首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Darwin developed his theory of evolution based on an analogy between artificial selection by breeders of his day and “natural selection.” For Darwin, selection included what biologists came to see as being composed of (1) phenotypic selection of individuals based on phenotypic differences, and, when these are based on heritable genotypic differences, (2) genetic response between generations, which can result in (3) evolution (cumulative directional genetic response over generations). The use of the term “selection” in biology and plant breeding today reflects Darwin’s assumption—phenotypic selection is only biologically significant when it results in evolution. In contrast, research shows that small-scale, traditionally-based farmers select seed as part of an integrated production and consumption system in which selection is often not part of an evolutionary process, but is still useful to farmers. Extending Darwin’s analogy to farmers can facilitate communication between farmers, biologists, and plant breeders to improve selection and crop genetic resource conservation.  相似文献   

2.
This essay traces the interlinked origins of two concepts found in Charles Darwin’s writings: “unconscious selection,” and sexual selection as applied to humanity’s anatomical race distinctions. Unconscious selection constituted a significant elaboration of Darwin’s artificial selection analogy. As originally conceived in his theoretical notebooks, that analogy had focused exclusively on what Darwin later would call “methodical selection,” the calculated production of desired changes in domestic breeds. By contrast, unconscious selection produced its results unintentionally and at a much slower pace. Inspiration for this concept likely came from Darwin’s early reading of works on both animal breeding and physical ethnology. Texts in these fields described the slow and unplanned divergence of anatomical types, whether animal or human, under the guidance of contrasting ideals of physical perfection. These readings, it is argued, also led Darwin to his theory of sexual selection as applied to race, a theme he discussed mainly in his book The Descent of Man (1871). There Darwin described how the racial version of sexual selection operated on the same principle as unconscious selection. He thereby effectively reunited these kindred concepts.  相似文献   

3.
In what follows, I consider the role of analogy in the first edition of Darwin’s Origin. I argue that Darwin follows Herschel’s methodology and hence exploits an analogy between artificial and natural selection that allows him generalize selection as a cause of evolutionary change. This argument strategy is not equivalent to an argument from analogy. Reading Darwin’s argument as conforming to Herschel’s two-step methodology of causal analysis followed by generalization allows us to understand the role and placement of Darwin’s discussion of artificial selection in the Origin, without making the mistake of portraying Darwin’s argument for the existence and character of natural selection as an analogical argument.  相似文献   

4.
5.
Darwin used artificial selection (ASN) extensively and variedly in his theorizing. Darwin used ASN as an analogy to natural selection; he compared artificial to natural varieties, hereditary variation in nature to that in the breeding farm; and he also compared the overall effectiveness of the two processes. Most historians and philosophers of biology have argued that ASN worked as an analogical field in Darwin's theorizing. I will argue rather that this provides a limited and somewhat muddled view of Darwinian science. I say "limited" because I will show that Darwin also used ASN as a complex experimental field. And I say "muddled" because, if we concentrate on the analogical role exclusively, we conceive Darwinian science as rather disconnected from contemporary conceptions of "good science". I will argue that ASN should be conceived as a multifaceted experiment. As a traditional experiment, ASN established the efficacy of Darwin's preferred cause: natural selection. As a non-traditional experiment, ASN disclosed the nature of a crucial element in Darwin's evolutionary mechanics: the nature of hereditary variation. Finally, I will argue that the experiment conception should help us make sense of Darwin's comments regarding the "monstrous" nature of domestic breeds traditionally considered to be problematic.  相似文献   

6.
It is clear from his published works that Charles Darwin considered domestication to be very useful in exploring and explaining mechanisms of evolutionary change. Not only did domestication occupy the introductory chapter of On the Origin of Species, but he revisited the topic in a two-volume treatise less than a decade later. In addition to drawing much of his information about heredity from studies of domesticated animals and plants, Darwin saw important parallels between the process of artificial selection by humans and natural selection by the environment. There was resistance to this analogy even among Darwin’s contemporary supporters when it was proposed, and there also has been disagreement among historians and philosophers regarding the role that the analogy with artificial selection actually played in the discovery of natural selection. Regardless of these issues, the analogy between artificial and natural selection remains important in both research and education in evolution. In particular, the present article reviews ten lessons about evolution that can be drawn from the modern understanding of domestication and artificial selection. In the process, a basic overview is provided of current approaches and knowledge in this rapidly advancing field.
T. Ryan GregoryEmail:
  相似文献   

