首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8, has been associated with the development of Kaposi's sarcoma, pleural effusion lymphoma, and multicentric Castleman's disease. KSHV is a double-stranded DNA virus that has been classified as a gammaherpesvirus. The viral genome is approx, 160 kb long and encodes for several genes that are involved in cell signaling pathways. These include genes that are unique to the virus as well as viral homologues of cellular genes. The latter are likely to have been usurped from the host genome and include both virokines and viral receptor proteins. This article reviews how these KSHV proteins modulate cellular signal transduction pathways.  相似文献   

2.
To efficiently establish a persistent infection, Kaposi's sarcoma-associated herpesvirus (KSHV; also known as HHV8) dedicates a large amount of its coding potential to produce proteins that antagonize the immune system of its host. These viral immunomodulators interfere with both the innate and adaptive immune responses and most of them are homologous to cellular proteins, suggesting that they have been pirated from the host during viral evolution. In this Review, I present recent advances in the understanding of immune evasion by KSHV, with a particular focus on the virally encoded modulators of immune responses that are unique to this virus.  相似文献   

3.
4.
Kaposi's Sarcoma associated Herpesvirus (KSHV) is the most recently discovered human tumor virus and is associated with the pathogenesis of Kaposi's sarcoma, primary effusion lymphoma, and Multicentric Casttleman's disease. KSHV contains numerous open reading frames with striking homology to cellular genes. These viral gene products play a variety of roles in KSHV-associated pathogenesis by disrupting cellular signal transduction pathways, which include interferon-mediated anti-viral responses, cytokine-regulated cell growth, apoptosis, and cell cycle control. In this review, we will attempt to cover our understanding of how viral proteins deregulate cellular signaling pathways, which ultimately contribute to the conversion of normal cells to cancerous cells.  相似文献   

5.
Kaposi's sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) is associated with three human tumors, Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman's disease. KSHV encodes a number of homologs of cellular proteins involved in the cell cycle, signal transduction, and modulation of the host immune response. Of the virus complement of over 85 open reading frames (ORFs), the expression of only a minority has been characterized individually. We have constructed a nylon membrane-based DNA array which allows the expression of almost every ORF of KSHV to be measured simultaneously. A PEL-derived cell line, BC-3, was used to study the expression of KSHV during latency and after the induction of lytic replication. Cluster analysis, which arranges genes according to their expression profile, revealed a correlation between expression and assigned gene function that is consistent with the known stages of the herpesvirus life cycle. Furthermore, latent and lytic genes thought to be functionally related cluster into groups. The correlation between gene expression and function also infers possible roles for KSHV genes yet to be characterized.  相似文献   

6.
7.
8.
9.
10.
The innate immune system utilizes pattern recognition receptors cyclic GMP-AMP synthase(cGAS)to sense cytosolic double-stranded(ds) DNA and initiate type 1 interferon signaling and autophagy pathway, which collaborate to limit pathogen infections as well as alarm the adaptive immune response. The genomes of herpesviruses are large dsDNA, which represent a major class of pathogen signatures recognized by cellular DNA sensor cGAS. However, to successfully establish the persistent infection, herpesviruses have evolved their viral genes to modulate different aspects of host immune signaling. This review summarizes the evasion strategies of host cGAS DNA sensing pathway by Kaposi's Sarcoma-associated Herpesvirus(KSHV) and their contributions to KSHV life cycles.  相似文献   

11.
Joo CH  Shin YC  Gack M  Wu L  Levy D  Jung JU 《Journal of virology》2007,81(15):8282-8292
Upon viral infection, the major defense mounted by the host immune system is activation of the interferon (IFN)-mediated antiviral pathway that is mediated by IFN regulatory factors (IRFs). In order to complete their life cycle, viruses must modulate the host IFN-mediated immune response. Kaposi's sarcoma-associated herpesvirus (KSHV), a human tumor-inducing herpesvirus, has developed a unique mechanism for antagonizing cellular IFN-mediated antiviral activity by incorporating viral homologs of the cellular IRFs, called vIRFs. Here, we report a novel immune evasion mechanism of KSHV vIRF3 to block cellular IRF7-mediated innate immunity in response to viral infection. KSHV vIRF3 specifically interacts with either the DNA binding domain or the central IRF association domain of IRF7, and this interaction leads to the inhibition of IRF7 DNA binding activity and, therefore, suppression of alpha interferon (IFN-alpha) production and IFN-mediated immunity. Remarkably, the central 40 amino acids of vIRF3, containing the double alpha helix motifs, are sufficient not only for binding to IRF7, but also for inhibiting IRF7 DNA binding activity. Consequently, the expression of the double alpha helix motif-containing peptide effectively suppresses IRF7-mediated IFN-alpha production. This demonstrates a remarkably efficient means of viral avoidance of host antiviral activity.  相似文献   

