintained, however, but gradually declined to one-half the peak rate after approx. 30 min. After an initial washout period, choline was released at a rate of 2·5-5 nmol/g per min, which was equal to 1-2 × 10?6m in the superfusate. The addition of 1 × 10?5m -choline to the superfusing medium was required to maintain the stimulated ACh release at near peak rates for 90 min. When hemicholinium-3 was added to the 50 mm -KCl medium, the release of ACh reached a peak as usual but then declined to prestimulation rates. After introducing a pulse of radioactive choline in the superfusing medium, the specific radioactivity of choline and ACh in the superfusate was determined before and during stimulation with 50 mm -KCl. The specific radioactivity of released ACh was always greater than that of released choline; it decreased rapidly at the onset of stimulation, and then more gradually as stimulation proceeded. The specific radioactivity of ACh released in the initial minutes of stimulation was higher than that of ACh in the tissue before stimulation. In the last 10-20 min of stimulation the specific radioactivity of the released ACh was lower than that of the tissue ACh at the end of stimulation. The relative contributions of old and newly synthesized ACh to the releasable transmitter pool are discussed.  相似文献   

15.
R(-)-Nipecotic acid was a more potent inhibitor than the S(+)-isomer of the uptake of GABA, (+)-nipecotic acid, and β-alanine in rat brain slices. (-)-Nipecotic acid was an order of magnitude more potent as an inhibitor of GABA uptake than as an inhibitor of β-alanine uptake, whereas the (+)-isomer was less selective. (–)-Nipecotic acid was a weak inhibitor of L-proline uptake and of rat brain acetylcholinesterase activity. Kinetic studies showed that both isomers of nipecotic acid were competitive inhibitors of GABA uptake when added at the same time as GABA, but non-competitive inhibitors when preincubated with the tissue for 15 min before addition of GABA. The apparent slope inhibition constants, which were not influenced by preincubation, indicated that (–)-nipecotic acid has an affinity for the carrier some 5 times higher than that for (+)-nipecotic acid. (–)-Nipecotic acid stimulated the release of preloaded radioactive GABA from rat brain slices. These observations indicate that (–)-nipecotic acid is a substrate-competitive inhibitor of GABA which combines with the GABA carrier and is taken up. (?)-Nipecotic acid and (+)-2,4-diaminobutyric acid, on the basis of their absolute structures and inhibition kinetics, are proposed to interact in a similar way with the GABA transport system.  相似文献   

16.
—l -Glutamine is taken up into rat brain slices by a specific‘high affinity’uptake system (Km 52 μm ) which is not influenced by high concentrations of l -glutamate and l -asparagine. The uptake system appears to be associated with cellular structures that do not survive homogenization under conditions which yield synaptosomes. The‘high affinity’uptake of glutamine is dependent on the external sodium ion concentration and can be inhibited by p-chloromercuriphenylsulphonate, amino-oxyacetic acid, ouabain, dibenamine and allylglycine. The effects of several inhibitors indicate that l -asparagine uptake is mediated by a system different from the‘high affinity’system mediating l -glutamine uptake.  相似文献   

17.
The use of tracer concentrations of labelled amino acids to measure incorporation in incubated slices of brain results in wide fluctuations with time in the specific activity of the precursor. Using concentrations of about 1 mm of labelled amino acid facilitates the accurate measurement of rates of synthesis. These higher precursor levels in the medium decrease the fluctuations in free amino acid specific activity due to dilution by endogenous amino acid and the production of amino acid by protein degradation, and decrease the lag in incorporation due to transport phenomena. Concentrations of 1 mm amino acid in the medium did not inhibit protein synthesis; with valine, leucine, phenylalanine, lysine and histidine, incorporation rates were similar when measured at trace concentrations and at 1 mm medium levels. The source of amino acid for protein synthesis appears to be intracellular. No evidence could be found for the preferential use of extracellular medium amino acid. The rate of incorporation of amino acids in incubated slices of rat brain was 0.087 per cent of the protein amino acid/h.  相似文献   

18.
The incorporation into brain slice protein of externally provided [1-14C]valine was measured at varying levels of valine in the medium, under conditions of constant protein synthesis and equilibration of intracellular valine specific activity. The results indicate that the valine pool used for protein synthesis is not identical to the pool of total free valine. Neither does the incorporation solely occur from an extracellular pool which is in equilibrium with the incubation medium. The data are compatible with a two-site activation model in which aminoacylation of tRNA occurs at both an internal site utilizing amino acid from the intracellular pool and an external (possibly membranous) site converting extracellular valine directly to valyl-tRNA. A good fit to the experimental observations is also provided by a compartmented intracellular valine pool model.  相似文献   

19.
NUCLEOTIDE METABOLISM IN RAT BRAIN   总被引:8,自引:7,他引:8  
Abstract— The uptake, the conversion to nucleotides, and their incorporation into RNA for labelled glycine, aspartate, the free bases and nucleosides of purines and pyrimidines were investigated with cortical slices of rat cerebrum. At the end of a 1-hr incubation time the slice-to-medium ratio of the radioactivities for labelled aspartate, glycine, adenine and adenosine were 34, 26, 20 and 5, respectively, while the slice-to-medium ratios for hypoxanthine, inosine, guanine, guanosine, xanthine, orotate, cytidine, cytosine, uridine, and uracil ranged from 1.3:1 to 2:1. Over 99 per cent of the total radioactivity taken up by the cortical slices was present in the TCA supernatant and 86, 82, 65, 50, 34, 23, 20 and 1.6 per cent of this radioactivity was in the form of nucleotides at the end of a 1-hr incubation with labelled adenine, adenosine, hypoxanthine, inosine, uridine, orotate, cytidine, and glycine, respectively. The incorporation of various radioactive precursors into RNA of cortical slices suggests that nucleotides originating from either de novo synthesis or preformed purine derivatives enter the same nucleotide pool utilized for RNA synthesis. The supernatant fraction from homogenized cerebrum was investigated for the presence of various anabolic and catabolic enzymes associated with nucleotide metabolism. These results were correlated with the data from the RNA incorporation studies, and a possible role for AMP: pyrophosphate phosphoribosyltransferase (adenine phosphoribosyltransferase, I.U.B. 2.4.2.7) to achieve intercellular transfer of AMP is discussed.  相似文献   

20.
INHIBITION OF AMINO ACID UPTAKE BY THE ABSENCE OF Na+ IN SLICES OF BRAIN   总被引:5,自引:5,他引:0  
—The Na+ requirement of amino acid transport was measured in brain slices. The tissue was first washed free of Na+ and then Na+ was replaced by one of the following: choline, Li+, Rb+, or mannose. Amino acid uptake was measured at different times (5–120 min) and at low (10-7–10-5m ) and high (10-3m ) concentrations. Most of the Na+ could be washed out of the tissue; this also decreased K+ levels despite increased K+ in the medium. K+ tissue levels were partially restored when Na+ was added. The absence of Na+ abolished the uptake of Glu, Asp, GABA, Gly, Tau and Pro. Most of the neutral amino acids (Ala, Val, Trp, His) were very strongly inhibited by the absence of Na+ under most experimental conditions. Basic amino acids (Arg, Lys) were not completely inhibited, in that 30 per cent of the equilibrium uptake remained and some of the basic amino acid influx was independent of the Na+ tissue level. The uptake of amines (tyramine, cadaverine, putrescine) did not require Na+, and often was greater in the absence of Na+. We conclude that amino acid uptake in brain slices is Na+ dependent, although the absence of Na+ may affect transport indirectly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号