首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
K Izuhara  K Okubo  N Hamasaki 《Biochemistry》1989,28(11):4725-4728
Diethyl pyrocarbonate inhibited the phosphate exchange across the human erythrocyte membrane. The exchange rate was inhibited only when the membranes were modified with the reagent from the cytosolic surface of resealed ghosts. The intracellular modification by diethyl pyrocarbonate inhibited the extracellular binding of [3H]dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid to band 3 protein. Furthermore, the extracellular 4,4'-dinitrostilbene-2,2'-disulfonic acid protected the membranes from the intracellular modification by diethyl pyrocarbonate. These results suggest that the extracellular binding of 4,4'-dinitrostilbene-2,2'-disulfonic acid to band 3 protein induces the conformational change of the intracellular counterpart of band 3 protein and the diethyl pyrocarbonate susceptible residue(s) is (are) hidden from the cytosolic surface of the cell membrane in connection with the conformational change. Conversely, under the conditions where the diethyl pyrocarbonate modification is confined to the intracellular side of the membrane, the extracellular binding site of [3H]dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid is hidden from the cell surface.  相似文献   

2.
Nine peptides derived from the transmembrane domain of band 3 were purified and sequenced. All of the sequences agreed completely with deduced sequences from cDNA of human erythroid band 3. Five peptides, KS-1 to KS-5, were released from the band 3 molecule when alkali-stripped membranes were digested with trypsin, while four other peptides, KM-6 to KM-9, were obtained following subsequent urea treatment. This indicates that at least 13 new in situ cleavage sites were demonstrable by these procedures, that the released peptides are parts of hydrophilic connector loops, and that the other peptide portions constitute membrane-spanning helices. The topological designations are consistent with the hydropathy prediction of murine band 3 according to Passow ((1986) Rev. Physiol. Biochem. Pharmacol. 103, 61-203). One mol of histidine residue was found/mole of KS-1, KS-2, KS-4, and KM-6. The conformation of band 3 in situ was apparently changed by alkali treatment of erythrocyte membranes, i.e. the amount of KS-1, KS-2, and KS-4 peptides released by trypsin treatment increased as NaOH concentration was raised from 10 to 100 mM. Similarly, [3H]dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid was found to bind to band 3 in membranes treated with 10 mM NaOH as well as to band 3 in white ghosts, but not to membranes treated with 100 mM NaOH. In addition, alkali treatment of membranes tended to increase the amount of band 3 cross-linked by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The conformational change in band 3 by alkali treatment was also supported by the interaction of antibodies against peptides released by trypsin. The release of KS-1, KS-2, and KS-4 from the membrane was strongly inhibited by pretreating the erythrocyte membrane with DIDS, suggesting that the DIDS-band 3 complex which is in the outward facing form, is more compact and becomes resistant to trypsin compared to band 3 without DIDS.  相似文献   

3.
Extracellular chymotrypsin cleaves the 95 000 dalton protein that migrates in band 3 of SDS-polyacrylamide gel electropherograms of the erythrocyte membrane into fragments of 60 000 and 35 000 daltons, but not further. Minor components of band 3 that remain at the original 95 000 dalton location may be eluted from the membrane by 0.1 N NaOH, indicating that, in contrast to the major component and the chymotryptic fragments, they are not integral membrane constituents. Incubation at neutral pH of chymotrypsinized erythrocytes with the bifunctional anion transport inhibitor 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid results in covalent binding of that inhibitor primarily to the 60 000 dalton fragment and some cross-linking of the 60 000 dalton fragment with the 35 000 dalton fragment. Increasing the pH to 9.5 leads to a cross-linking of virtually all of the pairs of chymotryptic fragments and thus to a reconstitution of band 3 with its typical diffuse appearance in the 95 000 dalton region of the SDS-polyacrylamide gels. This indicates that (1) each integral 95 000 dalton protein molecule is capable of binding at least one 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid molecule; (2) the 35 000 dalton fragment, though it is only weakly stained with Coomassie blue, is present in an amount that is equimolar with that of the 60 000 dalton fragment. Since the number of 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid binding sites on the protein in band 3/cell is known to be close to the number of band 3 molecules/cell, it is suggested that the cross-linking takes place at a region of the band 3 molecule that is involved in the control of anion transport, Like chymotrypsin, papain digests the band 3 protein from the outer membrane surface. Unlike chymotrypsin, however, papain digestion results in an inhibition of anion exchange. Papain produces a major fragment of 60 000 daltons that differs from the major chymotryptic fragment by at most six amino acid residues. The only detectable difference between the noninhibitory action of chymotrypsin and the inhibitory action of papain on the band 3 protein is that papain is capable of partially digesting the 35000 dalton fragment. No reconstitution of band 3 by cross-linking of the fragments with 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid can be achieved. Since the 35 000 dalton fragment reacts with one of the two reactive groups of 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid and is also susceptible to digestion by the inhibitory papain, we suggest that a portion of this peptide participates, together with a portion of the 60 000 dalton fragment, in the control anion transport.  相似文献   

