首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Norepinephrine (NE) levels in brain areas of the vomeronasal system in young (4-5 months) and aged (25-26 months) ovariectomized Sprague-Dawley rats, which were implanted with a 17 beta-estradiol silastic capsule and then exposed to male rat urine, were investigated. The unilateral vomeronasal organ was removed in all rats one week before exposure to urine stimulation. NE levels in the medial nucleus of the amygdala (MA), medial preoptic area (MPOA), ventromedial nucleus of hypothalamus (VMH) and bed nucleus of stria terminalis (BST) were measured. NE concentrations in these brain areas of the surgical side served as the control. Urine collected from young adult male rats was poured into the female's cage at 12:00h and the animals were sacrificed before and 1, 2, or 3 hours after the male urine was given. The NE basal levels in the MA and MPOA of young rats decreased significantly from 13:00h to 15:00h, and those in young rat VMH declined markedly from 13:00h to 14:00h compared to those at 12:00h. No marked alterations in NE basal levels in young rat BST were found. In contrast, no obvious changes in the NE concentrations were observed in these brain areas of old rats. Continuous exposure to male urine did not affect the NE levels in any of these brain areas of young and aged rats. We concluded that (1) the time-dependent fluctuation of the NE basal levels in some brain areas of the vomeronasal system in female rats is age-related, and (2) the NE in all these nuclei of the vomeronasal system is not involved in pheromone-induced effects.  相似文献   

2.
Abstract: Cerebral taurine biosynthesis in a spontaneously hypertensive rat (SHR) has been studied. Cysteine sulfinic acid (CSA) and cysteic acid (CA), possible key intermediates in taurine biosynthesis, were found in the rat brain, whereas no cysteamine-cystamine was detected. In the brain of SHR, a statistically significant decrease in the contents of CSA, CA, and taurine was noted in the cerebellum, hypothalamus, and striatum as compared with normotensive Wistar Kyoto rats. Similarly, it was demonstrated that the activity of cysteine dioxygenase, the enzyme catalyzing cysteine to CSA, was attenuated significantly in the same brain areas of SHR. In contrast, no alteration in the activity of CSA decarboxylase, the enzyme converting CSA to hypotaurine or CA to taurine, was observed. A decline in the percent conversion of [14C]cysteine to [14C]taurine was found also in tissue homogenates from the cerebellum, hypothalamus, and striatum of SHR, indicating that the declines in taurine content may be due to an attenuation of taurine biosynthesis, possibly at the step involving cysteine dioxygenase.  相似文献   

3.
Taurine is a sulphur-containing beta-amino acid found in high (millimolar) concentrations in excitable tissues such as brain and heart. Its suggested roles include osmoregulator, thermoregulator, neuromodulator, and potential neurotransmitter. This amino acid has also been shown to be released in large concentrations during ischaemia and excitotoxin-induced neuronal damage. Here we report a protective effect of taurine against MPP(+)-induced neurotoxicity in coronal slices from rat brain. Significant protective effects were observed at taurine concentrations of 20 and 1 mM, suggesting a potential role for taurine in cases of neuronal insult. Studies with the synthetic taurine analogues taurine phosphonate, guanidinoethane sulphonate, and trimethyltaurine suggested the observed effect to be mediated via an extracellular mechanism. The use of GABA receptor ligands muscimol and bicuculline indicated the effect to be mediated through activation of GABA(A) receptors.  相似文献   

4.
The effect of prolonged treatment (10 days) with the anticonvulsant drugs diphenylhydantoin (DPH), phenobarbitone, sodium valproate, ethosuximide and sulthiame, both singly and in combination, on regional rat brain amino acid neurotransmitter concentrations (GABA, glutamate, aspartate and taurine) were assessed. DPH had a major effect in the cerebellum and hypothalamus in that it significantly reduced cerebellar GABA, taurine and aspartate and hypothalamic GABA and aspartate. Sodium valproate significantly elevated GABA and taurine in most regions. Aspartate and glutamate were less affected. Phenobarbitone significantly elevated GABA concentrations in all brain regions, while taurine concentration was only elevated in the cerebral cortex. Ethosuximide induced changes were small compared to the other anticonvulsants while sulthiame produced complex changes. Anticonvulsant drugs administered in combination resulted in complex changes, suggesting that their mode of action is different.  相似文献   

