首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enterostatin (VPDPR), an anorexigenic peptide derived from the amino terminus of procolipase, significantly inhibited analgesia induced by the μ-opioidagonist morphine (5 mg/kg, s.c.) after i.c.v. administration to mice at a dose of 100 nmol. On the other hand, VPDPR (~200 nmol, i.c.v.) did not attenuate analgesia induced by the κ-opioid agonist D-Phe-D-Phe-D-Nle-D-Arg-NH2 (100 μg/mouse, i.c.v.) or δ-opioid agonist DTLET (4 nmol/mouse, i.c.v.). VPDPR (100 nmol, i.c.v.) significantly improved amnesia induced by scopolamine (0.2 mg/kg, i.p.) in mice. However, VPDPR did not enhance memory in normal mice at the same dose.  相似文献   

2.
In mice pretreated intracerebroventricularly (i.c.v.) with pertussis or cholera toxins, effects of neuropeptide FF (NPFF), on hypothermia and morphine-induced analgesia, were assessed. NPFF and a potent NPFF agonist, 1DMe (0.005-22 nmol) injected into the lateral ventricle decreased morphine analgesia and produced naloxone (2.5 mg x kg(-1), s.c.)-resistant hypothermia after administration into the third ventricle. Cholera toxin (CTX 1 microg, i.c.v.) pretreatment (24 or 96 h before) inhibited the effect of 1DMe on body temperature, but failed to reverse its anti-opioid activity in the tail-flick test. CTX reduced hypothermia induced by a high dose of morphine (8 nmol, i.c.v.) but not the analgesic effect due to 3 nmol morphine. Pertussis toxin (PTX) pretreatment inhibited both morphine-hypothermia and -analgesia but did not modify hypothermia induced by 1DMe. The present results suggest that NPFF-induced hypothermia depends on the stimulation of Gs (but not Gi) proteins. In contrast, anti-opioid effects resulting from NPFF-receptor stimulation do not involve a cholera toxin-sensitive transducer protein.  相似文献   

3.
A1 and A2 adenosine receptor regulation of erythropoietin production   总被引:1,自引:0,他引:1  
The effects of adenosine (ADE) and ADE agonists on erythropoietin (Ep) production were determined using percent (%) 59Fe incorporation in red cells of exhypoxic polycythemic mice. The hemisulfate salt of ADE produced a significant increase in % 59Fe incorporation in response to hypoxia in concentrations of 400 to 1600 nmol/kg/day (i.v.). 5'-N-ethyl-carboxamideadenosine (NECA), a selective A2 receptor agonist, increased radioiron incorporation in a dose-dependent manner (10-100 nmol/kg/day, i.v.). In contrast, N6-cyclohexyladenosine (CHA), a selective A1 receptor agonist, did not affect radioiron incorporation in concentrations up to 1600 nmol/kg/day (i.v.). Albuterol, a beta 2-adrenergic agonist, enhanced % 59Fe incorporation in polycythemic mice and low doses of CHA (50 and 100 nmol/kg/day), which were not effective alone on % 59Fe incorporation in polycythemic mice exposed to hypoxia, inhibited the enhancement in radioiron induced by albuterol (25 and 100 micrograms/kg/day, i.p.) plus hypoxia. Theophylline (20 and 80 mg/kg/day, i.p.), a well-known antagonist of ADE receptors, blocked the ADE and NECA enhancement in radioiron incorporation at a dose of theophylline alone which produced only a slight enhancement of % 59Fe incorporation. These results suggest that ADE may both inhibit through A1 receptor activation and increase via A2 receptor stimulation the production of Ep.  相似文献   

4.
Retro-nociceptin methylester (retro-Noc-ME), which has an oppositely directed structure to that of nociceptin, showed weak affinity for nociceptin receptor and antagonized nociceptin-induced inhibition of contraction in a guinea pig ileum (GPI) assay. The peptide induced analgesia after intracerebroventricular (i.c.v.) administration at a dose of 100 nmol per mouse. Analgesia was not blocked by the opioid antagonist naloxone, which suggests that the analgesia is not mediated by opioid receptor. Furthermore, analgesia caused by retro-Noc-ME was not attenuated after repeated administration, that is, there was an absence of tolerance. The peptide improved learning ability after i.c.v. administration in a step-through experiment in mice.  相似文献   

