首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee MC  Orci L  Hamamoto S  Futai E  Ravazzola M  Schekman R 《Cell》2005,122(4):605-617
Secretory proteins traffic from the ER to the Golgi via COPII-coated transport vesicles. The five core COPII proteins (Sar1p, Sec23/24p, and Sec13/31p) act in concert to capture cargo proteins and sculpt the ER membrane into vesicles of defined geometry. The molecular details of how the coat proteins deform the lipid bilayer into vesicles are not known. Here we show that the small GTPase Sar1p directly initiates membrane curvature during vesicle biogenesis. Upon GTP binding by Sar1p, membrane insertion of the N-terminal amphipathic alpha helix deforms synthetic liposomes into narrow tubules. Replacement of bulky hydrophobic residues in the alpha helix with alanine yields Sar1p mutants that are unable to generate highly curved membranes and are defective in vesicle formation from native ER membranes despite normal recruitment of coat and cargo proteins. Thus, the initiation of vesicle budding by Sar1p couples the generation of membrane curvature with coat-protein assembly and cargo capture.  相似文献   

2.
Husain M  Moss B 《Journal of virology》2003,77(16):9008-9019
The F13L protein of vaccinia virus, an essential and abundant palmitoylated peripheral membrane component of intra- and extracellular enveloped virions, associates with Golgi, endosomal, and plasma membranes in the presence or absence of other viral proteins. In the present study, the trafficking of a fully functional F13L-green fluorescent protein (GFP) chimera in transfected and productively infected cells was analyzed using specific markers and inhibitors. We found that Sar1(H79G), a trans-dominant-negative protein inhibitor of cargo transport from the endoplasmic reticulum, had no apparent effect on the intracellular distribution of F13L-GFP, suggesting that the initial membrane localization occurs at a downstream compartment of the secretory pathway. Recycling of F13L-GFP from the plasma membrane was demonstrated by partial colocalization with FM4-64, a fluorescent membrane marker of endocytosis. Punctate F13L-GFP fluorescence overlapped with clathrin and Texas red-conjugated transferrin, suggesting that endocytosis occurred via clathrin-coated pits. The inhibitory effects of chlorpromazine and trans-dominant-negative forms of dynamin and Eps15 protein on the recycling of F13L-GFP provided further evidence for clathrin-mediated endocytosis. In addition, the F13L protein was specifically coimmunoprecipitated with alpha-adaptin, a component of the AP-2 complex that interacts with Eps15. Nocodazole and wortmannin perturbed the intracellular trafficking of F13L-GFP, consistent with its entry into late and early endosomes through the secretory and endocytic pathways, respectively. The recycling pathway described here provides a mechanism for the reutilization of the F13L protein following its deposition in the plasma membrane during the exocytosis of enveloped virions.  相似文献   

3.
The events regulating coat complex II (COPII) vesicle formation involved in the export of cargo from the endoplasmic reticulum (ER) are unknown. COPII recruitment to membranes is initiated by the activation of the small GTPase Sar1. We have utilized purified COPII components in both membrane recruitment and cargo export assays to analyze the possible role of kinase regulation in ER export. We now demonstrate that Sar1 recruitment to membranes requires ATP. We find that the serine/threonine kinase inhibitor H89 abolishes membrane recruitment of Sar1, thereby preventing COPII polymerization by interfering with the recruitment of the cytosolic Sec23/24 COPII coat complex. Inhibition of COPII recruitment prevents export of cargo from the ER. These results demonstrate that ER export and initiation of COPII vesicle formation in mammalian cells is under kinase regulation.  相似文献   

4.
COPII coat assembly and selective export from the endoplasmic reticulum   总被引:2,自引:0,他引:2  
The coat protein complex II (COPII) generates transport vesicles that mediate protein transport from the endoplasmic reticulum (ER). Recent structural and biochemical studies have suggested that the COPII coat is responsible for direct capture of membrane cargo proteins and for the physical deformation of the ER membrane that drives the transport vesicle formation. The COPII-coated vesicle formation at the ER membrane is triggered by the activation of the Ras-like small GTPase Sar1 by GDP/GTP exchange, and activated Sar1 in turn promotes COPII coat assembly. Subsequent GTP hydrolysis by Sar1 leads to disassembly of the coat proteins, which are then recycled for additional rounds of vesicle formation. Thus, the Sar1 GTPase cycle is thought to regulate COPII coat assembly and disassembly. Emerging evidence suggests that the cargo proteins modulate the Sar1 GTP hydrolysis to coordinate coat assembly with cargo selection. Here, I discuss the possible roles of the GTP hydrolysis by Sar1 in COPII coat assembly and selective uptake of cargo proteins into transport vesicles.  相似文献   