5.
Since substance P (SP) has been demonstrated to coexist with serotonin (5-HT) in the same population of neurons in the descending raphe system, we have studied the possibility of interactions between these neurotransmitters in other brain areas. Brain nuclei were punched from frozen 300-micron slices of rat brain and extracted with 0.1 M HCIO4 or 2 M acetic acid prior to assay, respectively, of 5-HT content by HPLC with electrochemical detection or SP content by specific radioimmunoassay. Ten days after injection of rats with the 5-HT neurotoxin P-chloroamphetamine (PCA, 10 mg/kg, B.W., i.p.) or 3 days after 5-HT synthesis blockade with p-chlorophenylalanine (PCPA, 300 mg/kg, B.W., i.p.), the 5-HT content of all brain nuclei studied was reduced by means of, respectively, 50% and 81%. In PCA-treated animals, the SP content of the periaqueductal grey matter was significantly increased; PCPA treatment caused, in addition, large increases in the SP content of five other brain nuclei. Blockade of 5-HT receptors by methysergide (15 mg/kg for 5 days) did not significantly change 5-HT levels or turnover, but resulted in 50-200% increases in the SP content of 10 of the 28 brain nuclei studied. Significant decreases in the SP content of numerous areas were seen following treatments (pargyline 30 mg/kg, alone or in combination with 5-hydroxytryptophan, 60 mg/kg) that simultaneously increased 5-HT levels. These results illustrate the modulation of distinct SP-containing systems of the rat brain by perturbation of central serotoninergic pathways and indicate a reciprocal relationship between the SP and 5-HT concentrations of numerous brain nuclei, in particular n. striae terminalis, n. raphe dorsalis, n. accumbens, n. septi, substantia grisea centralis, and n. raphes medianus.  相似文献   

6.
Six brain areas of rats and guinea-pigs, killed by microwave irradiation, were used for the concomitant measurement of the levels and regional distribution of cholinergic, biogenic amine, and amino acid neurotransmitters and metabolites. Acetylcholine (ACh) and choline (Ch) were quantified by chemiluminescence; noradrenaline (NA), dopamine (DA), 5-hydroxytryptamine (5-HT), and their metabolites by HPLC with electrochemical detection (HPLC-EC); and six putative amino acid neurotransmitters by HPLC-EC following derivatisation. The levels and regional distribution of these transmitters and their metabolites in the rat were similar to those reported in previous studies, except that biogenic amine transmitter levels were higher and metabolite concentrations were lower. The guinea-pig showed a similar regional distribution, but the absolute levels of ACh were lower in striatum and higher in hippocampus, midbrain-hypothalamus, and medulla-pons. In all areas, the levels of Ch were higher and those of NA, 5-HT, and taurine were lower than in the rat. The most marked differences between the rat and guinea-pig were in the relative proportion of DA metabolites and 5-HT turnover, as estimated by metabolite/transmitter ratios. This study can be used as a basis for a comprehensive understanding of the central effects of drugs on the major neurotransmitter systems.  相似文献   

7.
Administration of the taurine transport inhibitor, guanidinoethane sulfonate (GES) to pregnant rats depleted taurine concentrations to approximately one-half of normal values in the newborn progeny. By 5 days of age taurine concentrations had returned to normal in all organs tested with the exception of the lungs. Longer postnatal exposure to GES significantly depressed tissue taurine levels. Prenatal exposure to GES had no effect on fetal development or the capability of the newborn rat to biosynthesize or transport taurine. Pre- and postnatal exposure to GES produced a degeneration of the photoreceptor layer of the retina similar to that observed in cats fed a taurine deficient diet. The pentylene tetrazole chemoshock threshold in GES-treated pups was greater than that in control pups. These results indicate that prenatal exposure to GES deplete taurine concentrations in the newborn rat. Morphological changes are thereby produced in the retina of rat that are similar to those observed in animals having limited ability to synthesize taurine which are maintained on a taurine-free diet.  相似文献   