5.
Intracerebroventricular injection of the octadecaneuropeptide ODN in mouse, at doses of 12.5-1000 ng, reduced the percentage of convulsing animals and increased the latency of convulsions elicited by pentylenetetrazol (50 mg/kg, intraperitoneal [i.p.]). ODN also reduced the percentage of mortality induced by pentylenetetrazol (100 mg/kg, i.p.). The COOH-terminal octapeptide fragment of ODN was approximately equally effective but acted more rapidly than ODN to reverse the convulsant effect of pentylenetetrazol. ODN (100 ng, intracerebroventricular [i.c.v.]) increased the convulsion latency and reduced the percentage of animals that convulsed after the administration of the inverse agonist of benzodiazepine receptors DMCM (13 mg/kg, i.p.), whereas the benzodiazepine receptor antagonist flumazenil (1 mg/kg, subcutaneously) abrogated the protective effect of ODN (100 ng, i.c.v.) on pentylenetetrazol-induced convulsions. ODN (100 ng, i.c.v.) also reduced the percentage of DBA/2J mice displaying audiogenic convulsions. In contrast, ODN did not reduce the percentage of mice displaying tonic or clonic convulsions when electrical interauricular stimulations were applied. It is concluded that ODN, or more likely a proteolytic fragment derived from ODN, reduces pentylenetetrazol-induced convulsions through activation of central-type benzodiazepine receptors.  相似文献   

6.
Intracerebroventricular injection of the octadecaneuropeptide ODN in mouse, at doses of 12.5-1000 ng, reduced the percentage of convulsing animals and increased the latency of convulsions elicited by pentylenetetrazol (50 mg/kg, intraperitoneal [i.p.]). ODN also reduced the percentage of mortality induced by pentylenetetrazol (100 mg/kg, i.p.). The COOH-terminal octapeptide fragment of ODN was approximately equally effective but acted more rapidly than ODN to reverse the convulsant effect of pentylenetetrazol. ODN (100 ng, intracerebroventricular [i.c.v.]) increased the convulsion latency and reduced the percentage of animals that convulsed after the administration of the inverse agonist of benzodiazepine receptors DMCM (13 mg/kg, i.p.), whereas the benzodiazepine receptor antagonist flumazenil (1 mg/kg, subcutaneously) abrogated the protective effect of ODN (100 ng, i.c.v.) on pentylenetetrazol-induced convulsions. ODN (100 ng, i.c.v.) also reduced the percentage of DBA/2J mice displaying audiogenic convulsions. In contrast, ODN did not reduce the percentage of mice displaying tonic or clonic convulsions when electrical interauricular stimulations were applied. It is concluded that ODN, or more likely a proteolytic fragment derived from ODN, reduces pentylenetetrazol-induced convulsions through activation of central-type benzodiazepine receptors.  相似文献   

7.
The measurement of step-down latency in passive avoidance has been used to study memory in laboratory animals. The pre-training injection of 5 mg/kg morphine impaired memory, which was restored when 24 h later the same dose of the drug was administered. To explore the possible involvement of NMDA modulators on morphine-induced memory impairment, we have investigated the effects of intracerebroventricular (i.c.v.) administration of NMDA and the competitive NMDA antagonist, DL-AP5, on morphine-induced memory impairment or recall, on the test day. Morphine (5 mg/kg, s.c.) was administered 30 min before training to induce impairment of memory and 24 h later, 30 min before test to improve it. Pre-test administration of NMDA (0.00001, 0.0001 and 0.001 microg/mouse, i.c.v.) did not alter the retention latency compared to the saline-treated animals. But restored the memory impairment induced by pre-training morphine (5 mg/kg, s.c.). Pre-test administration of DL-AP5 (1, 3.2 and 10 microg/mouse, i.c.v.) by itself decreased the retention latencies. The same doses of DL-AP5 increased pre-training morphine-induced memory impairment. Co-administration of NMDA (0.0001 and 0.001 microg/mouse, i.c.v.) and morphine (5 mg/kg, s.c.) on the test day increased morphine memory improvement. Conversely, DL-AP5 (1, 3.2 and 10 microg/mouse, i.c.v.) inhibited morphine-induced memory recall. It is concluded that NMDA receptors may be involved, at least in part, in morphine state-dependent learning in mice.  相似文献   