4.
Cholesterol exchange in platelets, erythrocytes and megakaryocytes   总被引:4,自引:0,他引:4  
Cholesterol exchange between plasma and human platelets and erythrocytes and guinea pig platelets, erythrocytes and megakaryocytes was studied. The characteristics of exchange of cholesterol between [3H]cholesterol-labeled plasma and human platelets and erythrocytes were similar: exchange per cell was independent of cell concentration in whole plasma, decreased only 2-fold over a wide range of cell concentrations in low concentrations of plasma and approached a plateau at 1/3 normal plasma cholesterol concentration, and there was no net change in the cholesterol content of either cell. The activation energy for exchange for both cells was 47 kJ/mol. In all experiments, erythrocyte cholesterol was labeled to approximately twice the specific activity of platelet cholesterol. Guinea pig megakaryocyte cholesterol exchanged at 25-33% of the rate of guinea pig platelet cholesterol in vitro. Similarly, when guinea pigs were fed [3H]cholesterol, erythrocyte cholesterol specific activity after 24 h was 90%, platelet 50-65%, and megakaryocyte 20-26% that of plasma. Guinea pig platelets incubated with plasma radiolabeled in free and esterified cholesterol incorporated radioactivity from free but not esterified cholesterol. The similarity of free cholesterol exchange in platelets and erythrocytes in vitro and in vivo and the apparent inability of platelets to take up cholesterol esters from lipoproteins suggest that the interaction between normal platelets and normocholesterolemic plasma is limited to cholesterol exchange.  相似文献   

5.
A 31-kDa human erythrocyte integral protein, band 7.2b, has been purified to better than 95% homogeneity. The polypeptide was found to be insoluble in most detergents and was isolated in denatured form by gel filtration in the presence of sodium dodecyl sulfate and preparative electrophoresis. In intact erythrocytes that were equilibrated with 32Pi, band 7.2b was phosphorylated in response to exogenous dibutyryl cAMP. The peptide is also palmitylated, as shown by its incorporation of radioactivity when intact erythrocytes were incubated with [9,10-3H]palmitic acid. Antisera to band 7.2b were raised in rabbits, and these antibodies cross-react with 31-kDa polypeptides in human liver and kidney. Immunoblots of red cells from a number of other species were negative, with the exception of a cross-reacting 23-kDa polypeptide in rat erythrocyte membranes. Band 7.2b was absent in erythrocyte membranes from an individual with overhydrated hereditary stomatocytes.  相似文献   

