首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The l-alanine dehydrogenase (ADH) of Anabaena cylindrica has been purified 700-fold. It has a molecular weight of approximately 270000, has 6 sub-units, each of molecular weight approximately 43000, and shows activity both in the aminating and deaminating directions. The enzyme is NADH/NAD+ specific and oxaloacetate can partially substitute for pyruvate. The K m app for NAD+ is 14 M and 60 M at low and high NAD+ concentrations, respectively. The K m app for l-alanine is 0.4 mM, that for pyruvate is 0.11 mM, and that for oxaloacetate is 3.0 mM. The K m app for NH 4 + varies from 8–133 mM depending on the pH, being lowest at high pH levels (pH 8.7 or above). Alanine, serine and glycine inhibit ADH activity in the aminating direction. The enzyme is active both in heterocysts and vegetative cells and activity is higher in nitrogen-starved cultures than in N2-fixing cultures. The data suggest that although alanine is formed by the aminating activity of ADH, entry of newly fixed ammonia into organic combination does not occur primarily via ADH in N2-fixing cultures of A. cylindrica. Ammonia assimilation via ADH may be important in cultures with an excess of available nitrogen. The deaminating activity of the enzyme may be important under conditions of nitrogen-deficiency.Abbreviations ADH alanine dehydrogenase - DEAE diethylamino ethyl cellulose - EDTA ethylenediamine tetraacetic acid - GDH glutamic dehydrogenase - GS glutamine synthetase - GOT aspartate-glutamate aminotransferase - NAD+ nicotinamide adenine dinucleotide - NADH reduced nicotinamide adenine dinucleotide - NADP+ nicotinamide adenine dinucleotide phosphate - NADPH reduced nicotinamide adenine dinucleotide phosphate - SDS sodium dodecyl sulphate - Tris tris(hydroxymethyl) aminomethane  相似文献   

2.
A malate dehydrogenase (MDH) was characterized from the cyanobacterium Coccochloris peniocystis. The enzyme was purified approximately 180-fold and had a molecular weight of about 90000. The enzyme had a pH optimum of pH 6.7 to 7.5; a Km (malate) of 5.6 mM and Kms for NAD and NADP of 24 M and 178 M, respectively, although similar Vmax were obtained with either pyridine nucleotide. Enzyme activity was inhibited by ATP, citrate, oxalacetate, acetyl CoA and CoA. Enzyme assays with uniformly 14C-labelled malate caused no 14CO2 release, indicating this MDH is not a malic enzyme. Electrophoresis and S-200 gel filtration of the partially purified enzyme indicated a single MDH was present in this preparation. A second, less abundant, MDH was present in crude extracts. The presence of MDH in this organism is consistent with the operation of a glyoxylate cycle which, in the absence of a TCA cycle, would provide organic acids required in secondary carbon metabolism. ATP inhibition of MDH may allow for light regulation of MDH activity since, in the light, oxaloacetic acid is generated by phosphoenolpyruvate carboxylase activity.Abbreviations MDH malate dehydrogenase - PEPcase phosphoenolpyruvate carboxylase - MOPS 3-[N-Morpholino] propane sulfonic acid - TRIS Tris(hydroxymethyl)-aminomethane - EDTA Disodium Ethylenadiamine Tetraacetate - MES 2[N-Morpholino]-ethane Sulfonic Acid - EPPS N-2-Hydroxyethylpiperazine Propane - MW Molecular weight - OAA Oxaloacetic acid  相似文献   

3.
Bacillus species producing a thermostable phytase was isolated from soil, boiled rice, and mezu (Korean traditinal koji). The activity of phytase increased markedly at the late stationary phase. An extracellular phytase from Bacillus sp. KHU-10 was purified to homogeneity by acetone precipitation and DEAE-Sepharose and phenyl-Sepharose column chromatographies. Its molecular weight was estimated to be 46 kDa on gel filtration and 44 kDa on SDS-polyacrylamide gel elctrophoresis. Its optimum pH and temperature for phytase activity were pH 6.5-8.5 and 40°C without 10 mM CaCl2 and pH 6.0-9.5 and 60°C with 10 mM CaCl2. About 50% of its original activity remained after incubation at 80°C or 10 min in the presence of 10 mM CaCl2. The enzyme activity was fairly stable from pH 6.5 to 10.0. The enzyme had an isoelectric point of 6.8. As for substrate specificity, it was very specific for sodium phytate and showed no activity on other phosphate esters. The K m value for sodium phytate was 50 M. Its activity was inhibited by EDTA and metal ions such as Ba2+, Cd2+, Co2+, Cr3+, Cu2+, Hg2+, and Mn2+ ions.  相似文献   

