首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Root tips (10-millimeter length) were excised from hypoxically pretreated (HPT, 4% [v/v] oxygen at 25°C for 16 hours) or nonhypoxically pretreated (NHPT, 40% [v/v] oxygen) maize (Zea mays) plants, and their rates of respiration were compared by respirometry under aerobic and anaerobic conditions with exogenous glucose. The respiratory quotient under aerobic conditions with 50 millimolar glucose was approximately 1.0, which is consistent with glucose or other hexose sugars being utilized as the predominant carbon source in glycolysis. Under strictly anaerobic conditions (anoxia), glycolysis was accelerated appreciably in both HPT and NHPT root tips, but the rate of anaerobic respiration quickly declined in NHPT roots. [U-14C]Glucose supplied under anaerobic conditions was taken up and respired by HPT root tips up to five times more rapidly than by NHPT roots. When anaerobic ethanol production was measured with excised root tips in 50 millimolar glucose, HPT tissues consistently produced ethanol more rapidly than NHPT tissues. These data suggest that a period of low oxygen partial pressure is necessary to permit adequate acclimation of the root tip of maize to subsequent anoxia, resulting in more rapid rates of fermentation and generation of ATP.  相似文献   

2.
During anaerobiosis in darkness the main route for ATP production in plants is through glycolysis in combination with fermentation. We compared the organ-specific anaerobic fermentation of flooding-tolerant rice (Oryza sativa) and sensitive wheat (Triticum aestivum) seedlings. A sensitive laser-based photoacoustic trace gas detection system was used to monitor emission of ethanol and acetaldehyde by roots and shoots of intact seedlings. Dark-incubated rice seedlings released 3 times more acetaldehyde and 14 times more ethanol than wheat seedlings during anaerobiosis. Ninety percent of acetaldehyde originated from shoots of both species. In comparison to wheat shoots, the high ethanol production of rice shoots correlated with larger amounts of soluble carbohydrates, and higher activities of fermentative enzymes. After 24 h of anaerobiosis in darkness rice shoots still contained 30% of aerated ATP level, which enabled seedlings to survive this period. In contrast, ATP content declined almost to zero in wheat shoots and roots, which were irreversibly damaged after a 24-h anaerobic period. When plants were anaerobically and dark incubated for 4 h and subsequently transferred back to aeration, shoots showed a transient peak of acetaldehyde release indicating prompt re-oxidation of ethanol. Post-anoxic acetaldehyde production was lower in rice seedlings than in wheat. This observation accounts for a more effective acetaldehyde detoxification system in rice. Compared to wheat the greater tolerance of rice seedlings to transient anaerobic periods is explained by a faster fermentation rate of their shoots allowing a sufficient ATP production and an efficient suppression of toxic acetaldehyde formation in the early re-aeration period.Angelika Mustroph and Elena I. Boamfa contributed equally to the paper.  相似文献   

3.
Interaction of flooding with carbon metabolism of forest trees   总被引:5,自引:0,他引:5  
Waterlogging and flooding cause oxygen deprivation in the root system of trees. Since oxygen is essentially for mitochondrial respiration, this process cannot be maintained under anoxic conditions and must be replaced by other pathways. For the roots it is therefore a matter of survival to switch from respiration to alcoholic fermentation. Due to the low efficiency of this process to yield energy equivalents (ATP), energy and carbon metabolism of trees are usually strongly affected by oxygen deprivation, even if a rapid switch from respiration to fermentation is achieved. The roots can compensate for the low energy yield of fermentation either (1) by decreasing the demand for energy by a reduction of energy-dependent processes such as root growth and/or nutrient uptake, or (2) by consuming more carbohydrates per unit time in order to generate sufficient energy equivalents. In the leaves of trees, flooding and waterlogging cause a decline in the rates of photosynthesis and transpiration, as well as in stomatal conductance. It is assumed that, due to reduced phloem transport, soluble sugars and starch accumulate in the leaves of flooded trees, thereby negatively affecting the sugar supply of the roots. Thus, root growth and survival is negatively affected by both changes in root internal carbon metabolism and impaired carbon allocation to the roots by phloem transport. In addition, accumulation of toxic products of fermentation in the roots, such as acetaldehyde, can further impair root metabolism. A main feature of tolerance against flooding and waterlogging of trees seems to be the steady supply of carbohydrates to the roots in order to maintain alcoholic fermentation; in addition, roots of tolerant trees seem to avoid accumulation of fermentation-derived ethanol and acetaldehyde. From studies with flooding tolerant and non-tolerant tree species, it is hypothesized that (1) the transport of ethanol produced in the roots under hypoxic conditions into the leaves via the transpiration stream, (2) its conversion into acetyl-CoA in the leaves, and (3) its use in the plant's general metabolism, are mechanisms of flooding tolerance of trees.  相似文献   