6.
Treatment of human erythrocytes with the membrane-impermeant carbodiimide 1-ethyl-3-[3-(trimethylammonio)propyl]carbodiimide (ETC) in citrate-buffered sucrose leads to irreversible inhibition of phosphate-chloride exchange. The level of transport inhibition produced was dependent on the concentration of citrate present during treatment, with a maximum of approx. 60% inhibition. [14C]Citric acid was incorporated into Band 3 (Mr = 95,000) in proportion to the level of transport inhibition, reaching a maximum stoichiometry of 0.7 mol citrate per mol Band 3. The citrate label was localized to a 17 kDa transmembrane fragment of the Band 3 polypeptide. Citrate incorporation was prevented by the transport inhibitors 4,4'-diisothiocyano- and 4,4'-dinitrostilbene-2,2'-disulfonate. ETC plus citrate treatment also dramatically reduced the covalent labeling of Band 3 by [3H]4,4'-diisothiocyano-2,2'-dihydrostilbene disulfonate (3H2DIDS). Noncovalent binding of stilbene disulfonates to modified Band 3 was retained, but with reduced affinity. We propose that the inhibition of anion exchange in this case is due to carbodiimide-activated citrate modification of a lysine residue in the stilbenedisulfonate binding site, forming a citrate-lysine adduct that has altered transport function. The evidence is consistent with the hypothesis that the modified residue may be Lys a, the lysine residue involved in the covalent reaction with H2DIDS. Treatment of erythrocytes with ETC in the absence of citrate resulted in inhibition of anion exchange that reversed upon prolonged incubation. This reversal was prevented by treatment in the presence of hydrophobic nucleophiles, including phenylalanine ethyl ester. Thus, inhibition of anion exchange by ETC in the absence of citrate appears to involve modification of a protein carboxyl residue(s) such that both the carbodiimide- and the nucleophile-adduct result in inhibition.  相似文献   

7.
Uptake of [3H]uridine by Ehrlich cells was mediated by both nitrobenzylthioinosine (NBMPR)-sensitive (75%) and NBMPR-insensitive (25%) mechanisms. Each cell contained approx. 26,000 high-affinity (KD = 0.19 nM) recognition sites for [3H]NBMPR, and binding was inhibited by dipyridamole and adenosine at concentrations similar to those required for inhibition of [3H]uridine uptake. Calculations show that each cell contains a total of about 35,000 nucleoside transporters. Photoaffinity labelling of a partially purified preparation of plasma membranes with [3H]NBMPR resulted in a single broad 3H-labelled band on SDS/polyacrylamide gels, with an apparent molecular-mass peak of 42 kDa. This is in contrast with human erythrocyte membranes, where [3H]NBMPR photolabelled two broad bands with peaks at 55 and 80 kDa. Treatment of photoaffinity-labelled membranes with endoglycosidase F decreased the apparent molecular masses of both the Ehrlich-cell and erythrocyte [3H]NBMPR-labelled proteins to approx. 40 kDa. These results suggest that the human erythrocyte [3H]NBMPR-binding polypeptides are more extensively glycosylated than the corresponding Ehrlich-cell polypeptides. Octyl beta-D-glucopyranoside [1.0% (w/v) + asolectin] solubilized over 90% of the [3H]NBMPR-binding sites, with near-complete retention of [3H]NBMPR-binding characteristics. The only major change was a 65-fold decrease in affinity for dipyridamole, which was partly reversed upon incorporation of the solubilized proteins into asolectin membranes. Proteoliposomes, prepared by using asolectin and the octyl glucoside-solubilized plasma membranes, were capable of accumulating [3H]uridine via a protein-dependent dipyridamole/nitrobenzylthioguanosine/dilazep-sensitive mechanism. We have thus demonstrated the efficient solubilization and functional reconstitution of a nucleoside-transport system from Ehrlich ascites-tumour cells.  相似文献   

8.
Antisera to the human erythrocyte Glc transporter immunoblotted a polypeptide of Mr 55,000 in membranes from human hepatocarcinoma cells, Hep G2, human fibroblasts, W138, and murine preadipocytes, 3T3-L1. This antisera immunoprecipitated the erythrocyte protein which had been photoaffinity labeled with [3H]cytochalasin B, immunoblotted its tryptic fragment of Mr 19,000, and immunoblotted the deglycosylated protein as a doublet of Mr 46,000 and 38,000. This doublet reduced to a single polypeptide of Mr 38,000 after boiling. When Hep G2, W138, and 3T3-L1 cells were metabolically labeled with L-[35S]methionine for 6 h, a broad band of Mr 55,000 was immunoprecipitated from membrane extracts. In pulse-chase experiments, two bands of Mr 49,000 and 42,000 were identified as putative precursors of the mature transporter. The t1/2 for mature Glc transporter was 90 min for Hep G2 cells that had been starved for methionine (2 h) and pulsed for 15 min with L-[35S]methionine. Polypeptides of Mr 46,000 and 38,000 were immunoprecipitated from Hep G2 cells that had been metabolically labeled with L-[35S]methionine in the presence of tunicamycin. This doublet reduced to the single polypeptide of Mr 38,000 after boiling. In the absence of tunicamycin, but not in its presence, mature polypeptide of Mr 55,000 was immunoprecipitated from Hep G2 cells metabolically labeled with D-[3H]GlcN. A polypeptide of Mr 38,000 was observed in boiled immune complexes from the in vitro translation products of Hep G2, W138, and 3T3-L1 cell RNA. Dog pancreatic microsomes cotranslationally, but not posttranslationally, converted this to a polypeptide of Mr 35,000. A model for Glc transporter biogenesis is proposed in which the primary translation product of Mr 38,000 is converted by glycosylations to a polypeptide of Mr 42,000. The latter is then processed via heterogeneous complex N-linked glycosylations to form the mature Glc transporter, Mr 55,000.  相似文献   