4.
Pyruvate decarboxylase (EC 4.1.1.1) from the ethanol producing bacterium Zymomonas mobilis was purified to homogeneity. This enzyme is an acidic protein with an isoelectric point of 4.87 and has an apparent molecular weight of 200,000±10,000. The enzyme showed a single band in sodium dodecylsulfate gel electrophoresis with a molecular weight of 56,500±4,000 which indicated that the enzyme consists of four probably identical subunits. The dissociation of the cofactors Mg2+ and thiamine pyrophosphate at pH 8.9 resulted in a total loss of enzyme activity which could be restored to 99.5% at pH 6.0 in the presence of both cofactors. For the apoenzyme the apparent K m values for Mg2+ and thiamine pyrophosphate were determined to be 24 M and 1.28 M. The apparent K m value for the substrate pyruvate was 0.4 mM. Antiserum prepared against this purified pyruvate decarboxylase failed to crossreact with cell extracts of the reportedly pyruvate decarboxylase positive bacteria Sarcina ventriculi, Erwinia amylovora, or Gluconobacter oxydans, or with cell extracts of Saccharomyces cerevisiae.Abbreviations Tris-buffer 0,01 M tris-HCl buffer, containing 1 mM MgCl2 0.1 mM EDTA, 1.0 mM thiamine pyrophosphate, 2 mM mercaptopropanediol, pH 7.0  相似文献   

5.
Uta Holthaus  Klaus Schmitz 《Planta》1991,184(4):525-531
Galactinol: raffinose-6-galactosyltransferase (EC 2.4.1.67), a stachyose synthase, was extracted from mature leaves of Cucumis melo cv. Ranjadew and was purified to homogeneity by (NH4)2SO4 precipitation, ion-exchange chromatography, gel-filtration and non-denaturing polyacrylamide gel electrophoresis. A specific activity of 516 kat · mg-1 and a 160-fold purification was achieved. The pH optimum of the enzyme reaction was found to be 6.8 in sodium-phosphate buffer, and the temperature optimum 32° C. The purified enzyme was very sensitive towards SH-poisons but its reaction was hardly affected by changes in the ion composition of the assay medium. The two-substrate enzyme was specific for galactinol and raffmose; uridine-diphosphate galactose and p-nitrophenyl--d-galactoside as well as melibiose were not accepted by the purified enzyme. Stachyose synthesis was competitively inhibited by concentrations >4 mM raffinose as well as 2.5 mM galactinol. The K m values determined under non-saturating conditions were 3.3 mM for raffinose and 7.7 mM for galactinol. Myoinositol was a strong competitive inhibitor with a K i of 1.8mM. Galactinol was hydrolyzed in the absence of raffinose with a K m of 0.8 mM. The pure enzyme is a protein with a molecular weight of at least 95 kDa and an isoelectric point of 5.1. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed the presence of two subunits of 45 and 50 kDa. Polyclonal antibodies from rabbit were obtained which were specific for the native enzyme but cross-reacted with other proteins separated under denaturing conditions.Abbreviations DEAE diethylaminoethyl - DTT dithiothreitol - FPLC fast protein liquid chromatography - HPLC high-performance liquid chromatography - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate This work was supported by Deutsche Forschungsgemeinschaft. The gift of galactinol by Dr. T. Schweizer (Nestlé, Switzerland) is gratefully acknowledged.  相似文献   