5.
The Golgi apparatus comprises an enormous array of components that generate its unique architecture and function within cells. Here, we use quantitative fluorescence imaging techniques and ultrastructural analysis to address whether the Golgi apparatus is a steady-state or a stable organelle. We found that all classes of Golgi components are dynamically associated with this organelle, contrary to the prediction of the stable organelle model. Enzymes and recycling components are continuously exiting and reentering the Golgi apparatus by membrane trafficking pathways to and from the ER, whereas Golgi matrix proteins and coatomer undergo constant, rapid exchange between membrane and cytoplasm. When ER to Golgi transport is inhibited without disrupting COPII-dependent ER export machinery (by brefeldin A treatment or expression of Arf1[T31N]), the Golgi structure disassembles, leaving no residual Golgi membranes. Rather, all Golgi components redistribute into the ER, the cytoplasm, or to ER exit sites still active for recruitment of selective membrane-bound and peripherally associated cargos. A similar phenomenon is induced by the constitutively active Sar1[H79G] mutant, which has the additional effect of causing COPII-associated membranes to cluster to a juxtanuclear region. In cells expressing Sar1[T39N], a constitutively inactive form of Sar1 that completely disrupts ER exit sites, Golgi glycosylation enzymes, matrix, and itinerant proteins all redistribute to the ER. These results argue against the hypothesis that the Golgi apparatus contains stable components that can serve as a template for its biogenesis. Instead, they suggest that the Golgi complex is a dynamic, steady-state system, whose membranes can be nucleated and are maintained by the activities of the Sar1-COPII and Arf1-coatomer systems.  相似文献   

6.
Yip1p/Yif1p family proteins are five-span transmembrane proteins localized in the Golgi apparatus and the ER. There are nine family members in humans, and YIPF5 and YIF1A are the human orthologs of budding yeast Yip1p and Yif1p, respectively. We raised antisera against YIPF5 and YIF1A and examined the localization of endogenous proteins in HeLa cells. Immunofluorescence, immunoelectron microscopy and subcellular fractionation analysis suggested that YIPF5 and YIF1A are not restricted to ER exit sites but also localized in the ER-Golgi intermediate compartment (ERGIC) and some in the cis-Golgi at steady state. Along with ERGIC53, YIPF5 and YIF1A remained in the cytoplasmic punctate structures after brefeldin A treatment, accumulated in the ERGIC and the cis-Golgi after treatment with AlF4- and accumulated in the ER when ER to Golgi transport was inhibited by Sar1(H79G). These results supported the localization of YIPF5 and YIF1A in the ERGIC and the cis-Golgi, and strongly suggested that they are recycling between the ER and the Golgi apparatus. Analysis by blue native PAGE and co-immunoprecipitation showed that YIPF5 and YIF1A form stable complexes of three different sizes. Interestingly, the knockdown of YIPF5 or YIF1A caused partial disassembly of the Golgi apparatus suggesting that YIPF5 and YIF1A are involved in the maintenance of the Golgi structure.  相似文献   

7.
The molecular mechanisms underlying the exit from the endoplasmic reticulum (ER) for cell surface trafficking of the human calcium receptor (hCaR) remain poorly understood. We investigated the role of the Sar1 small GTP-binding protein in cell surface transport of the hCaR. Disruptions of endogenous Sar1 function with the constitutively active Sar1H79G mutant or depletion using small interfering RNA, attenuates cell surface expression of the hCaR. Mutation of several putative di-acidic ER export motifs in the carboxyl-tail of the receptor revealed no apparent defect in cell surface expression. Truncated mutants lacking most of the carboxyl-terminal sequences or all intracellular domains also showed no impairment in cell surface expression at steady state. A truncated receptor containing only the large amino-terminal extracellular ligand-binding domain (ECD) is secreted into the culture medium and Sar1H79G inhibits this secretion. ECD receptor variants with the cysteines essential for intermolecular disulfide-linked dimerization mutated to serine or four of the asparagine sites for N-glycosylation mutated to alanine also disrupt secretion, indicating proper ECD conformation is critical for forward transport of this receptor.  相似文献   