9.
Pre-steady state Cl- efflux experiments have been performed to test directly the idea that the transport inhibitor H2DIDS (4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonate) binds preferentially to the outward-facing state of the transporter. Cells were equilibrated with a medium consisting of 150 mM sodium phosphate, pH 6.2, N2 atmosphere, and 80-250 microM 36Cl-. Addition of H2DIDS (10-fold molar excess compared with band 3) induces a transient efflux of Cl-, as expected if H2DIDS binds more tightly to outward-facing than to inward-facing states. The size of the H2DIDS-induced efflux depends on the Cl- concentration and is about 700,000 ions per cell at the highest concentrations tested. The size of the transient efflux is larger than would be expected if the catalytic cycle for anion exchange involved one pair of exchanging anions per band 3 dimer. These results are completely consistent with a ping-pong mechanism of anion exchange in which the catalytic cycle consists of one pair of exchanging anions per subunit of the band 3 dimer.  相似文献   

10.
To determine which arginine residues are responsible for band 3-mediated anion transport, we analyzed hydroxyphenylglyoxal (HPG)-modified band 3 protein in native erythrocyte membranes. HPG-modification leads to inhibition of the transport of phosphoenolpyruvate, a substrate for band 3-mediated transport. We analyzed the HPG-modified membranes by reverse phase-HPLC, and determined that arginine 901 was modified by HPG. To determine the role of Arg 901 in the conformational change induced by anion exchange, we analyzed HPG-modification of the membranes when 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS) or diethypyrocarbonate (DEPC) was present. DNDS and DEPC fix band 3 in the outward and inward conformations, respectively. HPG-modification was unaffected in the presence of DEPC but decreased in the presence of DNDS. In addition to that, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), which specifically reacts with the outward conformation of band 3, did not react with HPG-modified membranes. Furthermore, we expressed a band 3 mutant in which Arg 901 was replaced by alanine (R901A) on yeast membranes. The kinetic parameters indicated that the R901A mutation affected the rate of conformational change of the band 3 protein. From these results, we conclude that the most C-terminal arginine, Arg 901, has a functional role in the conformational change that is necessary for anion transport.  相似文献   

11.
Studies in Chinese hamster ovary cells demonstrate the presence of an anion exchanger, which has some of the properties of the band 3 transporter in erythrocytes. 1) Extracellular chloride is a competitive inhibitor of sulfate influx and stimulates sulfate efflux, suggesting that the mechanism of uptake is SO2-(4)/Cl- exchange. 2) The anion exchange inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid inhibits sulfate uptake in a dose-dependent manner. Half-maximal inhibition is achieved at 0.06 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. 3) Low extracellular pH markedly stimulates sulfate uptake. A 6-fold decrease in the apparent Km is observed at pHout 5.5 as compared to pHout 7.5. However, studies carried out over a broad range of extracellular SO2-(4) concentrations indicate the presence of three components of this transport activity in Chinese hamster ovary cells: two high affinity low capacity systems, one in the range 0.5 microM less than [SO2-(4)]out less than 50 microM and one in the range 50 microM less than [SO2-(4)]out less than 150 microM, and a low affinity, high capacity system (at [SO2-(4)]out greater than 150 microM). These properties have not been previously reported for the erythroid band 3 transporter. The availability of mutants deficient in these activities has enabled us to carry out studies which suggest that the high affinity systems are functionally independent of the low affinity system, but that all systems are dependent on the same anion exchange protein. Studies in a mutant which lacks all components of the transport activity indicates that the anion exchanger may be instrumental in the regulation of the intracellular pH in Chinese hamster ovary cells.  相似文献   