8.
Thyrotropin-releasing hormone (TRH) binding sites were labeled in vitro in mounted brain tissue sections from rat and guinea pig brains with [3H]methyl TRH and localized autoradiographically using 3H-sensitive film. Regional densities of TRH binding sites were measured by computer-assisted microdensitometry. The distribution of sites in both species was highly heterogeneous. In both guinea pig and rat brains, the highest densities of binding sites were seen in the amygdaloid nuclei and the perirhinal cortex. In contrast, in other brain areas, a clear difference between the distribution of sites in rat and guinea pig was found. The temporal cortex, pontine nuclei, and interpeduncular nucleus, which contained high densities of binding in the guinea pig, were scarcely labeled in the rat. The accessory olfactory bulb and the septohippocampal area presented in the rat higher concentrations of binding sites than in the guinea pig. Other brain areas showing intermediate to low densities in both species were accumbens nucleus, bed nucleus of the stria terminalis, dentate gyrus, facial and hypoglossal nuclei, and gelatinosus subnucleus of the trigeminal nerve, among others. The anterior pituitary also presented low to intermediate concentrations of receptors. The distribution of TRH sites here described does not completely correlate with that of endogenous TRH, but is in good agreement with previous biochemical data. The results are discussed in correlation to the physiological effects that appear to be mediated by TRH.  相似文献   

9.
Taurine is an important modulator of neuronal activity in the immature brain. In kittens, taurine deficiency causes serious dysfunction in the cerebellar and cerebral visual cortex. The processes of taurine transport in vitro were now studied for the first time in different brain areas in developing and adult cats. The uptake of taurine consisted initially of two saturable components, high- and low-affinity, in synaptosomal preparations from the developing cerebral cortex and cerebellum, but the high-affinity uptake component completely disappeared during maturation. The release of both endogenous and preloaded labeled taurine from brain slices measured in a superfusion system was severalfold stimulated with a slow onset by depolarizing K+ (50 mM) concentrations. K+ stimulation released markedly more taurine from the cerebral cortex, cerebellum and brain stem in kittens than in adult cats. The responses were largest in the cerebellum. Both uptake and release of taurine are thus highly efficient in the brain of kittens and may be of significance in view of the vulnerability of cats to taurine deficiency.  相似文献   

10.
An isocratic high-performance liquid chromatographic technique was developed to measure levels of gamma-aminobutyric acid (GABA), glutamate, and taurine in the brain and pituitary of goldfish. Accuracy of this procedure for quantification of these compounds was established by evaluating anesthetic and postmortem effects and by selectively manipulating GABA concentrations by intraperitoneal administration of the glutamic acid decarboxylase (GAD) inhibitor 3-mercaptopropionic acid or the GABA transaminase inhibitor gamma-vinyl GABA. The technique provided a simple, rapid, and reliable method for evaluating the concentrations of these amino acids without the use of complex gradient chromatographic systems. To investigate the relationship between neurotransmitter amino acids and the control of pituitary secretion of gonadotropin, the effects of injection of taurine, GABA, or monosodium glutamate on GABA, glutamate, taurine, and, in some instances, monoamine concentrations in the brain and pituitary were evaluated and related to serum gonadotropin levels. Injection of taurine caused an elevation in serum gonadotropin concentrations. In addition, injection of the taurine precursor hypotaurine but not the taurine catabolite isethionic acid elevated serum gonadotropin levels. Intracerebroventricular injection of either GABA or taurine also elevated serum gonadotropin concentrations. Pretreatment of recrudescent fish with alpha-methyl-p-tyrosine reduced pituitary dopamine concentrations and also potentiated the serum gonadotropin response to taurine. Injection of monosodium glutamate caused an increase of glutamate content in the pituitary at 24 h; this was followed by a decrease at 72 h after administration. Pituitary GABA, taurine, and dopamine concentrations underwent a transient depletion after monosodium glutamate administration, and this was associated with an elevation of serum gonadotropin content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
CHOLINE ACETYLTRANSFERASE CONTENT IN DISCRETE REGIONS OF THE RAT BRAIN STEM   总被引:10,自引:5,他引:5  
—Choline acetyltransferase (ChAc) content of 50 separate rat brain stem nuclei and cerebellum removed by microdissection was determined using a sensitive radiometric assay. The distribution of ChAc activity is uneven, with extremely high levels in the cranial motor nuclei and the nucleus salivatorius. Low ChAc concentrations were observed in the cranial sensory nuclei, the nuclei of the reticular formation, the raphe nuclei and the nuclei of the acoustic system. The lowest ChAc levels were measured in the cerebellum. Comparison of the distribution of ChAc with histochemical localization of acetylcholinesterase revealed generally good agreement, and notable exceptions are discussed.  相似文献   