4.
The study investigates the reactions of rice, wheat and maize to anoxia (plants without access to oxygen) and hypoxia (roots with very limited access to oxygen). We studied the adaptations of these intact crop plants because they are known to differ widely in their tolerance to oxygen deficiency. In hypoxia, there was an accumulation of sugars, especially in wheat and maize, although both flood-sensitive species significantly increased the activities of fermentative and glycolytic enzymes, clearly more than in rice. In rice, avoiding an oxygen limitation due to the effective aeration system (30% of root cross-sectional area) may have accounted for only a minor metabolic reaction to hypoxia. In anoxia, maize and wheat quickly lost viability and nearly all photosynthetic capacity, while most rice leaves stayed turgid and green, losing only 50% of the photosynthetic capacity. A strong metabolic arrest under anoxia was obvious for the sucrolytic, glycolytic and fermentative enzymes in all tested species, but was most pronounced in rice. Of the 14 enzymes studied, rice showed the lowest activity increase in hypoxia for 11 enzymes, and the strongest activity decrease in anoxia for 8 enzymes. However, rice was able even under anoxia to keep a 1/4 of the ATP level of the aerated control, while it was at the detection limit in maize and wheat. It appears that in anoxic rice, the switch to metabolic dormancy and maintenance of basic shoot meristems diminishes the needs for energy and substrate. Additionally, rice already has lower sugar demand under hypoxia, and sugar supply appears to be sustained under anoxia by a functioning anaerobic amylase and by the photosynthetically active shoot.  相似文献   

5.
Abstract A current explanation of the mechanism of flooding injury to roots suggests that oxygen deficiency depresses the supply of respirable carbohydrates sufficiently to inhibit fermentation. However, even though it has been shown that phloem transport of assimilate is sharply reduced to anaerobic roots, inhibition of assimilate metabolism has also been suggested to be an important factor. This study examines these hypotheses by relating assimilate supply and metabolic activity in anoxic roots of alfalfa (Medicago sativa L.), a flood-intolerant species, and birdsfoot trefoil (Lotus corniculatus L.), a flood-tolerant plant. Roots were made anoxic (severe O2 deficiency) for 2, 4 or 6 d and shoots were labelled with 14CO2. Assimilate transport to the roots and metabolism to structural components were significantly decreased in both species in response to anoxia. Trefoil exhibited significantly greater 14C incorporation into the residue fraction at 4 d anoxia than did alfalfa, and this was consistent with the greater flooding tolerance of trefoil. When assimilate supply to O2-deficient roots was decreased by shoot shading, shoot fresh weight was reduced by both anoxia and light treatments. Root-soluble sugars were significantly decreased by shading but were greatly increased in response to anoxia. Root starch concentration also increased under anoxia. Root K+ concentration was reduced by anoxia only. The energy status (ATP/ADP) of roots was significantly decreased by shading; however, anoxia reduced the energy status only in unshaded plants. The data indicate that carbohydrate supply to anaerobic roots does not appear to be a limiting factor in the metabolic response of alfalfa roots. Alternatively, metabolism of assimilate in anoxic roots may be an important determinant of survival.  相似文献   