8.
R Greenberg  E H O'Keefe 《Life sciences》1982,31(12-13):1185-1188
Experiments were done to examine the analgesic effect of thiorphan alone or in combination with stress in mice. Analgesia was assessed by measuring jump latencies from a 55 degrees C hot plate. Thiorphan exhibited weak analgesic properties evidenced by significant increases in jump latencies only after 300 mg/kg i.p. Additional experiments were done to see the effect of i.c.v. administration of thiorphan in the mouse hot plate test. Control experiments revealed that either i.c.v. saline or sham caused naloxone reversible analgesia which was potentiated by thiorphan (100 mg/kg i.p.). Immobilization stress-induced analgesia was also potentiated by thiorphan (100 mg/kg i.p.) and antagonized by naloxone (10 mg/kg i.p.). The results suggest that stress-induced analgesia in the mouse is associated with an endogenous opioid mechanism which is potentiated when enkephalin degradation is inhibited by thiorphan.  相似文献   

9.
Endothelin (5 nmol/kg, i.v.) caused a transient hypotension followed by a lasting hypertension in rats. However, an abrupt fall in the blood pressure was observed in most rats 6 to 30 min after the injection of endothelin and sudden death followed with lethality noted over 60 min. An abnormal electrocardiogram (ECG) (ventricular arrhythmias) was observed in rats injected with endothelin. Endothelin (i.v.) also caused sudden death in mice. Pretreatment (5 or 60 min) with specific PAF antagonists, CV-6209 (0.1-3 mg/kg, i.v.) and WEB 2086 (30 mg/kg, p.o.), and a calcium channel blocker, diltiazem (60 mg/kg, p.o.) prevented death and attenuated the ECG changes induced by endothelin, but CV-6209 did not prevent the blood pressure changes induced by endothelin. CV-6209 (0.5-3 mg/kg, i.v.), WEB 2086, diltiazem and dexamethasone (5 mg/kg, i.v.) protected mice against the death induced by endothelin. On the other hand, aspirin (cyclooxygenase inhibitor, 100 mg/kg, p.o.) did not protect mice from the death. Thus, endothelin is a highly toxic peptide with cardiotoxic effects, and PAF may be involved in the pathogenesis of the sudden death.  相似文献   

10.
We found that enterostatin (VPDPR), an anorexigenic peptide for a high-fat diet, significantly reduces serum cholesterol levels after oral administration of 100 mg/kg for 3 days in mice fed a high cholesterol-cholic acid diet. DPR, a peptide fragment of VPDPR, also had hypocholesterolemic activity at a dose of 50 mg/kg. Food intake was not suppressed under these dietary conditions. Fecal excretion of cholesterol and bile acids was increased significantly by both VPDPR and DPR. Interestingly, DPR induced hypocholesterolemic effects just two hours after a single oral administration at a dose of 100 mg/kg.  相似文献   

11.
The peptide nociceptin/orphanin FQ (N/OFQ) and its receptor ORL-1, also designated opioid receptor 4 (OP(4)) are involved in the modulation of nociception. Using OP(4)-knockout mice, we have studied their response following opioid receptor stimulation and under neuropathic conditions.In vas deferens from wild-type and OP(4)-knockout mice, DAMGO (mu/OP(3) agonist), deltorphine II (delta/OP(1) agonist) and (-)-U-50488 (kappa/OP(2) agonist) induced similar concentration-dependent inhibition of electrically-evoked contractions. Naloxone and naltrindole (delta/OP(1) antagonists) shifted the curves of DAMGO (pA(2)=8.6) and deltorphine II (pA(2)=10.2) to the right, in each group. In the hot-plate assay, N/OFQ (10 nmol per mouse, i.t.) increased baseline latencies two-fold in wild-type mice while morphine (10mg/kg, s.c.), deltorphine II (10 nmol per mouse, i.c.v.) and dynorphin A (20 nmol per mouse, i.c.v.) increased hot-plate latencies by about four- to five-fold with no difference observed between wild-type and knockout mice. Furthermore, no change was evident in the development of the neuropathic condition due to chronic constriction injury (CCI) of the sciatic nerve, after both thermal and mechanical stimulation.Altogether these results suggest that the presence of OP(4) receptor is not crucial for (1) the development of either acute or neuropathic nociceptive responses, and for (2) the regulation of full receptor-mediated responses to opioid agonists, even though compensatory mechanisms could not be excluded.  相似文献   