8.
Membrane proteins exit the endoplasmic reticulum (ER) in COPII-transport vesicles. ER export is a selective process in which transport signals present in the cytoplasmic tail (CT) of cargo membrane proteins must be recognized by coatomer proteins for incorporation in COPII vesicles. Two classes of ER export signals have been described for type I membrane proteins, the diacidic and the dihydrophobic motifs. Both motifs participate in the Sar1-dependent binding of Sec23p-Sec24p complex to the CTs during early steps of cargo selection. However, information concerning the amino acids in the CTs that interact with Sar1 is lacking. Herein, we describe a third class of ER export motif, [RK](X)[RK], at the CT of Golgi resident glycosyltransferases that is required for these type II membrane proteins to exit the ER. The dibasic motif is located proximal to the transmembrane border, and experiments of cross-linking in microsomal membranes and of binding to immobilized peptides showed that it directly interacts with the COPII component Sar1. Sar1GTP-bound to immobilized peptides binds Sec23p. Collectively, the present data suggest that interaction of the dibasic motif with Sar1 participates in early steps of selection of Golgi resident glycosyltransferases for transport in COPII vesicles.  相似文献   

9.
COPII coat proteins are required for direct capture of cargo and SNARE proteins into transport vesicles from the endoplasmic reticulum (ER). Cargo and SNARE capture occurs during the formation of a 'prebudding complex' comprising a cargo, Sar1p-GTP and the COPII subunits Sec23/24p. The assembly and disassembly cycle of the prebudding complex on ER membranes is coupled to the Sar1p GTPase cycle. Using FRET to monitor a single round of Sec23/24p binding and dissociation from SNAREs in reconstituted liposomes, we show that Sec23/24p dissociates from v-SNARE and complexed t-SNARE with kinetics slower than Sar1p-GTP hydrolysis. Once Sec23/24p becomes associated with v-SNARE or complexed t-SNARE, the complex remains assembled during multiple rounds of Sar1p-GTP hydrolysis mediated by the GDP-GTP exchange factor Sec12p. These data suggest a model for the maintenance of kinetically stable prebudding complexes during the Sar1p GTPase cycle that regulates cargo sorting into transport vesicles.  相似文献   

10.
Several Sec proteins including a guanosine diphosphate/guanosine triphosphate exchange factor for Sar1p have been implicated in autophagy. In this study, we investigated the role of Sar1p in pexophagy by expressing dominant-negative mutant forms of Sar1p in Pichia pastoris. When expressing sar1pT34N or sar1pH79G, starvation-induced autophagy, glucose-induced micropexophagy, and ethanol-induced macropexophagy are dramatically suppressed. These Sar1p mutants did not affect the initiation or expansion of the sequestering membranes nor the trafficking of Atg11p and Atg9p to these membranes during micropexophagy. However, the lipidation of Atg8p and assembly of the micropexophagic membrane apparatus, which are essential to complete the incorporation of the peroxisomes into the degradative vacuole, were inhibited when either Sar1p mutant protein was expressed. During macropexophagy, the expression of sar1pT34N inhibited the formation of the pexophagosome, whereas sar1pH79G suppressed the delivery of the peroxisome from the pexophagosome to the vacuole. The pexophagosome contained Atg8p in wild-type cells, but in cells expressing sar1pH79G these organelles contain both Atg8p and endoplasmic reticulum components as visualized by DsRFP-HDEL. Our results demonstrate key roles for Sar1p in both micro- and macropexophagy.  相似文献   

11.
Vaccinia virus infects a wide variety of mammalian cells from different hosts, but the mechanism of virus entry is not clearly defined. The mature intracellular vaccinia virus contains several envelope proteins mediating virion adsorption to cell surface glycosaminoglycans; however, it is not known how the bound virions initiate virion penetration into cells. For this study, we investigated the importance of plasma membrane lipid rafts in the mature intracellular vaccinia virus infection process by using biochemical and fluorescence imaging techniques. A raft-disrupting drug, methyl-beta-cyclodextrin, inhibited vaccinia virus uncoating without affecting virion attachment, indicating that cholesterol-containing lipid rafts are essential for virion penetration into mammalian cells. To provide direct evidence of a virus and lipid raft association, we isolated detergent-insoluble glycolipid-enriched membranes from cells immediately after virus infection and demonstrated that several viral envelope proteins, A14, A17L, and D8L, were present in the cell membrane lipid raft fractions, whereas the envelope H3L protein was not. Such an association did not occur after virions attached to cells at 4 degrees C and was only observed when virion penetration occurred at 37 degrees C. Immunofluorescence microscopy also revealed that cell surface staining of viral envelope proteins was colocalized with GM1, a lipid raft marker on the plasma membrane, consistent with biochemical analyses. Finally, mutant viruses lacking the H3L, D8L, or A27L protein remained associated with lipid rafts, indicating that the initial attachment of vaccinia virions through glycosaminoglycans is not required for lipid raft formation.  相似文献   