6.
The aim of this work was to discover whether oxygen tensions in the roots of marsh plants in flooded soils are high enough to allow fully acrobic metabolism. Activity of alcohol dehydrogenase (ADH), a protein synthesised in anoxic plants, was measured in roots of marsh plants growing in habitats where the availability of oxygen to the roots would be expected to differ. Roots of Carex riparia in standing water had ADH activities about 2.5 times higher than those of phosphofructokinase, and comparable to ADH activities of Poa trivialis, Urtica dioica and Ranunculus repens roots in dry soil. Removal of the oxygen supply via aerenchyma to Carex roots caused a 30-fold increase in ADH activity relative to that of phosphofructokinase. There was no change in ADH activity with depth in Carex roots in waterlogged soil, but in Filipendula ulmaria roots activity was 14 times higher below 10 cm depth than near the surface. Urtica roots in waterlogged soil had alcohol dehydrogenase activities 26 times higher than roots in dry soil, but for Poa and Ranunculus roots this figure was only 1.7 and 4.2, respectively. These results indicate that the oxygen tensions in the roots of marsh plants in waterlogged soil differ considerably among species. Ethanol was the major product of fermentation in roots of all species studied. There was no correlation between ADH activity and the rate of ethanol production under anoxia of Urtica roots. The physiological significance of high ADH activities in roots is thus unclear.Abbreviations ADH alcohol dehydrogenase - PFK phosphofructokinase - PFP pyrophosphate:fructose 6-phosphate phosphotransferase  相似文献   

7.
Low oxygen stress in plants can occur during flooding and compromise the availability and utilization of carbohydrates in root and shoot tissues. Low-oxygen-tolerant rice and -sensitive wheat plants were analyzed under anaerobiosis in light to evaluate main factors of the primary metabolism that affect sensitivity against oxygen deprivation: activity of glycolysis and the rate of photosynthesis. Relatively stable ATP contents (93 and 58% of aerated control levels after 24 h anaerobiosis) in illuminated shoot tissues account for enhanced tolerance of rice and wheat seedlings to anaerobiosis upon light exposure in comparison to anoxia in darkness. Although the photosynthetic process was inhibited during low oxygen stress, which was partly due to CO2 deficiency, more light-exposed than dark-incubated seedlings survived. Illuminated plants could tolerate a 70% lower anaerobic ethanol production in shoots in comparison to darkness, although still an 18-times higher ethanol production rate was determined in rice than in wheat leaves. In conclusion, light-exposed plants grown under anaerobiosis may recycle low amounts of generated oxygen between photosynthesis and dissimilation and generate additional energy not only from substrate phosphorylation during glycolysis but also from other sources like cyclic electron transport.  相似文献   

8.
Anaerobic (anoxic) solution cultures were used to investigatethe effect of a restricted oxygen supply to roots on the developmentof symptoms of waterlogging damage in young wheat plants, especiallyeffects on growth and nutrient uptake by the shoots. Anaerobicconditions produced by bubbling solutions with oxygen-free nitrogengas caused premature senescence of the lower leaves, slowedshoot fresh weight accumulation, and arrested the growth ofthe seminal roots. However the shoot dry weight initially increasedabove that of the aerobic controls. Nutrient accumulation bythe shoot was severely inhibited by anoxia, the uptake of nitrate,phosphate, and potassium being more affected than that of calciumand magnesium. The calculated concentrations in the xylem streamof all these ions (except nitrate) were equal to, or less than,those in the external solution, suggesting that the slow butcontinuous accumulation of nutrients in the shoot could haveoccurred passively by the mass flow of solution across damagedroots in response to transpiration. Aerenchymatous nodal rootsextended into the anoxic solutions to a maximum length of 12cm but there were few produced, and the size of the root systemremained small and may have limited shoot growth. Inclusionof carbon dioxide (10 kPa partial pressure) in the nitrogengas stream had little additional effect on plants to that causedby anoxia alone. All the responses of wheat to the anaerobic solutions were similarto those observed previously in waterlogged soil, indicatingthat many of the early symptoms of waterlogging damage to wheatcan be caused simply by the direct effects of inadequate oxygensupply to the roots. The results are discussed in relation tocurrent views of the mechanisms contributing to waterloggingdamage to plants.  相似文献   

9.
A study was made of dynamics of wheat production, intensity of respiration and changes in bioelectric characteristics of exised roots. Response reactions of two wheat varieties were compared in the process of adaptive reactions. The varieties differed in bioelectric characteristics of root cells in intact seedlings grown in CaCl2 and EDTA containing media. Different changes of membrane characteristics of root cells were observed: in soft wheat MP and Rin increased, but in hard wheat these decreased after a 5 h incubation of excised root. The rate of heat production was at the same level in both wheat varieties, but oxygen absorption of the root cells was lower in hard wheat compared with soft wheat. The rate of respiration of excised roots was stable in EDTA-containing medium. The obtained data allow to discuss more in detail the role of Ca(2+)-ions in the regulation of cell functions under formation of adaptive processes as the tissue level.  相似文献   