12.
We found that enterostatin (VPDPR), an anorexigenic peptide for a high-fat diet, significantly reduces serum cholesterol levels after oral administration of 100 mg/kg for 3 days in mice fed a high cholesterol-cholic acid diet. DPR, a peptide fragment of VPDPR, also had hypocholesterolemic activity at a dose of 50 mg/kg. Food intake was not suppressed under these dietary conditions. Fecal excretion of cholesterol and bile acids was increased significantly by both VPDPR and DPR. Interestingly, DPR induced hypocholesterolemic effects just two hours after a single oral administration at a dose of 100 mg/kg.  相似文献   

13.
Neuropeptide FF (NPFF) belongs to an opioid-modulating peptide family. NPFF has been reported to play important roles in the control of pain and analgesia through interactions with the opioid system. However, very few studies examined the effect of supraspinal NPFF system on analgesia induced by opiates administered at the peripheral level. In the present study, intracerebroventricular (i.c.v.) injection of NPFF (1, 3 and 10 nmol) dose-dependently inhibited systemic morphine (0.12 mg, i.p.) analgesia in the mouse tail flick test. Similarly, i.c.v. administration of dNPA and NPVF, two agonists highly selective for NPFF(2) and NPFF(1) receptors, respectively, decreased analgesia induced by i.p. morphine in mice. Furthermore, these anti-opioid activities of NPFF and related peptides were blocked by pretreatment with the NPFF receptors selective antagonist RF9 (10 nmol, i.c.v.). These results demonstrate that activation of central NPFF(1) and NPFF(2) receptors has the similar anti-opioid actions on the antinociceptive effect of systemic morphine.  相似文献   

14.
Peng YL  Chang M  Dong SL  Li W  Han RW  Fu GX  Chen Q  Wang R 《Regulatory peptides》2006,134(2-3):75-81
Two novel ligands for the nociceptin/orphanin FQ (N/OFQ) receptor (NOP), [(pF)Phe4,Aib7, Aib11,Arg14,Lys15]N/OFQ-NH2 (peptide-1) and [Nphe1,(pF)Phe4,Aib7,Aib11,Arg14,Lys15]N/OFQ-NH2 (peptide-2), have been generated by combining different modifications of N/OFQ sequence. In the present study, we investigated the actions of two analogues and compared them with those of N/OFQ in four assays. Peptide-1 mimicked N/OFQ effects in mouse vas deferens and mouse colon and showed similar maximal effects but higher potency relative to N/OFQ. The effects of peptide-1 were sensitive to NOP receptor selective antagonist ([Nphe1]N/OFQ(1-13)-NH2) but not to naloxone in vitro. Peptide-1 (25 pmol, i.c.v.) mimicked the pronociceptive action of N/OFQ (2.5 nmol, i.c.v.) in mouse tail withdrawal assay, displaying higher potency and longer lasting effects. In anesthetized rats, peptide-1 (1 nmol/kg, i.v.) produced a marked decrease in mean arterial pressure, which was comparable to that evoked by i.v. N/OFQ (100 nmol/kg). Peptide-2 did not produce any effect per se but antagonized N/OFQ actions in mouse vas deferens and mouse colon assays. Peptide-2 is active in vivo where it prevented the pronociceptive effect induced by 2.5 nmol N/OFQ i.c.v. in the mouse tail withdrawal assay. Furthermore, peptide-2 at 5 nmol produced alone a robust and long lasting antinociceptive effect. Moreover, peptide-2 (10 and 40 nmol/kg i.v.) didn't produce any effect per se but antagonized hypotensive actions produced by i.v. administration of N/OFQ. Collectively, these findings demonstrate that [(pF)Phe4,Aib7,Aib11, Arg14,Lys15]N/OFQ-NH2 behaves as a highly potent NOP receptor agonist which produces long lasting effects in vivo and [Nphe1,(pF)Phe4,Aib7,Aib11,Arg14,Lys15]N/OFQ-NH2 acts as a pure and competitive antagonist of the NOP receptor.  相似文献   