7.
In 1749, Linnaeus presided over the dissertation “Oeconomia Naturae,” which argued that each creature plays an important and particular role in nature’s economy. This phrase should be familiar to readers of Darwin, for he claims in the Origin that “all organic beings are striving, it may be said, to seize on each place in the economy of nature.” Many scholars have discussed the influence of political economy on Darwin’s ideas. In this paper, I take a different tack, showing that Darwin’s idea of an economy of nature stemmed from the views of earlier naturalists like Linnaeus and Lyell. I argue, in the first section of the paper, that Linnaeus’ idea of oeconomia naturae is derived from the idea of the animal economy, and that his idea of politia naturae is an extension of the idea of a politia civitatis. In the second part, I explore the use of the concept of stations in the work of De Candolle and Lyell – the precursor to Darwin’s concept of places. I show in the third part of the paper that the idea of places in an economy of nature is employed by Darwin at many key points in his thinking: his discussion of the Galapagos birds, his reading of Malthus, etc. Finally, in the last section, I demonstrate that the idea of a place in nature’s economy is essential to Darwin’s account of divergence. To tell his famous story of divergence and adaptation, Darwin needed the economy of nature.  相似文献   

8.
During his historic Galápagos visit in 1835, Darwin spent nine days making scientific observations and collecting specimens on Santiago (James Island). In the course of this visit, Darwin ascended twice to the Santiago highlands. There, near springs located close to the island’s summit, he conducted his most detailed observations of Galápagos tortoises. The precise location of these springs, which has not previously been established, is here identified using Darwin’s own writings, satellite maps, and GPS technology. Photographic evidence from excursions to the areas where Darwin climbed, including repeat photography over a period of four decades, offers striking evidence of the deleterious impact of feral mammals introduced after Darwin’s visit. Exploring the impact that Darwin’s Santiago visit had on his thinking – especially focusing on his activities in the highlands – raises intriguing questions about the depth of his understanding of the evolutionary evidence he encountered while in the Galápagos. These questions and related insights provide further evidence concerning the timing of Darwin’s conversion to the theory of evolution, which, despite recent claims to the contrary, occurred only after his return to England.  相似文献   

9.
As a Cambridge University undergraduate Charles Darwin was fascinated and convinced by the argument for intelligent design, as set forth in William Paley’s 1802 classic, Natural Theology. Subsequently, during his five-year voyage on HMS Beagle (1831–1836), Darwin interpreted his biological findings through a creationist lens, including the thought-provoking evidence he encountered during his historic visit to the Galápagos Islands in September and October 1835. After his return to England in 1836 and his subsequent conversion to the idea of organic evolution in March 1837, Darwin searched for a theory that would explain both the fact of evolution and the widespread appearance of intelligent design. His insight into the process of natural selection, which occurred in September 1838, provided this alternative explanation. Darwin’s Origin of Species (1859) exemplifies his skillful deployment of the hypothetico-deductive method in testing and refuting the arguments for intelligent design that he had once so ardently admired.  相似文献   

10.
Joseph Hooker first learned that Charles Darwin believed in the transmutation of species in 1844. For the next 14 years, Hooker remained a “nonconsenter” to Darwin’s views, resolving to keep the question of species origin “subservient to Botany instead of Botany to it, as must be the true relation”. Hooker placed particular emphasis on the need for any theory of species origin to support the broad taxonomic delimitation of species, a highly contentious issue. His always provisional support for special creation waned during the 1850s as he lost faith in its expediency for coordinating the study of plant geography, systematics and physiology. In 1858, Hooker embraced Darwin’s “considerable revolution in natural history,” but only after Darwin had carefully molded his transmutationism to meet Hooker’s exacting specifications.  相似文献   

11.
When socio-economic contexts are sought for Darwin’s science, it is customary to turn to the Industrial Revolution. However, important issues about the long run of England’s capitalisms can only be recognised by taking a wider view than Industrial Revolution historiographies tend to engage. The role of land and finance capitalisms in the development of the empire is one such issue. If we historians of Darwin’s science allow ourselves a distinction between land and finance capitalisms on the one hand and industrial capitalism on the other; and if we ask with which side of this divide were Darwin and his theory of branching descent by natural selection aligned, then reflection on leading features of that theory, including its Malthusian elements, suggests that the answer is often and largely, though not exclusively: on the land side. The case of Wallace, socialist opponent of land capitalism, may not be as anomalous for this suggestion as one might at first think. Social and economic historians have reached no settled consensuses on the long-run of England’s capitalisms. We historians of Darwin’s science would do well to import some of these unsettled states of discussion into our own work over the years to come.  相似文献   