10.
Internal transport of O2 from the aerial tissues along the adventitious roots of intact maize plants was estimated by measuring the concentrations of adenine nucleotides in various zones along the root under an oxygen-free atmosphere. Young maize plants were grown in nutrient solution under conditions that either stimulated or prevented the formation of a lysigenous aerenchyma, and the roots (up to 210 mm long) were then exposed to an anaerobic (oxygen-free) nutrient solution. Aerenchymatous roots showed higher values than non-aerenchymatous ones for ATP content, adenylate energy charge and ATP/ADP ratios. We conclude that the lysigenous cortical gas spaces help maintain a high respiration rate in the tissues along the root, and in the apical zone, by improving internal transport of oxygen over distances of at least 210 mm. This contrasted sharply with the low energy status (poor O2 transport) in non-aerenchymatous roots.Abbreviation AEC adenylate energy charge  相似文献   

11.
The adenylate energy charge, production of ethanol and lactate, and nitrate reductase activity were determined in order to study the influence of different nitrogen sources on the metabolic responses of roots of Carex pseudocyperus L. and Carex sylvatica HUDS. exposed to anaerobic nutrient solutions. Determination of adenylates was carried out by means of a modified HPLC technique. Total quantity of adenylates was higher in Carex pseudocyperus than in Carex sylvatica under all conditions. In contrast, the adenylate energy charge was only slightly different between the species and decreased more or less in relation to the applied nitrogen source under oxygen deficiency. The adenylate energy charge in roots of plants under nitrate nutrition showed a smaller decrease under anaerobic environmental conditions than plants grown with ammonium or nitrate/ammonium. Roots of nitrate-fed plants showed a lower ethanol and lactate production than ammonium/nitrate- and ammonium-fed plants. Ethanol production was higher in C. pseudocyperus, formation of lactate was lower compared to that in Carex sylvatica. The activity of enzymes involved in fermentation processes (ADH, LDH and PDC) was enhanced significantly after 24 hours of exposure to anaerobic nutrient solutions in roots of both species. The induction of these enzymes was only slightly influenced by different nitrogen supply. In vivo nitrate reductase activity increased almost 3-fold compared to the aerobic treatment in both species and overcompensated loss of NADH reoxidation capacity caused by decrease of ethanol and lactate development. Induction of in vitro nitrate reductase activity was enhanced 313% in C. pseudocyperus and 349% in C. sylvatica under anaerobic environmental conditions and nitrate supply. These results indicate that nitrate may serve as an alternative electron acceptor in anaerobic plant root metabolism and that the nitrate-supported energy charge may be due to an accelerated glycolytic flux resulting from a more effective NADH reoxidation capacity by nitrate reduction plus fermentation than by fermentation alone.Abbreviations ADH alcohol dehydrogenase - AEC adenylate energy charge - DMSO dimethyl sulfoxide - EDTA ethylen diamine tetraacetic acid - HPLC high performance liquid chromatography - LDH lactate dehydrogenase - NRA nitrate reductase activity - PCA perchloric acid - PDC pyruvate decarboxylase - PVP polyvinylpyrrolidone - PVPP polyvinylpolypyrrolidone - TCA trichloroacetic acid, Tris-tris(hydroxymethyl)aminomethane  相似文献   