15.
In this study, we examined the antinociceptive effect of beta-lactotensin, a neurotensin agonist that has been isolated from the chymotrypsin digest of beta-lactoglobulin as an ileum-contracting peptide. Beta-lactotensin showed naloxone-insensitive antinociceptive activity by the tail-pinch test after i.c.v. (200 nmol/mouse) or s.c. (300 mg/kg) administration in ddY mice. Tolerance was not developed to antinociception induced by beta-lactotensin after repeated s.c. administration for 5 days. The antinociceptive activity of beta-lactotensin was blocked by treatment with the neurotensin NT2 receptor antisense ODN, while treatment with the NT1 receptor antisense ODN had no effect. The antinociceptive activity was also blocked by a dopamine D1 receptor antagonist, SCH23390 (1 microg/mouse, i.c.v.), while a D2 receptor antagonist, raclopride (0.5 microg/mouse, i.c.v.), did not block the activity. These results indicate that the antinociceptive activity of beta-lactotensin is mediated by NT2 and D1 receptors.  相似文献   

16.
Ghrelin, an acylated 28-amino peptide secreted in the gastric endocrine cells, has been demonstrated to stimulate the release of growth hormone, increase food intake, and inhibit pro-inflammatory cascade, etc. Ghrelin mainly combines with its receptor (GHS-R1α) to play the role in physiological and pathological functions. It has been reported that ghrelin plays important roles in the control of pain through interaction with the opioid system in inflammatory pain and acute pain. However, very few studies show the effect of supraspinal ghrelin system on antinociception induced by intraperitoneal (i.p.) administration of morphine. In the present study, intracerebroventricular (i.c.v.) injection of ghrelin (0.1, 1, 10 and 100 nmol/L) produced inhibition of systemic morphine (6 mg/kg, i.p.) analgesia in the tail withdrawal test. Similarly, i.c.v. injection GHRP-6 and GHRP-2 which are the agonists of GHS-R1α, also decreased analgesia effect induced by morphine injected intraperitoneally in mice. Furthermore, these anti-opioid activities of ghrelin and related peptides were not blocked by pretreatment with the GHS-R1α selective antagonist [d-Lys3]-GHRP-6 (100 nmol/L, i.c.v.). These results demonstrated that central ghrelin and related peptides could inhibit the analgesia effect induced by intraperitoneal (i.p.) administration of morphine. The anti-opioid effects of ghrelin and related peptides do not interact with GHS-R1a. These findings may pave the way for a new strategy on investigating the interaction between ghrelin system and opioids on pain modulation.  相似文献   

17.
《Life sciences》1998,62(23):2073-2082
We previously showed that the extract of Japanese angelica root (JAR-E) reversed the decrease in pentobarbital (PB) sleep induced by isolation stress and yohimbine and methoxamine, stimulants of central noradrenergic systems, in mice. Here, we tested the effects of several fractions from JAR-E and ligustilide and butylidenephthalide, phthalide components of JAR-E, on PB sleep in isolated mice to elucidate the mechanism of the action of JAR-E. Methanol-soluble (Met-S) and -insoluble (Met-IS) fractions were obtained from JAR-E. Methylenechloride-soluble (MC-S) and -insoluble fractions (MC-IS) were prepared from Met-S. MCS (11.4–76 mg/kg, p.o.) reversed the isolation stress-induced decrease in PB sleep, but neither Met-IS (0.8–2.4 g/kg, p.o.) nor MC-IS (0.7–2 g/kg, p.o.) had the same effect. The i.p. administration of MC-S exhibited a similar activity to that observed after the p.o. administration of the same fraction. Ligustilide (5–20 mg/kg, i.p.) and butylidenephthalide (10–30 mg/kg, i.p.) reversed PB sleep decrease in isolated mice. Both components (20 mg/kg, i.p.) attenuated the suppressive effects of yohimbine (30 nmol, i.c.v.), methoxamine (200 nmol, i.c.v.) and a benzodiazepine inverse agonist FG7142 (10 mg/kg, i.p.) on PB sleep in group-housed mice. These results suggest the contribution of ligustilide and butylidenephthalide to the effect of JAR-E on PB sleep in isolated mice, and implicate central noradrenergic and/or GABAa systems in the effects of these components.  相似文献   