12.
I review George Levine’s provocative and highly original book Darwin Loves You. Levine, whose “home discipline” is English Literature, offers a compelling interpretation of Darwin’s works, evaluating their content and Darwin’s prose style to identify a distinctly Darwinian attitude toward nature as a source of meaning and value. Levine believes that Darwin exemplifies the capacity to feel “enchantment” about the natural world, suggesting that, if Darwin’s example were followed, a “Darwinian re-enchantment of the world” would be brought about. This would offer a secular, non-supernatural basis for purpose, meaning, and value. I conclude with a few critical remarks about the scope and cogency of Levine’s proposal.  相似文献   

13.
Recent Darwin scholarship has provided grounds for recognising the Origin as a literary as well as a scientific achievement. While Darwin was an acute observer, a gifted experimentalist and indefatigable theorist, this essay argues that it was also crucial to his impact that the Origin transcended the putative divide between the scientific and the literary. Analysis of Darwin’s development as a writer between his journal-keeping on HMS Beagle and his construction of the Origin argues the latter draws on the pattern of the Romantic or Kantian sublime. The Origin repeatedly uses strategies which challenge the natural-theological appeal to the imagination in conceiving nature. Darwin’s sublime coaches the Origin’s readers into a position from which to envision nature that reduces and contains its otherwise overwhelming complexity. As such, it was Darwin’s literary achievement that enabled him to fashion a new ‘habit of looking at things in a given way’ that is the centrepiece of the scientific revolution bearing his name.  相似文献   

14.
Giambattista Brocchi’s (1814) monograph (see Dominici, Evo Edu Outreach, this issue, 2010) on the Tertiary fossils of the Subappenines in Italy—and their relation to the living molluscan fauna—contains a theoretical, transmutational perspective (“Brocchian transmutation”). Unlike Lamarck (1809), Brocchi saw species as discrete and fundamentally stable entities. Explicitly analogizing the births and deaths of species with those of individual organisms (“Brocchi’s analogy”), Brocchi proposed that species have inherent longevities, eventually dying of old age unless driven to extinction by external forces. As for individuals, births and deaths of species are understood to have natural causes; sequences of births and deaths of species produce genealogical lineages of descent, and faunas become increasingly modernized through time. Brocchi calculated that over 50% of his fossil species are still alive in the modern fauna. Brocchi’s work was reviewed by Horner (1816) in Edinburgh. Brocchi’s influence as a transmutational thinker is clear in Jameson’s (1827) “geological illustrations” in his fifth edition of his translation of Cuvier’s Theory of the Earth (read by his student Charles Darwin) and in the anonymous essays of 1826 and 1827 published in the Edinburgh New Philosophical Journal—which also carried a notice of Brocchi’s death in 1827. The notion that new species replace older, extinct ones—in what today would be called an explicitly phylogenetic context—permeates these essays. Herschel’s (1830) discussion of temporal replacement of species and the modernization of faunas closely mirrors these prior discussions. His book, dedicated to the search for natural causes of natural phenomena, was read by Charles Darwin while a student at Cambridge. Darwin’s work on HMS Beagle was in large measure an exploration of replacement patterns of “allied forms” of endemic species in time and in space. His earliest discussions of transmutation, in his essay February 1835, as well as the Red Notebook and the early pages of Notebook B (the latter two written in 1837 back in England), contain Brocchi’s analogy, including the idea of inherent species longevities. Darwin’s first theory of the origin of species was explicitly saltational, invoking geographic isolation as the main cause of the abrupt appearance of new species. We conclude that Darwin was testing the predicted patterns of both Brocchian and Lamarckian transmutation as early as 1832 at the outset of his work on the Beagle.  相似文献   

15.
The Italian geologist Giambattista Brocchi (1771–1826) is presented as a key figure in the historical period preceding young Charles Darwin’s first work on transmutational theory while on the Beagle. The brief biographical account focuses on Brocchi’s writings related to his analogy that species have births and deaths like individuals, and culminates in his most important work, Subapennine Fossil Conchology of 1814. Brocchi’s analogy as an original and fertile way to approach the fossil record was to influence Darwin’s first evolutionary thinking. Relevant passages of the book are presented for the first time in an English translation.  相似文献   