12.
13.
Quantitative estimations of downward oxygen transport from aerial to subterranean parts in intact seedlings were carried out in the present investigation with the respiratory hydrometer specially designed by us for this purpose. The chief object of the investigation is rice, a crop which is notable for its marshy habitat and whose submerged roots are in particular demand of such transport. Some other common plants (wheat, pea, water cress, etc.), either of marshy or of mesophytic habitat, have also been included in the investigation for comparison. Although rice has long been known for its capability of downward oxygen transport, as has often been revealed by various qualitative demonstrations and indirect estimations; yet, data of direct quantitative measurement of the actual amount transported, so far as we are aware, have been very scanty. The few attempts of bringing about such quantitative measurement in an intact plant are made by enclosing its shoot and root in two adjoining compartments respectively, and gas analysis is made on samples taken from each compartment at intervals. The procedure is so elaborate and tedious that estimations on a large scale could not be readily carried out and the results have often been rendered unreliable by mishandling of the plant and air leakage between the compartments. Proposals to the path and mechanism of downward oxygen transport in higher plants have largely been based upon such scanty quantitative approximations and various qualitative observations, and the conclusions derived therefrom are contraversial and far from being convincing. The presentation in this communication of a simple yet accurate experimental method for the quantitative determination of this kind might be opportune and appropriate. The basic principle of the respiratory hydrometer employed in this investigation has been given previously (Lou et al., 1963). Seedlings raised in water culture are inserted into the vessel of the hydrometer (Fig. 1) with its aerial part in the air space above and roots in the water passage below. As the diffusion rate of oxygen in water is about 1/300,000 that in air, the submerged roots of an intact rice seedling practically have their immediate oxygen supply cut off and have to rely upon the oxygen transported from above. Downward oxygen transport in intact seedlings can be easily estimated through the following procedures and the results thus obtained are summarized below: 1. The difference between two consecutive determinations of the oxygen absorbed by the aerial parts of intact seedlings made before and after their roots are severed gives the amount of oxygen transported downwards to roots. For the marshy plant (rice, water cress), it is about 50% (range: 30%–70%) of the total amount absorbed; whereas for ordinary land plants raised in water culture (wheat, pea), it is 20%–30% of the total. 2. The above results are in good agreement with those obtained by determining the respiratory quotients of intact seedlings first in air (e.g.R.Q. ≌ 1 in case of rice seedling) and then with their roots submerged in water (R.Q. ≌ 0.5). The difference between the two consecutive determinations again gives the fraction of oxygen transported downwards. 3. Either by varying the oxygen supply to the aerial part (from 1/4 to twice the oxygen content in air) or by increasing the oxygen consumption of the root through temperature increase or DNP stimulation, the oxygen concentration gradient along the vertical axis of the plant can be steepened or lessened at will. When such experiment is carried out in rice seedlings, the amount of oxygen transported downwards increases with the gradient.  相似文献   

14.
《Endocrine practice》2016,22(6):703-707
Objective: The effects of normocalcemic hyperparathyroidism (NHPT) on bone remain unclear. The objective of this study was to evaluate differences in the trabecular bone score (TBS) of NHPT patients and asymptomatic hypercalcemic hyperparathyroidism (HHPT) patients.Methods: We performed a prospective study that enrolled consecutive patients with asymptomatic hyperparathyroidism (NHPT and HHPT) with a follow-up ≥1 year at the University Hospital of Valladolid, Spain. Metabolic phosphocalcium plasma and urine parameters were evaluated in ≥2 determinations during follow-up to classify patients as NHPT patients or asymptomatic HHPT patients. A control group was enrolled during the same period. TBS and bone mineral density (BMD) were evaluated.Results: Thirty-nine patients with asymptomatic HPT (24 with NHPT and 15 with HHPT) and 24 controls were recruited. NHPT patients and HHPT patients had a similar mean age, vitamin D level, TBS, and areal BMD (all sites). Compared to controls, symptomatic HPT patients had significantly higher parathyroid hormone (PTH) and calcium levels and significantly lower TBS and areal BMD at all sites (all P<.05). A significant negative relationship between TBS and PTH was found in asymptomatic HPT patients (r = -0.320, P = .043), which remained significant after adjustment for age, sex, and body mass index.Conclusion: There was no difference in the TBS between NHPT and HHPT patients. However, there was a reduction in the TBS of patients with asymptomatic HPT that was related to PTH levels but had no repercussion on bone mass. Higher levels of PTH seem to be responsible for this alteration in microarchitecture texture.Abbreviations:aBMD = areal bone mineral densityBMD = bone mineral densityBMI = body mass indexDXA = dual-energy X-ray absorptiometryHHPT = hypercalcemic hyperparathyroidismHPT = hyperparathyroidismHR-MRI = high-resolution magnetic resonanceHR-pQcT = high-resolution peripheral quantitative computed tomographyNHPT = normocalcemic hyper-parathyroidismPTH = parathyroid hormoneTBS = trabecular bone score25vitD = 25-hydroxyvitamin D  相似文献   