6.
Coenzyme A-linked acetaldehyde dehydrogenase (ACDH) of ethanol-grown cells of Acetobacterium woodii was purified to apparent homogeneity; a 28-fold purification was achieved with 13% yield. The enzyme proved to be oxygen-sensitive and was inactive in the absence of dithioerythritol. During the purification procedure addition of 1 mM MgCl2 was necessary to maintain enzyme activity. Alcohol dehydrogenase (ADH) activity was separated from ACDH during anion exchange chromatography using DEAE Sephacel. A part of the ACDH activity coeluted with ADH, but both could be separately eluted from a Cibacron Blue 3GA-Agarose column, revealing the same subunit structure and activity band for ACDH as found before and, thus, indicating an aggregation of the enzyme. The remaining ADH activity could be separated by gel filtration. For the native ACDH a molecular mass of 255 kDa was determined by polyacrylamide gel electrophoresis and of 272 kDa by gel filtration using Superose 12. The enzyme subunit sizes were 28 kDa and 40 kDa, respectively, indicating a 44 structure for the active form. The enzyme catalyzed the oxidation of several straight chain aldehydes although it was most active with acetaldehyde. NADH strongly inhibited oxidation of acetaldehyde whereas NADPH had no effect. The inhibition was noncompetitive.Non-standard abbrevations ACDH acetaldehyde dehydrogenase - ADH alcohol dehydrogenase - CHES 2-(N-cyclohexylamino)-ethanesulfonate - DTE dithioerythritol - KP-buffer 25 mM K-PO4, pH 7.5, containing, 4 mM DTE - MES 2-(N-morpholino)-ethanesulfonate - TAPS N-Tris-(hydroxymethyl)-methyl-3-aminopropa-nesulfonate  相似文献   

7.
Aspergillus niger van Teighem, isolated in our laboratory from samples of rotten wood logs, produced extracellular phytase having a high specific activity of 22,592 units (mg protein)–1 . The enzyme was purified to near homogeneity using ion-exchange and gel-filtration chromatography. The molecular properties of the purified enzyme suggested the native phytase to be oligomeric, with a molecular weight of 353 kDa, the monomer being 66 kDa. The purified enzyme exhibited maximum activity at pH 2.5 and 52–55°C. The enzyme retained 97% activity after a 24-h incubation at 55°C in the presence of 10 mM glycine, while 87% activity was retained when no thermoprotectant was added. Phytase activity was not affected by most metal ions, inhibitors and organic solvents. Non-ionic and cationic detergents (0.1–5%) stabilise the enzyme, while the anionic detergent (SDS), even at a 0.1% level, severely inhibited enzyme activity. The chaotropic agents guanidinium hydrochloride, urea, and potassium iodide (0.5–8 M), significantly affected phytase activity. The maximum hydrolysis rate (Vmax) and apparent Michaelis-Menten constant (Km) were 1,074 IU/mL and 606 M, respectively, with a catalytic turnover number of 3×105 s–1 and catalytic efficiency of 3.69×108 M–1 s–1.  相似文献   

8.
Cupric ion (Cu++) inhibits the rate of photosystem II electron transport and the intensity of the variable part of chl a fluorescence in isolated chloroplast thylakoids. The inhibition is markedly dependent on the nature of the buffer used in the assay medium. In MES and HEPES buffers, complete inhibition of photosystem II occurs at 30 M of Cu++, while in Tricine no inhibition occurred even at 200 M Cu++. In other buffers used (TES, Phosphate, Tris), the efficacy of Cu++ inhibition is intermediate. The calculated binding constants are found to correspond to the observed I50 values for the six buffers used. It is concluded that the previous reports on copper inhibition, where buffers have been used indiscriminately should be reconsidered. Certain reagents such as hydroxylamine, ascorbate and diphenyl carbazide, which react with Cu++, should be avoided.Abbreviations Chl chlorophyll - DCIP 2,6-dichlorophenol indophenol - DCMU 3-(3,4 dichlorophenyl)-1,1-dimethyl urea - DAD diaminodurene - DPC diphenyl carbazide - Fv variable chl fluorescence - HEPES N-2-hydroxyethyl piperazine sulfonic acid - I 30 inhibitor concentration causing 30% inhibition of Fv - MES 2-(N-morpholino) ethane sulfonic acid - MV Methyl viologen - PS II Photosystem II - PS I Photosystem I - TES N-tris(hydroxymethyl)-methyl-2-amino sulfonic acid - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - Tricine N-tris(hydroxymethyl) ethylglycine - Tris N-tris(hydroxymethyl)amino ethane  相似文献   