12.
The synthetic lactyl anhydride isobutylcarbonyl lactyl anhydride (iBCLA), a selective and potent inhibitor of L-(+)-lactate transport in rabbit erythrocytes, reduces the chemical labeling of a 40-50-kdalton polypeptide by tritiated 4,4'-diisothiocyanato-2,2'-dihydrostilbenedisulfonate ([3H]H2DIDS). iBCLA does so in a dose-dependent manner at concentrations that strongly inhibit lactate lactate exchange but not chloride-phosphate exchange. These labeling experiments and inhibition reversal studies using iBCLA, p-(chloro-mercuri)benzenesulfonic acid (pCMBS), and dithiothreitol (DDT) suggest that iBCLA does not act at sulfhydryl groups but at or near an amino group that is near a disulfide linkage in the polypeptide which catalyzes lactate transport. These experiments support the association between specific monocarboxylate transport and a 40-50-kdalton membrane-bound polypeptide of the rabbit erythrocyte.  相似文献   

13.
The characteristics of the anion-sensitive Mg2+-ATPase activity of the rabbit erythrocyte have been studied in a lyophilized ghost preparation. The enzyme appears to be different from the anion-sensitive Mg2+-ATPase activity of other tissues in many parameters, such as optimal pH, effects of various anions, oligomycin sensitivity and effects of Triton X-100. The enzyme is insensitive towards inhibition by irreversibly bound 4,4'-diisothiocyano-dihydrostilbene-2,2'-disulfonic acid (H2DIDS). This excludes a relationship between the enzyme and the "band 3" protein, which is thought to be involved in the anion exchange over the erythrocyte membrane. From the effects of ethyleneglycol-bis-(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA), CaCl2, chlorpromazine and ruthenium red it is concluded that the enzyme activity does not represent a separate entity but is part of the (Ca2+ + Mg2+)-ATPase system of the erythrocyte membrane. A reported stimulatory effect of carbonic anhydrase is attributed to a contamination of the carbonic anhydrase preparation by calcium and/or (Ca2+ + Mg2+)-ATPase activator protein.  相似文献   

14.
The protein photolabelled by [3H]cytochalasin B and band 4.5, which contains the human erythrocyte hexose transporter, were compared by electrophoretically monitoring the effect of digestion with endoglycosidase F and trypsin. Band 4.5 was found to consist of two minor components, Mr 58,000 and 52,000, and one main component, Mr 60,000-50,000. Deglycosylation by endoglycosidase F converted both the [3H]-labelled species and the main polypeptide of band 4.5 from a mixture of polypeptides of Mr 50,000-60,000 to a sharp component of Mr 46,000. Tryptic cleavage of the photolabelled protein produced a [3H]-labelled peptide of 19,000 daltons, which corresponded to an analogous tryptic fragment of the main component of band 4.5. Endoglycosidase F treatment of trypsin-treated samples had no effect on the 19,000 dalton fragment or the labelled 19,000 component, indicating that both species lack the carbohydrate moiety of the parent protein. This parallel chemical behaviour indicates that the photolabelled polypeptide is representative of the main constituent of band 4.5. Photolabelling may be used with confidence to quantitate glucose transporters in other cells.  相似文献   

15.
Spectrin-free budded vesicles from rabbit erythrocytes (Leonards, K.S. and Ohki, S. (1983) Biochim. Biophys. Acta 728, 383-393) exchange intravesicular L-[14C]lactate for extravesicular L-lactate and intravesicular [36C]chloride for extravesicular phosphate with inhibitor sensitivity consistent with what is seen in intact cells. The time-course of these fluxes is faster than for intact cells, but is somewhat slower than predicted from surface to volume ratios. Labelling with tritiated 4,4'-diisothiocyanyl-2,2'-dihydrostilbenedisulfonate (H2DIDS) at concentrations which selectively inhibit inorganic anion exchange or specific lactate exchange supports the involvement of a 93-110 kDa (band 3) polypeptide in anion transport and a 40-50 kDa polypeptide in lactate transport across these vesicle membranes. Since the budded vesicles have a markedly simplified protein profile on electrophoresis, their isolated membranes represent a preliminary stage in the purification of these transport proteins in which structure and function appear to be preserved.  相似文献   