15.
A facultatively anaerobic bacterium, strain P-88, was enriched selectively under dual limitation by glutamate and oxygen in a chemostat. The new strain is a gram-negative motile rod. The mol% guanine plus cytosine of the DNA is 51.4±0.6 mol%. The organism grows on citrate as a sole source of carbon and energy, does not form acetoin, does not induce lysine decarboxylase and was thus classified as a species of the genus Citrobacter. A remarkable characteristic of the new isolate is its ability to grow on several amino acids with either a respiratory or a fermentative type of metabolism. Under strictly anoxic conditions glutamate was fermented to acetate, H2, CO2 and ammonia. Asparagine, aspartate and serine could also be fermented. Furthermore, all type strains of the genus Citrobacter were shown to have the same fermentative abilities. Based on enzyme activities determined in cell-free extracts a combination of the methylaspartate pathway and the mixed acid fermentation of Enterobacteriaceae is proposed to explain the glutamate fermentation pattern observed in cultures of strain P-88. Analysis of the growth of strain P-88 in continuous culture with various degrees of oxygen supply, demonstrated that the bacterium can rapidly switch between oxic and anoxic metabolism. Cultures of strain P-88 grown under oxygen limitation simultaneously respire and ferment glutamate, suggesting that the organism is particularly well adapted to growth in microoxic environments.  相似文献   

16.
Erenoglu  B.  Nikolic  M.  Römheld  V.  Cakmak  I. 《Plant and Soil》2002,241(2):251-257
Using two bread wheat (Triticum aestivum) and two durum wheat (Triticum durum) cultivars differing in zinc (Zn) efficiency, uptake and translocation of foliar-applied 65Zn were studied to characterize the role of Zn nutritional status of plants on the extent of phloem mobility of Zn and to determine the relationship between phloem mobility of Zn and Zn efficiency of the used wheat cultivars. Irrespective of leaf age and Zn nutritional status of plants, all cultivars showed similar Zn uptake rates with application of 65ZnSO4 to leaf strips in a short-term experiment. Also with supply of 65ZnSO4 by immersing the tip (3 cm) of the oldest leaf of intact plants, no differences in Zn uptake were observed among and within both wheat species. Further, Zn nutritional status did not affect total uptake of foliar applied Zn. However, Zn-deficient plants translocated more 65Zn from the treated leaf to the roots and remainder parts of shoots. In Zn-deficient plants about 40% of the total absorbed 65Zn was translocated from the treated leaf to the roots and remainder parts of shoots within 8 days while in Zn-sufficient plants the proportion of the translocated 65Zn of the total absorbed 65Zn was about 25%. Although differences in Zn efficiency existed between the cultivars did not affect the translocation and distribution of 65Zn between roots and shoots. Bread wheats compared to durum wheats, tended to accumulate more 65Zn in shoots and less 65Zn in roots, particularly under Zn-deficient conditions. The results indicate that differences in expression of Zn efficiency between and within durum and bread wheats are not related to translocation or distribution of foliar-applied 65Zn within plants. Differential compartementation of Zn at the cellular levels is discussed as a possible factor determining genotypic variation in Zn efficiency within wheat.  相似文献   

17.
Peroxidation was studied in anoxically treated plant tissues and quantified as conjugated dienes/trienes in the total lipid fraction and as the production of thiobarbituric acid reactive substances (TBARS). Oxidative stress caused by re-exposure of plants to oxygen led to an increase of conjugated diene/triene formation in rhizomes of Iris germanica and roots of wheat ( Triticum aestivum L.) and oats ( Avena sativa L.), and after a long anoxic exposure (45 days) in the rhizomes of the very anoxia tolerant Iris pseudacorus . Second derivative (SD) spectrophotometry of the UV spectrum of lipid extracts confirmed the formation of dienes. However, determination of TBARS in Iris spp. showed no lipid peroxidation in the anoxia tolerant I. pseudacorus . In the rhizomes of the anoxia intolerant I. germanica , elevated levels of TBARS correlated positively with conjugated diene/triene formation. The results suggest that anoxic stress may induce qualitative changes in membrane lipids, as indicated by lipid peroxidation after restoration of aerobic conditions. The rate of lipid peroxidation correlated negatively with anoxic stress tolerance.  相似文献   