16.
17.
Detailed analysis of Darwin’s scientific notes and other writings from the Beagle voyage reveals a focus on endemism and replacement of allied taxa in time and in space that began early in the journey. Though it is impossible to determine exactly when Darwin became a transmutationist, the evidence suggests that he was conversant with the transmutational ideas of Lamarck and others and testing (“experimenting” with) them—before he received a copy of Lyell’s Principles of Geology, vol. 2, in November 1832, in which Lyell describes and disputes Lamarck’s theory. To the two rhea species of Patagonia and the four mockingbird species of the Galapagos, we can now add the living Patagonian cavy (rodent) species, and its extinct putatively related species that Darwin collected at Monte Hermoso (Bahia Blanca) in the Fall of 1832, as a replacement pattern absolutely critical to the development of Darwin’s transmutational thinking. Darwin developed his first transmutational theory by adopting “Brocchi’s analogy” (Rudwick 2008)—i.e. that births and deaths of species are analogous to the births and deaths of individuals. Births and deaths of species, as of individuals, are thus explicable in terms of natural causes. Darwin explored these themes and the replacement of the extinct cavy by the modern species explicitly in his February 1835 essay (Darwin 1835a).
Niles EldredgeEmail:
  相似文献   

18.
The German paleontologist H. G. Bronn is best remembered for his 1860 translation and critique of Darwin’s Origin of Species, and for supposedly twisting Darwinian evolution into conformity with German idealistic morphology. This analysis of Bronn’s writings shows, however, that far from being mired in an outmoded idealism that confined organic change to predetermined developmental pathways, Bronn had worked throughout the 1840s and 1850s on a new, historical approach to life. He had been moving from the study of plant and animal forms in the abstract towards placing them into geological and biogeographical context, analyzing patterns of progress and adaptation, explaining species diversity and individual variation, and applying biological insights to practical problems such as artificial breeding. Even though Bronn never fully accepted the idea of species transformation, he saw Darwin’s theory as a bold new move toward his own goal of establishing a comprehensive, historical science of life, and he presented it as such in his translation and commentary. Thus Darwin’s ideas gained a quick and generally favorable hearing in Germany not because of their easy assimilability into an older tradition, but because of their appeal to the innovative Bronn.  相似文献   

19.
Sociobiologists and feminists agree that men in patriarchal social systems seek to control females, but sociobiologists go further, using Darwin’s theory of sexual selection and Trivers’s ideas on parental investment to explain why males should attempt to control female sexuality. From this perspective, the stage for the development under some conditions of patriarchal social systems was set over the course of primate evolution. Sexual selection encompasses both competition between males and female choice. But in applying this theory to our “lower origins” (prehominid ancestors), Darwin assumed that choices were made by essentially “coy” females. I argue here that female solicitation of multiple males (either simultaneously or sequentially, depending on the breeding system) characterized prehominid females; this prehominid legacy of cyclical sexual assertiveness, itself possibly a female counter-strategy to male efforts to control the timing of female reproduction, generated further male counter-strategies. This dialectic had important implications for emerging hominid mating systems, human evolution, and the development of patriarchal arrangements in some human societies. For hominid males who will invest in offspring, there would be powerful selection for emotions, behaviors, and customs that ensure them certainty of paternity. The sexual modesty that so struck Darwin can be explained as a recent evolved or learned (perhaps both) adaptation in women to avoid penalties imposed by patrilines on daughters and mates who failed to conform to the patriline’s prevailing norms for their sex. Other supposedly innate universals, such as female preferences for wealthy husbands, are also likely to be facultative accommodations by women to constraints set up when patrilines monopolized resources needed by females to survive and reproduce, and passed on intergenerational control of these resources preferentially to sons.  相似文献   

20.
Darwin Day is an international celebration of Charles Darwin’s birthday, February 12, and is used as an occasion for education and outreach in evolutionary biology. I describe the history and structure of Darwin Day at the University of Tennessee, one of the oldest Darwin Day organizations in the world. I detail past events including speakers, themes, and advertising ideas that have worked for us and suggestions for getting a Darwin Day started. I encourage interested groups especially those at schools, museums, libraries, nature centers, and other institutions to adapt ideas from our organization to fit their own circumstances and to start planning their own Darwin Days for the celebration of Darwin’s 200th birthday in 2009.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号