16.
The transmembrane topology of the nucleoside transporter of human erythrocytes, which had been covalently photolabelled with [3H]nitrobenzylthioinosine, was investigated by monitoring the effect of proteinases applied to intact erythrocytes and unsealed membrane preparations. Treatment of unsealed membranes with low concentrations of trypsin and chymotrypsin at 1 degree C cleaved the nucleoside transporter, a band 4.5 polypeptide, apparent Mr 66 000-45 000, to yield two radioactive fragments with apparent Mr 38 000 and 23 000. The fragment of Mr 38 000, in contrast to the Mr 23 000 fragment, migrated as a broad peak (apparent Mr 45 000-31 000) suggesting that carbohydrate was probably attached to this fragment. Similar treatment of intact cells under iso-osmotic saline conditions at 1 degree C had no effect on the apparent Mr of the [3H]nitrobenzylthioinosine-labelled band 4.5, suggesting that at least one of the trypsin cleavage sites resulting in the apparent Mr fragments of 38 000 and 23 000 is located at the cytoplasmic surface. However, at low ionic strengths the extracellular region of the nucleoside transporter is susceptible to trypsin proteolysis, indicating that the transporter is a transmembrane protein. In contrast, the extracellular region of the [3H]cytochalasin B-labelled glucose carrier, another band 4.5 polypeptide, was resistant to trypsin digestion. Proteolysis of the glucose transporter at the cytoplasmic surface generated a radiolabelled fragment of Mr 19 000 which was distinct from the Mr 23 000 fragment radiolabelled with [3H]nitrobenzylthioinosine. The affinity for the reversible binding of [3H]cytochalasin B and [3H]nitrobenzylthioinosine to the glucose and nucleoside transporters, respectively, was lowered 2-3-fold following trypsin treatment of unsealed membranes, but the maximum number of inhibitor binding sites was unaffected despite the cleavage of band 4.5 to lower-Mr fragments.  相似文献   

17.
Three monoclonal antibodies have been raised against partially purified band 4.5 polypeptides [Steck (1974) J. Cell Biol. 62, 1-19] from pig erythrocyte membranes. The antibodies were capable of binding to both intact pig erythrocytes and protein-depleted membrane preparations and recognized detergent-solubilized polypeptides from adult and neonatal pig erythrocytes that were photolabelled with [G-3H]nitrobenzylthioinosine (NBMPR), a potent specific inhibitor of nucleoside transport. The antibodies did not recognize polypeptides from neonatal pig erythrocytes that were photolabelled with the glucose-transport inhibitor [3H]cytochalasin B. Reactivity with polypeptides of apparent Mr 64,000 [10% (w/v) acrylamide gels] was demonstrated by Western-blot analysis. The antibodies recognized pig band 4.5 polypeptides after prolonged treatment with endoglycosidase F, a finding consistent with reactivity against polypeptide, rather than carbohydrate, determinants. Trypsin digestion of NBMPR-labelled protein-depleted pig erythrocyte membranes generated two labelled polypeptide fragments (Mr 43,000 and 26,000). Two of the antibodies recognized both fragments on Western blots, whereas the third bound to the larger, but not to the smaller, fragment. The antibodies had no significant effect on reversible binding of NBMPR to protein-depleted pig erythrocyte membranes and did not bind to NBMPR-labelled polypeptides in human, rabbit or mouse erythrocytes.  相似文献   