18.
Rates of extension, numbers of laterals and rates of respiration were measured in different fractions of wheat ( Triticum aestivum L. cv. Alexandria) roots following changes in carbohydrate supply. The supply of carbohydrate was varied by selective pruning and exogenously fed sugars. Pruning shoots to a single leaf (leaf-pruning) reduced the rate of O2 uptake by intact roots. Rates were not stimulated by shortterm feeding of sucrose (25 m M ), but were stimulated by the uncoupler p -trifluoro-methoxy(carbonylcyanide)phenylhydrazone (FCCP). Feeding glucose to roots of leaf-pruned and non-pruned plants for 16–24 h increased the rate of O2 uptake. It is concluded that respiration is under fine control by adenylates and coarse control by carbohydrate supply, with carbohydrates regulating directly the rate of some energy consuming process(es). These energy consuming processes are located in growing tissue fractions. Feeding glucose to leaf-pruned and non-pruned plants increased rates of O2 uptake in seminal root tips, the zone of developing lateral primordia and mature root sections with elongating laterals, but had no effect on mature sections from which the laterals had been excised. Leaf-pruning reduced the extension rate of seminal axes and first-order laterals when measured over 24 h. Feeding glucose to roots from the time of pruning increased the rate, but did not fully restore it to control values. Pruning roots to a single seminal axis (root-pruning) and feeding glucose to non-pruned plants had no effect on the extension rate of the seminal axis or its laterals over this time period, although rates were increased by root-pruning when measured over 3 days. The number of lateral root primordia was reduced by leaf-pruning and increased by root-pruning and feeding glucose. The results are discussed in terms of the role of carbohydrates in the control of root growth and branching.  相似文献   

19.
For rate determinations of anaerobic metabolism it is essential to maintain strictly anoxic conditions throughout the experiment. However, even if oxygen contamination can be avoided while preparing the incubation containers, it is still possible that the incubation containers themselves contaminate the samples by oxygen diffusing from or through their plastic or rubber components. In this study, we investigated the sources and extent of oxygen contamination during anoxic incubations, and present solutions to minimize oxygen contamination. In particular, we investigated oxygen contamination in Labco® Exetainers, glass vials with a butyl rubber septum in the screw cap, which are frequently used in microbiological experiments. Our results show that significant oxygen contamination occurred at different stages during the incubation. Contamination occurred when Exetainers were either filled or incubated for more than 16 h under oxic atmosphere, but also under an oxygen-free atmosphere due to diffusion of oxygen out of the butyl rubber septum. Therefore, to avoid oxygen contamination during incubations, we suggest (1) filling and incubating the incubation containers under anoxic atmosphere (glove bag) and (2) deoxygenating all elastomers in sample processing and incubation equipment. If initial oxygen contamination cannot be avoided, introduction of an anoxic headspace might help extract oxygen from the incubated sample and present a buffer against oxygen diffusing out of the septum. We modeled the amount of oxygen diffusing out of butyl rubber septa under different conditions, and results fitted well with the observed oxygen contamination. Thus, the model can be used to predict oxygen contamination under varying conditions and for differently sized septa.  相似文献   

20.
Reduction in the supply of photosynthate to the roots of tomato, barley, and wheat plants was achieved indirectly by lowering the intensity of sunlight striking the foliage of test plants. The decrease in sugar and starch concentrations in the roots was verified by appropriate extraction and colorimetric analysis, and a corresponding reduction in the total respiratory rate of the roots was confirmed using an oxygen tension monitor. Other processes measured directly include the rate of uptake of potassium, the mitotic quotient in the root tip—a measure of growth—and the rate of accumulation of dry matter in the root. The study demonstrated that of the metabolic activities observed, root growth is the process first limited when the supply of photosynthetic fuel is decreased. Root growth was severely inhibited under conditions that did not significantly affect either the active uptake of potassium per gram of root or total respiration per gram of root. With greater restriction of photosynthesis, growth was completely halted while the uptake of potassium was strongly decreased and total respiration was still affected only moderately. As the light intensity is reduced significantly, most of the reduced energy supply in the root appears to be used in support of processes critical to maintenance of the organ and the organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号