12.
The concentrations of taurine in blood and brain regions of the toadBufo boreas have been measured. Most of these values are considerably lower than those found in mammals. Using an antibody prepared against conjugated taurine, the distribution of taurine in three brain regions of the toad has been visualized. The possible osmoregulatory functions of taurine have been investigated by making toads hyper- or hypo-osmotic in vivo. Induction of hypoosmolality is accompanied by a massive taurine tide in blood plasma, but has no immediate effects upon the taurine concentrations in the brain areas studied. However, histochemical visualization indicates a marked redistribution of taurine between cellular components and extracellular space of brain tissues. This may indicate that taurine has an osmoregulatory function in brain tissue under hypo-osmotic conditions. Hyperosmolality results in no elevation of the taurine concentration in blood plasma of toads, but rather in a very gradual decline of total plasma taurine content over a prolonged time period. Histochemical studies reveal little change in frontal cortex after 1 hour but deeper staining of many neurons in optic lobe accompanied by greater staining in the extracellular fluid. By 3 hours there is a depletion of taurine from all compartments of cerebral cortex tissues. No evidence of any prolonged direct osmoregulatory role for taurine is indicated under hyperosmotic conditions. A possible indirect osmoregulatory function of taurine is discussed.Special issue dedicated to Dr. Claude Baxter.  相似文献   

13.
A sarcolemma-enriched membrane fraction was prepared from the hearts of Sprague-Dawley rats and its ability to bind taurine (0.5-150 mM) was measured. In the absence of cations, the sarcolemma bound a maximum of 661 nmol taurine/mg protein, with a dissociation constant of 19.2 mM and a Hill coefficient of 1.9, indicating positive cooperativity. Scatchard analysis of taurine binding to sarcolemma gave a bell-shaped curve. Neither beta-alanine nor guanidinoethane sulfonate, inhibitors of taurine transport, affected the degree of taurine binding to sarcolemma. However, hypotaurine was an effective antagonist. Equimolar concentrations of Ca2+, Na+ or K+ also reduced taurine binding. Heterogeneous phospholipid vesicles of phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine (18:19:2:1) also bound taurine with positive cooperativity, yielding a bell-shaped Scatchard curve. The affinity of taurine for these mixed phospholipid vesicles was enhanced by the inclusion of cholesterol (50%). Taurine associated in a maximum ratio of 1:1 with homogeneous vesicles of phosphatidylcholine or phosphatidylserine. Vesicles of phosphatidylethanolamine bound taurine in a maximum ratio of 2:1, whereas those of phosphatidylinositol bound insignificant amounts of taurine. These studies demonstrate a low affinity binding to sarcolemma of taurine at concentrations normally present in rat heart. Similar levels of binding were observed in phospholipid vesicles, suggesting that the interaction of taurine with biological membranes involves phospholipids.  相似文献   