18.
A C Newton  W H Huestis 《Biochemistry》1988,27(13):4655-4659
Band 3, the erythrocyte anion transporter, transfers spontaneously between human red cells and model membranes. During incubation of intact erythrocytes with sonicated dimyristoylphosphatidylcholine vesicles, the transporter inserts in functional form and native orientation into the liposome bilayer, with the cytoplasmic segment of the protein contacting the lumen of the vesicle [Newton, A. C., Cook, S. L., & Huestis, W. H. (1983) Biochemistry 22, 6110-6117; Huestis, W. H., & Newton, A. C. (1986) J. Biol. Chem. 261, 16274-16278]. When band 3-vesicle complexes are incubated with erythrocytes whose native band 3 has been inhibited irreversibly, reverse transfer of the protein restores anion transport capacity to the cells [Newton, A. C., Cook, S. L., & Huestis, W. H. (1983) Biochemistry 22, 6110-6117]. Here we report the vesicle-mediated transfer of band 3 to human peripheral blood lymphocytes and to cultured murine lymphoma cells (BL/VL3). Subsequent to incubation with protein-vesicle complexes, both lymphoid cell types exhibit a 2-4-fold increase in the rate of chloride uptake. This enhanced permeability is inhibited greater than or equal to 98% by the exofacial band 3 inhibitor 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid, consistent with right-side-out insertion of functional band 3 into the lymphoid cell membrane.  相似文献   

19.
A novel stilbene disulfonate, 4-trimethylammonium-4'-isothiocyanostilbene-2,2'-disulfonic acid (TIDS), has been chemically synthesized, and the interaction of this probe with human erythrocyte anion exchanger (AE1) was characterized. Covalent labeling of intact erythrocytes by [N(+)((14)CH(3))(3)]TIDS revealed that specific modification of AE1 was achieved only after removal of other ligand binding sites by external trypsinization. Following proteolysis, (1.2 +/- 0.4) x 10(6) TIDS binding sites per erythrocyte could be blocked by prior treatment with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), a highly specific inhibitor of AE1. Inhibition of sulfate equilibrium exchange by TIDS in whole cells was described by a Hill coefficient of 1.10 +/- 0.06, which reduced to 0.51 +/- 0.01 following external trypsinization. The negative cooperativity of TIDS binding following external trypsinization suggests that trypsin-sensitive proteins modulate allosteric coupling between AE1 monomers. Thermodynamic analysis revealed that TIDS binding induces smaller conformational changes in AE1 than is observed following DIDS binding. The similar inhibitory potencies of both TIDS (IC(50) = 0.71 +/- 0.48 microM) and DIDS (IC(50) = 0.2 microM) imply that there is no correlation between the ability of stilbene disulfonates to arrest anion exchange function and the magnitude of ligand-induced conformational changes in AE1. Solid state (2)H NMR analysis of a [N(+)(CD(3))(3)]TIDS-AE1 complex in both unoriented and macroscopically oriented membranes revealed that large amplitude "wobbling" motions describe ligand dynamics. The data are consistent with a model where TIDS bound to AE1 is located exofacially in contact with the bulk aqueous phase.  相似文献   

20.
The level of carboxyl methylation of membrane proteins has been measured in intact human erythrocyte populations of different ages separated by density gradient centrifugation. Age separation was confirmed by measurement of cytosolic pyruvate kinase specific activity in each fraction. When cells of different ages were incubated with L-[methyl-3H]methionine, the steady state level of 3H radioactivity covalently bound to membrane proteins is observed to be at least 3-fold higher in older erythrocytes. Because the specific radioactivity of the methyl group donor S-adenosyl-L-[methyl-3H]methionine was identical in all age fractions, this represents an increase in the extent of modification of membrane proteins by carboxyl methylation. Of the three major methylated erythrocyte membrane proteins, this increase in carboxyl methylation with age is 4 to 7-fold for bands 2.1 and 3, while the increase in band 4.1 is 3 to 4-fold. This increase in the steady state level of methylation with age cannot be explained by changes in either the intrinsic rate of methyl transfer or by changes in the rate constant of methyl turnover. We, therefore, propose that the age-dependent change in carboxyl methylation is due to an increase in the number of available acceptor sites as the erythrocyte ages in vivo. Since methylation of acidic residues on erythrocyte membrane proteins has been detected exclusively on D-aspartic acid residues (McFadden, P. N., and Clarke, S. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 2460-2464), these results are consistent with an accumulation of D-aspartic acid in membrane protein due to spontaneous racemization a the cell ages. The relationship of these observations to possible functions of erythrocyte membrane protein carboxyl methylation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号