12.
West J  Damania B 《Journal of virology》2008,82(11):5440-5449
Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with several different human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. KSHV establishes lifelong latency in the host and modulates the host immune response. Innate immunity is critical for controlling de novo viral infection. Toll-like receptors (TLRs) are key components of the innate immune system, and they serve as pathogen recognition receptors that stimulate the host antiviral response. In particular, TLR3 has been implicated in RNA virus recognition. Currently, there is no information regarding how KSHV infection modulates any TLR pathway. We report the first evidence that KSHV upregulates TLR3 expression in human monocytes during primary infection. This is also the first demonstration of a human DNA tumor virus upregulating TLR3, a TLR that thus far has been associated with the recognition of RNA viruses. We found that KSHV upregulates the TLR3 pathway and induces TLR3-specific cytokines and chemokines, including beta 1 interferon (IFN-beta1) and CXCL10 (IP-10). Small interfering RNAs directed against TLR3 greatly reduced the ability of KSHV to upregulate IFN-beta1 and CXCL10 upon infection.  相似文献   

13.
Kaposi's sarcoma herpesvirus (KSHV) is the eighth human herpesvirus discovered in 1994 from Kaposi's sarcoma lesion of an AIDS patient. The strong molecular and epidemiological links associating KSHV with Kaposi's sarcoma and certain lymphoproliferative disorders indicate that KSHV is required for the development of these malignancies. Although KSHV is equipped to manipulate and deregulate several cellular signaling pathways, it is not yet understood how this leads to cell transformation. Profound understanding of the interplay of viral and cellular factors in KSHV-infected cells will provide valuable information on the mechanisms of viral tumorigenesis and enable development of efficient targeted therapies for virus-induced cancers. This review focuses on the cellular signaling pathways that KSHV gene products impinge on and discusses their putative contribution to tumorigenesis.  相似文献   

14.
Viruses associated with human cancer   总被引:2,自引:0,他引:2  
It is estimated that viral infections contribute to 15-20% of all human cancers. As obligatory intracellular parasites, viruses encode proteins that reprogram host cellular signaling pathways that control proliferation, differentiation, cell death, genomic integrity, and recognition by the immune system. These cellular processes are governed by complex and redundant regulatory networks and are surveyed by sentinel mechanisms that ensure that aberrant cells are removed from the proliferative pool. Given that the genome size of a virus is highly restricted to ensure packaging within an infectious structure, viruses must target cellular regulatory nodes with limited redundancy and need to inactivate surveillance mechanisms that would normally recognize and extinguish such abnormal cells. In many cases, key proteins in these same regulatory networks are subject to mutation in non-virally associated diseases and cancers. Oncogenic viruses have thus served as important experimental models to identify and molecularly investigate such cellular networks. These include the discovery of oncogenes and tumor suppressors, identification of regulatory networks that are critical for maintenance of genomic integrity, and processes that govern immune surveillance.  相似文献   

15.
16.
Di Qin  Chun Lu 《中国病毒学》2008,23(6):473-485
Kaposi sarcoma-associated herpesvirus (KSHV),also known as human herpesvirus 8 (HHV-8),is discovered in 1994 from Kaposi's sarcoma (KS) lesion of an acquired immunodeficiency syndrome (AIDS)patient.In addition to its association with KS,KSHV has also been implicated as the causative agent of two other AIDS-associated malignancies:primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD).KSHV is a complex DNA virus that not only has the ability to promote cellular growth and survival for tumor development,but also can provoke deregulated angiogenesis,inflammation,and modulate the patient's immune system in favor of tumor growth.As KSHV is a necessary but not sufficient etiological factor for KS,human immunodeficiency virus (HIV) is a very important cofactor.Here we review the basic information about the biology of KSHV,development of pathogenesis and interaction between KSHV and HIV.  相似文献   