14.
We report a quantitative radioimmunohistochemical method, using [125I]-protein A in combination with a specific antibody to methionine enkephalin (Met-enk), for determination of the content of this peptide in discrete areas of rat brain. After paraformaldehyde fixation, rat brain sections were incubated with a Met-enk polyclonal antibody, followed by incubation with [125I]-protein A. After autoradiography with 3H-sensitive Ultrofilm, optical densities (OD) were quantified by computerized microdensitometry. The OD obtained were compared to a standard curve, constructed after determination by radioimmunoassay of the Met-enk content in corresponding brain areas from adjacent tissue sections. After comparing 15 different brain areas over a ninetyfold range of concentrations, we found a linear relationship between the content of Met-enk, as determined by radioimmunoassay, and the OD generated by autoradiography. The content of Met-enk in other discrete brain areas can be quantified by interpolation of the OD determined by autoradiography in the standard curve. The method allows, for the first time, precise quantification of peptide concentrations in discrete areas and nuclei from thin sections of rat brain. This technique has a more than 100-fold higher sensitivity than classical radioimmunoassays, with the additional advantage of neuroanatomical localization. It also has the potential for application to the quantification of many other antigens present in brain and other tissues.  相似文献   

15.
单侧迷路破坏后大鼠前庭神经内侧核区氨基酸含量的变化   总被引:2,自引:0,他引:2  
Yu HL  An Y  Jiang HY  Jin QH  Jin YZ 《生理学报》2007,59(1):71-78
本实验用脑部微量透析法和高效液相色谱法观察单侧迷路破坏(unilateral labyrinthectomy,经利多卡因或对氨基苯胂酸盐预处理以阻断单侧外周前庭器官)后大鼠同侧及对侧前庭神经内侧核(medial vestibular nucleus,MVN)区部分氨基酸(天冬氨酸、谷氨酸、谷氨酰胺、甘氨酸、牛磺酸和丙氨酸)含量的变化,以了解前庭代偿的部分神经化学机制.实验观察到,对照组大鼠MVN区天冬氨酸、谷氨酸、谷氨酰胺、甘氨酸、牛磺酸和丙氨酸浓度分别为(6.15±0.59),(18.13±1.21),(33.73±1.67),(9.26±0.65),(9.56±0.77)和(10.07±0.83)pmol/8 μL透析样本.左侧中耳内灌注2%利多卡因后10 min,同侧MVN区天冬氨酸、谷氨酸含量立即减少(P<0.05),牛磺酸含量增加(P<0.05);对侧MVN区谷氨酸含量立即增加(P<0.05),甘氨酸和丙氨酸含量减少;双侧核团间谷氨酸、甘氨酸和丙氨酸含量失衡.而用对氨基苯胂酸盐永久阻断单侧前庭器官2周后,同侧MVN区谷氨酸和丙氨酸含量减少,谷氨酰胺含量增高;对侧MVN区谷氨酸含量也减少;同侧MVN区谷氨酰胺含量明显高于对侧MVN区.结果提示,单侧迷路破坏后双侧MVN区氨基酸含量立即失去平衡,随着前庭代偿的进展,此差异减少,但是在前庭代偿后却出现双侧前庭核区谷氨酰氨的含量失衡,说明在前庭代偿过程中氨基酸含量变化起着重要作用.  相似文献   

16.
Tyr-W-MIF-1 is a tetrapeptide recently isolated from brain that has opiate modulating activity. In this study, we used immunocytochemical (ICC) detection of FOS proto-oncogene protein to map brain areas activated by an ICV injection of Tyr-W-MIF-1 (200 μg). The analgesic effect of the peptide, which lasted 1 h, was confirmed in each rat with the tail flick test. FOS was activated in several limbic structures, including the cingulate and infralimbic cortex, nucleus accumbens, and central nucleus of the amygdala. FOS activation also occurred in several diencephalic nuclei, including the supraoptic, paraventricular, and periventricular nuclei of the hypothalamus, and the paraventricular nucleus of the thalamus. Several activated areas contained mu-opiate receptors. However, despite the known selectivity of Tyr-W-MIF-1 for mu receptors, FOS immunoreactivity was also induced in nuclei of the amygdala, hypothalamus, and thalamus, where concentrations of kappa receptors were high but those of mu and delta receptors were not detected. The results show that Tyr-W-MIF-1 induces FOS activation in several brain areas, including but not limited to, areas associated with nociception and stress-induced analgesia.  相似文献   