9.
Phosphatase activities were measured in preparations of vacuoles isolated from storage roots of red beet (Beta vulgaris L.). The vacuoles possessed both acid phosphatase and ATPase activities which could be distinguished by their susceptibility to inhibition by low concentrations of ammonium molybdate [(NH4)6Mo7O24·4H2O]. The acid phosphatase was completely inhibited by 100 M ammonium molybdate but the ATPase was unaffected. The acid phosphatase was a soluble enzyme which hydrolysed a large number of phosphate esters and had a pH optimum of 5.5. In contrast, the ATPase was partially membrane-bound, had a pH optimum of 8.0 and hydrolysed ATP preferentially, although it was also active agianst PPi, GTP and GDP. At pH 8.0 both the ATPase and PPase activities were Mg2+-dependent and were further stimulated by KCl. The ATPase and PPase activities at pH 8.0 may be different enzymes. The recovery and purification of the ATPase during vacuole isolation were determined. The results indicate that the Mg2+-dependent, KCl-stimulated ATPase activity is not exclusively associated with vacuoles.Abbreviations BSA bovine serum albumen - MES 2-(N-Morpholino)ethanesulphonic acid - MOPS 3-(N-Morpholino)propanesulphonic acid - Na2EDTA ethylenediaminetetra-acetic acid, disodium salt - Pi inorganic phosphate - PPi inorganic pyrophosphate - PPase inorganic pyrophosphatase - TCA trichloroacetic acid - TES N-tris(hydroxymethyl)methyl-2-amino-ethanesulphonic acid - Tris tris(hydroxymethyl)methylamine  相似文献   

10.
It was recently reported that the extreme thermophile Methanopyrus kandleri contains only a H2-forming N 5, N 10-methylenetetrahydromethanopterin dehydrogenase which uses protons as electron acceptor. We describe here the presence in this Archaeon of a second N 5,N 10-methylenetetrahydromethanopterin dehydrogenase which is coenzyme F420-dependent. This enzyme was purified and characterized. The enzyme was colourless, had an apparent molecular mass of 300 kDa, an isoelectric point of 3.7±0.2 and was composed of only one type of subunit of apparent molecular mass of 36 kDa. The enzyme activity increased to an optimum with increasing salt concentrations. Optimal salt concentrations were e.g. 2 M (NH4)2SO4, 2 M Na2HPO4, 1.5 M K2HPO4, and 2 M NaCl. In the absence of salts the enzyme exhibited almost no activity. The salts affected mainly the V max rather than the K m of the enzyme. The catalytic mechanism of the dehydrogenase was determined to be of the ternary complex type, in agreement with the finding that the enzyme lacked a chromophoric prosthetic group. In the presence of M (NH4)2SO4 the V max was 4000 U/mg (k cat=2400 s-1) and the K m for N 5,N 10-methylenetetrahydromethanopterin and for coenzyme F420 were 80 M and 20 M, respectively. The enzyme was relatively heat-stable and lost no activity when incubated anaerobically in 50 mM K2HPO4 at 90°C for one hour. The N-terminal amino acid sequence was found to be similar to that of the F420-dependent N 5, N 10-methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum, Methanosarcina barkeri, and Archaeoglobus fulgidus.Abbreviations H4MPT tetrahydromethanopterin - F420 coenzyme F420 - CH2=H4MPT N 5,N 10-methylenetrahydromethanopterin - CHH4MPT+ N 5,N 10-methenyltetrahydromethanopterin - methylene-H4MPT dehydrogenase N 5,N 10-methylenetetrahydromethanopterin dehydrogenase - Mops N-morpholinopropane sulfonic acid - Tricine N-[Tris(hydroxymethyl)-methyl]glycine - 1 U = 1 mol/min  相似文献   

11.
Molecular and functional properties of DNA topoisomerase I isolated from a hydrogen-oxidizing bacterium, Alcaligenes eutrophus H16, were investigated. Under native conditions the enzyme forms a monomer with a relative molar mass of 98.500. A rod-like shape of the molecule was derived from the calculated frictional coefficient. The isoelectric point of the enzyme was determined to be in the range of 7.6–8.0. The enzyme activity is strictly Mg2+ dependent with an optimum at 3 mM Mg2+. The pH optimum ranges within 7.5–9.0. A. eutrophus DNA topoisomerase I activity is inhibited by M13 ssDNA, high ionic strength, polyamines, heparin and by a number of intercalating drugs.Abbreviations DTT dithiothreitol - BSA bovine serum albumin - EDTA ethylenediaminetetraacetic acid - SDS sodium dodecyl sulfate - Tris tris(hydroxymethyl)aminomethane - PMSF phenylmethanesulfonyl fluoride - PAGE polyacrylamide gel electrophoresis  相似文献   