17.
Boyle JP  Monie TP 《Proteins》2012,80(8):2063-2070
The innate immune response provides our first line of defence against infection. Over the course of evolution, pathogens have evolved numerous strategies to either avoid activating or to limit the effectiveness of the innate immune system. The Kaposi's sarcoma-associated herpesvirus (KSHV) contains tegument proteins in the virion that contribute to immune evasion and aid the establishment of viral infection. For example, the KSHV tegument protein ORF63 modulates inflammasome activation to inhibit the innate immune response against the virus. Understanding the likely structure of proteins involved in immune evasion enables potential mechanisms of action to be proposed. To understand more fully how ORF63 modulates the innate immune system we have utilized widely available bioinformatics tools to analyze the primary protein sequence of ORF63 and to predict its secondary and tertiary structure. We found that ORF63 is predicted to be almost entirely alpha-helical and may possess similarity to HEAT repeat containing proteins. Consequently, ORF63 is unlikely to be a viral homolog of the NLR protein family. ORF63 may inhibit the innate immune response by flexibly interacting with its target protein and inhibiting the recruitment of protein co-factors and/or conformational changes required for immune signaling.  相似文献   

18.
Kaposi's sarcoma-associated herpesvirus (KSHV) is the infectious cause of Kaposi's sarcoma (KS) and certain lymphoproliferations particularly in the context of human immunodeficiency virus (HIV) type 1-induced immunosuppression. The introduction of effective therapies to treat HIV has led to a decline in the incidence of KS, suggesting that immune responses may play a role in controlling KSHV infection and pathogenesis. Cytotoxic-T-lymphocyte (CTL) activity against KSHV proteins has been demonstrated; however, the identification of KSHV CTL epitopes remains elusive and problematic. Although the herpesvirus genomic layout is generally conserved, KSHV encodes a unique hypervariable protein, K1, with intense biological selection pressure at specific amino acid sites. To investigate whether this variability is partly driven by cellular immunity, we designed K1 peptides that match only the unique viral sequence for every individual studied here (autologous peptides). We identified functional CTL epitopes within K1's most variable areas, and we show that a given individual responds only to autologous peptides and not to peptides from other individuals. Furthermore, these epitopes are highly conserved sequences within KSHV isolates from a specific strain but are not conserved between different strains. We conclude that CTL recognition contributes to K1, and therefore to KSHV, evolution.  相似文献   

19.
We previously identified retroperitoneal fibromatosis-associated herpesvirus (RFHV) as a simian homolog of Kaposi's sarcoma-associated herpesvirus (KSHV) in a fibroproliferative malignancy of macaques that has similarities to Kaposi's sarcoma. In this report, we cloned 4.3 kb of divergent locus B (DL-B) flanking the DNA polymerase gene from two variants of RFHV from different species of macaque with a consensus degenerate hybrid oligonucleotide primer approach. Within the DL-B region of RFHV, viral homologs of the cellular interleukin-6, dihydrofolate reductase, and thymidylate synthase genes were identified, along with a homolog of the gammaherpesvirus open reading frame (ORF) 10. In addition, a homolog of the KSHV ORF K3, the modulator of immune recognition-1, was identified. Our data show a close similarity in sequence conservation, gene content, and genomic structure between RFHV and KSHV which strongly supports the grouping of these viral species within the same RV-1 rhadinovirus lineage and the hypothesis that RFHV is the macaque homolog of KSHV.  相似文献   

20.
Park J  Lee MS  Yoo SM  Jeong KW  Lee D  Choe J  Seo T 《Journal of virology》2007,81(22):12680-12684
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma. The open reading frame (K9) of KSHV encodes viral interferon regulatory factor 1 (vIRF1), which functions as a repressor of interferon-mediated signal transduction. The amino-terminal region of vIRF1 displays significant homology to the DNA-binding domain of cellular interferon regulatory factors, supporting the theory that the protein interacts with specific DNA sequences. Here, we identify the consensus sequence of vIRF1-binding sites from a pool of random oligonucleotides. Moreover, our data show that vIRF1 interacts with the K3:viral dihydrofolate reductase:viral interleukin 6 promoter region in the KSHV genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号