17.
In a study of the role of taurine in the genesis of epilepsy the effects of metrazol-induced convulsions on the uptake and distribution of taurine in the brain were measured.In vivo we found no significant uptake of taurine in the mouse brain; in rabbit brain in most areas significant taurine uptake was found. The physiological levels of taurine were much higher in mouse brain than in rabbit brain.In vivo the regional levels and the uptake of taurine were not significantly changed after generalized convulsions. Uptakein vivo was lowered in slices obtained from mice treated with metrazol. The lack of effect of metrazol convulsions on cerebral taurinein vivo indicates that further studies are needed to clarify the relationship between taurine, a putative inhibitory transmitter, and epilepsy.Supported in part by a grant from the C.N.R., Rome, Italy  相似文献   

18.
Developmental changes in the levels of the excitatory amino acids l-glutamate (Glu) and l-Aspartate (Asp) and inhibitory amino acids glycine (Gly) and γ-amino butyric acid (GABA), as well as taurine and its related amino acids l-methionine (Met), l-cysteine (Cys) and l-serine (Ser) in the brain and pectoralis muscle at various embryonic stages and hatch in broiler and layer type chickens were determined. Brain concentrations of Asp, GABA and taurine were higher than those in the muscle, but the difference in the two types was small. The concentrations of the precursors of taurine including Met, Cys and Ser were lower than that of taurine. In conclusion, the synthesis of some amino acids and their metabolites such as Asp, GABA and taurine in the chick embryo is very high in order to support brain development.  相似文献   

19.
Changes in amino acid concentrations were studied in the cortex, cerebellum, and hippocampus of the rat brain, after 20 min of seizure activity induced by kainic acid, 47 mumol/kg i.v.; L-allylglycine, 2.4 mmol/kg i.v.; or bicuculline, 3.27 mumol/kg i.v. in paralysed, mechanically ventilated animals. Metabolic changes associated with kainic acid seizures predominate in the hippocampus, where there are decreases in aspartate (-26%), glutamate (-45%), taurine (-20%), and glutamine (-32%) concentrations and an increase in gamma-aminobutyric acid (GABA) concentration (+ 26%). L-Allylglycine seizures are associated with generalized decreases in GABA concentrations (-32 to -54%), increases in glutamine concentrations (+10 to +53%), and a decrease in cortical aspartate concentration (-14%). Bicuculline seizures, in fasted rats, are associated with marked increases in the levels of hippocampal GABA (+106%) and taurine (+40%). In the cerebellum, there are increases in glutamine (+50%) and taurine concentrations (+36%). These changes can be explained partially in terms of known biochemical and neurophysiological mechanisms, but uncertainties remain, particularly concerning the cerebellar changes and the effects of kainic acid on dicarboxylic amino acid metabolism.  相似文献   

20.
左旋千金藤啶碱对不同脑区DA更新率的影响   总被引:1,自引:0,他引:1  
贺毓芳  黄开星 《生理学报》1995,47(5):429-434
应用HPLC-ECD测定DA更新率(DOPAC/DA),证明(-)SPD对黑质-纹状体、中脑-边缘系统、下丘脑-垂体DA神经系统的DA含量影响不明显,却显著增加DOPAC含量,并显著加强这些脑区的DA更新率,这可能是通过末梢的DA自身受体实现的。但(-)SPD既不显著影响中脑-前额叶和中脑-扣带回的DA含量,也不影响其中DOPAC含量,表明它不影响这些脑区DA更新率。这可能是由于皮层DA系统神经末  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号