12.
The hydrophobic sector of the mitochondrial ATPase complex was purified by sequential extraction with cholate and octylglucoside, by further differential solubilization with guanidine and cholate in the presence of phosphatidylcholine, and by fractionation with ammonium sulfate. A polypeptide with a mass of 28,000 dalton was present in the purified hydrophobic section which was cleaved by trypsin, resulting in loss of reconstitution activity. In contrast, dicyclohexylcarbodiimide-binding proteolipid remained unimpaired after exposure to trypsin. The32Pi-ATP exchange activity of the reconstituted ATPase complex was inhibited byp-hydroxymercuribenzoate, which reacted primarily with the 28,000-dalton protein, as monitored by acrylamide gel electrophoresis with14C-labeled inhibitor. The function of a 22,000-dalton polypeptide and of some minor components in the region of the proteolipid remains unknown. An examination of the phospholipid requirements for reconstitution of an active complex revealed an unexpected discrepancy. With an excess of phosphatidylethanolamine, optimal reconstitution of32Pi-ATP exchange and ATP synthesis in the presence of bacteriorhodopsin and light was achieved; at a high phosphatidylcholine:phosphatidylethanolamine ratio, the rate of ATP synthesis remained high, but the rate of32Pi-ATP exchange dropped precipitously. A new procedure is described for the reconstitution of the ATPase complex with purified phospholipids which is stable for at least 15 days.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - STE-DTT buffer sucrose (250 mM), Tricine-KOH (50 mM), EDTA (5 mM), DTT (5 mM), pH 8.0 - F o a membranous preparation from mitochondria conferring oligomycin (or rutamycin) sensitivity to F1 - F1F6 coupling factors 1 (ATPase) and 6 - OSCP oligomycin-sensitivity-conferring protein - BSA bovine serum albumin - SDS sodium dodecyl sulfate - DTT dithiothreitol - STE buffer sucrose (250 mM), Tricine-KOH (50 mM), EDTA (5 mM) - TUA particles submitochondrial particles prepared by stepwise exposure of light-layer submitochondrial particles to trypsin and urea, then sonic oscillation in the presence of dilute ammonia (pH 10.4) - OG-cholate buffer glycerol (20%), Tricine (50 mM), MgSO4 (5 mM), DTT (5mM), cholate (0.5%), octylglucoside (0.5%), pH 8.0 - p-HMB p-hydroxymercuribenzoate  相似文献   

13.
Trigonelline (TRG), which act as a cell cycle regulator and a compatible solute in response to salinity and water-stress, is the N-methyl conjugate of nicotinic acid the formation of which is catalyzed by S-adenosyl-L-methionine nicotinic acid-N-methyltransferase. The enzyme was purified 2650-fold from soybean (Glycine max L.) leaves with a recovery of 4 %. The purification procedure included ammonium sulfate (45 – 60 %) precipitation, linear gradient DEAE-Sepharose chromatography, adenosine-agarose affinity chromatography, hydroxyapatite chromatography and gel filtration (Sephacryl-S-200). The purified enzyme preparation showed a major band with a molecular mass of 41.5 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis that is related to the enzyme activity. The native enzyme had a molecular mass of about 85 kDa as estimated by gel filtration. The Km values for S-adenosyl-L-methionine and nicotinic acid were 31 and 12.5 M, respectively. The purified enzyme showed optimum activity at pH 6.5 and temperature of 40 – 45 °C. High concentration of dithiothreitol (10 mM) and glycerol (20 %) stabilize the enzyme during purification and storage. Hg2+ strongly inhibits enzyme activity.  相似文献   

14.
Acid phosphatase [AP; EC 3.1.3.2], a key enzyme involved in the synthesis of mannitol in Agaricus bisporus, was purified to homogeneity and characterized. The native enzyme appeared to be a high molecular weight type glycoprotein. It has a molecular weight of 145 kDa and consists of four identical 39-kDa subunits. The isoelectric point of the enzyme was found at 4.7. Maximum activity occurred at 65°C. The optimum pH range was between 3.5 and 5.5, with maximum activity at pH 4.75. The enzyme was unaffected by EDTA, and inhibited by tartrate and inorganic phosphate. The enzyme exhibits a K m for p-nitrophenylphosphate and fructose-6-phosphate of 370 M and 3.1 mM, respectively. A broad substrate specificity was observed with significant activities for fructose-6-phosphate, glucose-6-phosphate, mannitol-1-phosphate, AMP and -glycerol phosphate. Only phosphomonoesters were dephosphorylated. Antibodies raised against the purified enzyme could precipitate AP activity from a cell-free extract in an anticatalytic immunoprecipitation test.  相似文献   