12.
The ER-Golgi intermediate compartment (ERGIC) is an organelle through which cargo proteins pass and are being transferred by either anterograde or retrograde transport between the endoplasmic reticulum (ER) and the Golgi apparatus. We examined the effect of 80 different kinase inhibitors on ERGIC morphology and found that rottlerin, a PKCδ inhibitor, induced the dispersion of the perinuclear ERGIC into punctate structures. Rottlerin also delayed anterograde transport of vesicular stomatitis virus G protein (VSVG) from the ER to the Golgi and retrograde transport of cholera toxin from cell surface to the ER via the Golgi. RNA interference revealed that knockdown of PKCδ or ε resulted in the dispersion of the ERGIC, but unexpectedly did not inhibit VSVG and cholera toxin transport. We also found that rottlerin depolarized the mitochondrial membrane potential, as does carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP), an uncoupler, and demonstrated that a decrease in the intracellular adenosine triphosphate (ATP) levels by rottlerin might underlie the block in transports. These results suggest that PKCδ and ε specifically regulate the morphology of the ERGIC and that the maintenance of ERGIC structure is not necessarily required for anterograde and retrograde transports.  相似文献   

13.
Husain M  Moss B 《Journal of virology》2005,79(7):4080-4089
Infectious intracellular mature vaccinia virus particles are wrapped by cisternae, which may arise from trans-Golgi or early endosomal membranes, and are transported along microtubules to the plasma membrane where exocytosis occurs. We used EH21, a dominant-negative form of Eps15 that is an essential component of clathrin-coated pits, to investigate the extent and importance of endocytosis of viral envelope proteins from the cell surface. Several recombinant vaccinia viruses that inducibly or constitutively express an enhanced green fluorescent protein (GFP)-EH21 fusion protein were constructed. Expression of GFP-EH21 blocked uptake of transferrin, a marker for clathrin-mediated endocytosis, as well as association of adaptor protein-2 with clathrin-coated pits. When GFP-EH21 was expressed, there were increased amounts of viral envelope proteins, including A33, A36, B5, and F13, in the plasma membrane, and their internalization was inhibited. Wrapping of virions appeared to be qualitatively unaffected as judged by electron microscopy, a finding consistent with a primary trans-Golgi origin of the cisternae. However, GFP-EH21 expression caused a 50% reduction in released enveloped virions, decreased formation of satellite plaques, and delayed virus spread, indicating an important role for receptor-mediated endocytosis. Due to dynamic interconnection between endocytic and exocytic pathways, viral proteins recovered from the plasma membrane could be used by trans-Golgi or endosomal cisternae to form new viral envelopes. Adherence of enveloped virions to unrecycled viral proteins on the cell surface may also contribute to decreased virus release in the presence of GFP-EH21. In addition to a salvage function, the retrieval of viral proteins from the cell surface may reduce immune recognition.  相似文献   

14.
Carbon tetrachloride (CCl4) causes hepatotoxicity in mammals, with its hepatocytic metabolism producing radicals that attack the intracellular membrane system and destabilize intracellular vesicle transport. Inhibition of intracellular transport causes lipid droplet retention and abnormal protein distribution. The intracellular transport of synthesized lipids and proteins from the endoplasmic reticulum (ER) to the Golgi apparatus is performed by coat complex II (COPII) vesicle transport, but how CCl4 inhibits COPII vesicle transport has not been elucidated. COPII vesicle formation on the ER membrane is initiated by the recruitment of Sar1 protein from the cytoplasm to the ER membrane, followed by that of the COPII coat constituent proteins (Sec23, Sec24, Sec13, and Sec31). In this study, we evaluated the effect of CCl4 on COPII vesicle formation using the RLC-16 rat hepatocyte cell line. Our results showed that CCl4 suppressed ER-Golgi transport in RLC-16 cells. Using a reconstituted system of rat liver tissue-derived cytoplasm and RLC-16 cell-derived ER membranes, CCl4 treatment inhibited the recruitment of Sar1 and Sec13 from the cytosolic fraction to ER membranes. CCl4-induced changes in the ER membrane accordingly inhibited the accumulation of COPII vesicle-coated constituent proteins on the ER membrane, as well as the formation of COPII vesicles, which suppressed lipid and protein transport between the ER and Golgi apparatus. Our data suggest that CCl4 inhibits ER-Golgi intracellular transport by inhibiting COPII vesicle formation on the ER membrane in hepatocytes.  相似文献   