18.
The role of endothelin, PAF and thromboxane A2 in airway hyperreactivity (AHR) to carbachol induced by ovalbumin sensitization and challenge in Balb/c mice was investigated. Ovalbumin sensitization and challenge induced significant AHR to carbachol in actively sensitized and challenged mice. Treatment of these mice with the PAF antagonist CV-3988 (10 microg kg(-1), i.v.) completely abolished OVA-induced AHR to carbachol. Treatment of sensitized mice with the TxA2 antagonist L-654,664 (1 mg kg(-1), i.v.) partially blocked the induction of AHR in OVA-challenged mice. The intranasal administration of 50 pmol of the ET(A) receptor antagonist BQ-123 had no effect on the PIP but produced a significant reduction at the dose of 100 pmol. The intravenous administration of BQ-123 (100 pmol) reduced the PIP only at the highest doses of carbachol. The ET(B) receptor antagonist BQ-788 administered either via the intranasal or intravenous route had no effect on the PIP at the dose of 100 pmol. Na?ve mice treated with either U-44069 (25 or 100 microg kg(-1), i.v.), endothelin-1 (100 pmol, intranasally) or the ET(B) receptor agonist IRL-1620 (100 pmol, intranasally) showed a marked increase in airway reactivity to carbachol. These results suggest an important role for endothelin, PAF and thromboxane A2 in AHR in mice actively sensitized and challenged with ovalbumin.  相似文献   

19.
The effects of intravenous (i.v.) and intracerebroventricular (i.c.v.) administration of morphine on jejunal and colonic motility were investigated in conscious dogs chronically prepared with strain gage transducers and compared to those of i.c.v. DAGO, a highly selective opiate mu agonist. Morphine i.v. (100 micrograms/kg) and i.c.v. (10 micrograms/kg) administered 3 hrs after a meal stimulated colonic motility for 3-5 hrs and induced a phase 3 on the jejunum, which appeared after a 15-60 min delay following i.c.v. administration. These effects were reproduced by DAGO administration at doses of 2 micrograms/kg i.v. and 0.2 micrograms/kg i.c.v. The effects of i.v., but not those of i.c.v., morphine and DAGO on jejunal and colonic motility were blocked by a previous administration of naloxone (100 micrograms/kg i.v.). The colonic stimulation but not the jejunal phase 3 induced by i.c.v. morphine and DAGO were blocked by RO 15-1788 (1 mg/kg i.v.), a selective benzodiazepine antagonist. The colonic stimulation induced by i.v. morphine or DAGO was not modify by i.v. RO 15-1788. It is concluded that i.c.v. administration of mu agonist involved benzodiazepine but not opiate receptors to stimulate colonic motility in dogs.  相似文献   

20.
Prostaglandin (PG) E2, a bioactive lipid produced in the brains of various mammals, decreases food intake after central administration. We examined which of four distinct subtypes of PGE2 receptors (EP1-EP4) mediated the anorexigenic action of PGE2 using highly selective ligands. PGE2 at a dose of 0.1-10 nmol/mouse decreased food intake after intracerebroventricular (i.c.v.) administration in a dose-dependent manner in fasted mice. A centrally administered EP4 agonist, ONO-AE1-329 at a dose of 1-10 nmol/mouse mimicked the anorexigenic action by PGE2. The anorexigenic action of PGE2 or EP4 agonist was ameliorated by EP4 antagonist ONO-AE3-208 at a dose of 10 nmol/mouse. Thus, activation of PGE2-EP4 signaling in the central nervous system suppresses food intake. The EP4 agonist at a dose of 10 nmol/mouse delayed gastric emptying and elevated blood glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号