15.
Theodor Lange  Jan E. Graebe 《Planta》1989,179(2):211-221
A gibberellin (GA) C-20 hydroxylase that catalyses the conversion of GA53 to GA44 was purified from developing pea embryos by ammonium-sulfate precipitation, gel filtration and anion-exchange column chromatography. The purification was about 270-fold and 15% of the enzymic activity was recovered. The relative molecular mass was 44000 by Sephadex G-200 gel filtration. The apparent Michaelis constant was 0.7 M and the isoelectric point was 5.6–5.9. The enzymic activity was optimal at pH 7.0 2-Oxoglutarate and ascorbate were required for activity. Low concentrations of Fe2+ stimulated the reaction, but externally added Fe2+ was not essential, even in the most purified preparation. Catalase and bovine serum albumin also stimulated. Dithiothreitol preserved the activity during purification but was not needed during incubation. In fact, the simultaneous presence of dithiothreitol and Fe2+ in the incubation mixture was inhibitory to the purified enzyme. The cofactor requirements are typical for those of 2-oxoglutarate-dependent dioxygenases.When the incubation time was long enough, GA53 was converted to both GA44 and GA19. The proportions of these two products remained constant throughout the purification, but this does not necessarily mean that their formations is catalysed by a single enzyme. Sodium dodecyl sulfatepolyacrylamide gel electrophoresis showed that the final preparation contained several proteins. Although the most prominent protein band was located within the range expected for the enzyme on the grounds of its molecular weight, this band did not represent the enzyme, since it separated from the GA C-20 hydroxylase activity on ultrathin-layer isoeletric focusing.Abbreviation BSA bovine serum albumin - DEAE diethylaminoethyl - DTT dithiothreitol - EDTA ethylenediamine-tetraacetic acid - GAn gibberellin An - HPLC high-performance liquid chromatography - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

16.
An -poly-l-lysine-degrading enzyme (PLD) from Kitasatospora sp. CCTCC M205012 has been purified to homogeneity by three steps of anion-exchange chromatography including DEAE-Sepharose, Source 15Q and Mono Q, with a 500-fold increase in specific activity and 40.9% yield. The PLD has a molecular mass of approximately 87.0 kDa and consists of two identical subunits with a molecular mass of 43.6 kDa. Electrophoretic shows that the PLD isoelectric point was about 7.2. The optimum temperature and pH for the PLD was 30 °C and 7.0, respectively. The PLD was deactivated by EDTA, which was indicated that the enzyme was a metallo enzyme. The activity of PLD was stimulated by Co2+ and inhibited by Ca2+ remarkably. The apparent Km with l-lysyl-p-nitroanilide as substrate was 0.216 mM and the Vmax was 0.112 mmol/min mg. The PLD was an exo-type enzyme and monomers of l-lysine were detected during the enzymatic degradation of -PL.  相似文献   

17.
The purpose of the research was to study the purification and partial characterization of thermostable serine alkaline protease from a newly isolatedBacillus subtilis PE-11. The enzyme was purified in a 2-step procedure involving ammonium sulfate precipitation and Sephadex G-200 gel permeation chromatography. The enzyme was shown to have a relative low molecular weight of 15 kd by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and was purified 21-fold with a yield of 7.5%. It was most active at 60°C, pH 10, with casein as substrate. It was stable between pH 8 and 10. This enzyme was almost 100% stable at 60°C even after 350 minutes of incubation. It was strongly activated by metal ions such as Ca2+, Mg+2, and Mn+2. Enzyme activity was inhibited strongly by phenylmethyl sulphonyl fluoride (PMSF) and diisopropyl fluorophosphates (DFP) but was not inhibited by ethylene diamine tetra acetic acid (EDTA), while a slight inhibition was observed with iodoacetate,p-chloromercuric benzoate (pCMB), and β-mercaptoethanol (β-ME). The compatibility of the enzyme was studied with commercial and local detergents in the presence of 10mM CaCl2 and 1M glycine. The addition of 10mM CaCl2 and 1M glycine, individually and in combination, was found to be very effective in improving the enzyme stability where it retained 52% activity even after 3 hours. This enzyme improved the cleansing power of various detergents. It removed blood stains completely when used with detergents in the presence of 10mM CaCl2 and 1M glycine.  相似文献   