15.
Vaccinia virus (VV) membrane biogenesis is a poorly understood process. It has been proposed that cellular membranes derived from the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) are incorporated in the early stages of virion assembly. We have recently shown that the VV 21-kDa (A17L gene) envelope protein is essential for the formation of viral membranes. In the present work, we identify a 15-kDa VV membrane protein encoded by the A14L gene. This protein is phosphorylated and myristylated during infection and is incorporated into the virion envelope. Both the 21- and 15-kDa proteins are found associated with cellular tubulovesicular elements related to the ERGIC, suggesting that these proteins are transported in these membranes to the nascent viral factories. When synthesis of the 21-kDa protein is repressed, organized membranes are not formed but numerous ERGIC-derived tubulovesicular structures containing the 15-kDa protein accumulate in the boundaries of the precursors of the viral factories. These data suggest that the 21-kDa protein is involved in organizing the recruited viral membranes, while the 15-kDa protein appears to be one of the viral elements participating in the membrane recruitment process from the ERGIC, to initiate virus formation.  相似文献   

16.
Cargo is selectively exported from the ER in COPII vesicles. To analyze the role of COPII in selective transport from the ER, we have purified components of the mammalian COPII complex from rat liver cytosol and then analyzed their role in cargo selection and ER export. The purified mammalian Sec23–24 complex is composed of an 85-kD (Sec23) protein and a 120-kD (Sec24) protein. Although the Sec23–24 complex or the monomeric Sec23 subunit were found to be the minimal cytosolic components recruited to membranes after the activation of Sar1, the addition of the mammalian Sec13–31 complex is required to complete budding. To define possible protein interactions between cargo and coat components, we recruited either glutathione-S-transferase (GST)–tagged Sar1 or GST– Sec23 to ER microsomes. Subsequently, we solubilized and reisolated the tagged subunits using glutathione-Sepharose beads to probe for interactions with cargo. We find that activated Sar1 in combination with either Sec23 or the Sec23–24 complex is necessary and sufficient to recover with high efficiency the type 1 transmembrane cargo protein vesicular stomatitis virus glycoprotein in a detergent-soluble prebudding protein complex that excludes ER resident proteins. Supplementing these minimal cargo recruitment conditions with the mammalian Sec13–31 complex leads to export of the selected cargo into COPII vesicles. The ability of cargo to interact with a partial COPII coat demonstrates that these proteins initiate cargo sorting on the ER membrane before budding and establishes the role of GTPase-dependent coat recruitment in cargo selection.  相似文献   

17.
In contrast to most negative-stranded RNA viruses, hantaviruses and other viruses in the family Bunyaviridae mature intracellularly, deriving the virion envelope from the endoplasmic reticulum (ER) or Golgi compartment. While it is generally accepted that Old World hantaviruses assemble and bud into the Golgi compartment, some studies with New World hantaviruses have raised the possibility of maturation at the plasma membrane as well. Overall, the steps leading to virion assembly remain largely undetermined for hantaviruses. Because hantaviruses do not have matrix proteins, the nucleocapsid protein (N) has been proposed to play a key role in assembly. Herein, we examine the intracellular trafficking and morphogenesis of the prototype Old World hantavirus, Hantaan virus (HTNV). Using confocal microscopy, we show that N colocalized with the ER-Golgi intermediate compartment (ERGIC) in HTNV-infected Vero E6 cells, not with the ER, Golgi compartment, or early endosomes. Brefeldin A, which effectively disperses the ER, the ERGIC, and Golgi membranes, redistributed N with the ERGIC, implicating membrane association; however, subcellular fractionation experiments showed the majority of N in particulate fractions. Confocal microscopy revealed that N was juxtaposed to and distributed along microtubules and, over time, became surrounded by vimentin cages. To probe cytoskeletal association further, we probed trafficking of N in cells treated with nocodazole and cytochalasin D, which depolymerize microtubules and actin, respectively. We show that nocodazole, but not cytochalasin D, affected the distribution of N and reduced levels of intracellular viral RNA. These results suggested the involvement of microtubules in trafficking of N, whose movement could occur via molecular motors such as dynein. Overexpression of dynamitin, which is associated with dynein-mediated transport, creates a dominant-negative phenotype blocking transport on microtubules. Overexpression of dynamitin reduced N accumulation in the perinuclear region, which further supports microtubule components in N trafficking. The combined results of these experiments support targeting of N to the ERGIC prior to its movement to the Golgi compartment and the requirement of an intact ERGIC for viral replication and, thus, the possibility of virus factories in this region.  相似文献   

18.
This review summarizes the data describing the role of cellular microtubules in transportation of membrane vesicles — transport containers for secreted proteins or lipids. Most events of early vesicular transport in animal cells (from the endoplasmic reticulum to the Golgi apparatus and in the opposite recycling direction) are mediated by microtubules and microtubule motor proteins. Data on the role of dynein and kinesin in early vesicle transport remain controversial, probably because of the differentiated role of these proteins in the movements of vesicles or membrane tubules with various cargos and at different stages of secretion and retrograde transport. Microtubules and dynein motor protein are essential for maintaining a compact structure of the Golgi apparatus; moreover, there is a set of proteins that are essential for Golgi compactness. Dispersion of ribbon-like Golgi often occurs under physiological conditions in interphase cells. Golgi is localized in the leading part of crawling cultured fibroblasts, which also depends on microtubules and dynein. The Golgi apparatus creates its own system of microtubules by attracting γ-tubulin and some microtubule-associated proteins to membranes. Molecular mechanisms of binding microtubule-associated and motor proteins to membranes are very diverse, suggesting the possibility of regulation of Golgi interaction with microtubules during cell differentiation. To illustrate some statements, we present our own data showing that the cluster of vesicles induced by expression of constitutively active GTPase Sar1a[H79G] in cells is dispersed throughout the cell after microtubule disruption. Movement of vesicles in cells containing the intermediate compartment protein ERGIC53/LMANI was inhibited by inhibiting dynein. Inhibiting protein kinase LOSK/SLK prevented orientation of Golgi to the leading part of crawling cells, but the activity of dynein was not inhibited according to data on the movement of ERGIC53/LMANI-marked vesicles.  相似文献   

19.
In mammalian cells, cargo‐laden secretory vesicles leave the endoplasmic reticulum (ER) en route to ER‐Golgi intermediate compartments (ERGIC) in a manner dependent on the COPII coat complex. We report here that COPII‐coated transport carriers traverse a submicron, TFG (Trk‐fused gene)‐enriched zone at the ER/ERGIC interface. The architecture of TFG complexes as determined by three‐dimensional electron microscopy reveals the formation of flexible, octameric cup‐like structures, which are able to self‐associate to generate larger polymers in vitro. In cells, loss of TFG function dramatically slows protein export from the ER and results in the accumulation of COPII‐coated carriers throughout the cytoplasm. Additionally, the tight association between ER and ERGIC membranes is lost in the absence of TFG. We propose that TFG functions at the ER/ERGIC interface to locally concentrate COPII‐coated transport carriers and link exit sites on the ER to ERGIC membranes. Our findings provide a new mechanism by which COPII‐coated carriers are retained near their site of formation to facilitate rapid fusion with neighboring ERGIC membranes upon uncoating, thereby promoting interorganellar cargo transport.  相似文献   

20.
Secretory proteins are transported from the endoplasmic reticulum (ER) in vesicles coated with coat protein complex II (COPII). To investigate the molecular mechanism of protein sorting into COPII vesicles, we have developed an in vitro budding reaction comprising purified coat proteins and cargo reconstituted proteolipsomes. Emp47p, a type-I membrane protein, is specifically required for the transport of an integral membrane protein, Emp46p, from the ER. Recombinant Emp46/47p proteins and the ER resident protein Ufe1p were reconstituted into liposomes whose composition resembles yeast ER membranes. When the proteoliposomes were mixed with COPII proteins and GMP-PNP, Emp46/47p, but not Ufe1p, were concentrated into COPII vesicles. We also show here that reconstituted Emp47p accelerates the GTP hydrolysis by Sar1p as stimulated by its GTPase-activating protein, Sec23/24p, both of which are components of the COPII coat. Furthermore, this GTP hydrolysis decreases the error of cargo sorting. We suggest that GTP hydrolysis by Sar1p promotes exclusion of improper proteins from COPII vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号