18.
A pyruvate, orthophosphate dikinase (EC 2.7.9.1) has been isolated from Acetobacter aceti grown on pyruvate as the only source of carbon and energy. The enzyme was purified 65-fold, and its molecular weight was determined to be about 330,000 by gel filtration.The optimum pH was 8.0 in the forward direction [phosphoenolpyruvate (PEP) formation] and 7.1 for the backward reaction (pyruvate production). In both directions Mg2+ was required (forward K m 1.70 mM; reverse K m 0.87 mM) and no other divalent cation was able to replace it. The K m values for pyruvate, ATP, and Pi were 27 M, 0.20 mM, and 0.83 mM, respectively, in the forward direction. The K m values for PEP, AMP, and PPi were 0.13 mM, 6 M, and 62 M, respectively, for the reverse reaction. The substrate-product pairs pyruvate-PEP, ATP-AMP, Pi-PPi were competitive inhibitors to each other in both directions. These product inhibition studies suggest for the enzyme from A. aceti nonclassical three-site Tri (Uni Uni) Ping-Pong kinetics.Abbreviations PEP phosphoenolpyruvate - OAA oxaloacetate - MW molecular weight - SDS sodium dodecyl sulphate - TEMG buffer 50 mM Tris-HCl, pH 7.5, 1 mM EDTA, 5 mM MgCl2, 1 mM glutathione  相似文献   

19.
An enzyme synthesizing stachyose, galactinol-raffinose galactosyltransferase (EC2.4.1.67), has been purified ca 40-fold from mature leaves of Cucurbita pepo using ammonium sulphate precipitation, Sephadex gel filtration and DEAE-Sephadex gel chromatography. The purified enzyme fraction was separated from all but 2 % of the total,α-galactosidase activity extracted from the tissue. The enzyme was optimally active at pH 6.9 and was stable for at least a month at 4° in the presence of 20 mM 2-mercaptoethanol. The enzyme displayed high specificity for the donor galactinol (Km 7.7 mM) and the acceptor raffinose (Km 4.6 mM) and was unable to effect synthesis of any other member of the raffinose series of galactosyl-sucrose oligosaccharides. Co2+, Hg2+, Mn2+ and Ni2+ ions were particularly inhibitory; no metal ion promotion was observed and 5 mM EDTA was ineffective. Myo-inositol was strongly inhibitory (Ki 2 mM), melibiose weakly so. Tris buffer (0. 1 M) was also inhibitory. Galactinol hydrolysis occurred in the absence of the acceptor raffinose but there was no hydrolysis of either raffinose or stachyose in the absence of the donor galactinol. The reaction was readily reversible and exchange reactions were detected between substrates and products. It is proposed that the synthesis of stachyose in mature leaves ofC. pepo proceeds via this galactosyltransferase and not via α-galactosidase.  相似文献   

20.
In Acetobacter aceti growing on pyruvate as the only source of carbon and energy, oxaloacetate (OAA) is produced by a phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31). The enzyme was purified 122-fold and a molecular weight of about 380,000 was estimated by gel filtration.The optimum pH was 7.5 and the K m values for PEP and NaHCO3 were 0.49 mM and about 3 mM, respectively. The enzyme needed a divalent cation; the K m for Mn2+, Co2+ and Mg2+ were 0.12, 0.26 and 0.77 mM, respectively. Maximal activity was only obtained with Mg2+. Mn2+ and Co2+ became inhibitory at high concentrations.The activity was inhibited by succinate and, to a lesser extent, by fumarate, citrate, -ketoglutarate, aspartate and glutamate.As compared with the corresponding enzyme from A. xylinum, the PEP carboxylase of A. aceti showed the following differences: a) It had an absolute requirement for acetyl CoA (K a 0.18 mM) or propionyl CoA (K a 0.2 mM). b) It was not affected by ADP. c) It was sensitive to thiol blocking agents.Abbreviations PEP phosphoenolpyruvate - OAA oxaloacetate - MW molecular weight - TEMG buffer 50 mM Tris-HCl, pH 7.5, 1 mM EDTA, 5 mM MgCl2, 1 mM glutathione - HEPES N-2-hydroxyethylpiperazine-N-ethanesulfonic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号