首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The direct staining of BrdU-substituted Chinese hamster chromosomes in a Na2HPO4-Giemsa solution without any pretreatments resulted in a B-dark type SCD in which bifilarly substituted (BB) chromatids stained dark and unifilarly substituted (TB) chromatids stained light. Detailed examinations of the staining process suggested that the Na2HPO4 solution acts to collapse chromosomes whereas the Giemsa dye works to reconstruct the collapsed chromosomes, and that during the reconstruction process preferential binding of the Giemsa dye to the BB-chromatids occurs to produce the B-dark SCD. It was revealed that not only the time but the temperature at which chromosome preparations are kept prior to use considerably affect the occurrence of SCD.  相似文献   

2.
The direct staining of BUdR-substituted Chinese hamster chromosomes in a 4Na-EDTA-Giemsa solution resulted in a B-dark type of sister chromatid differential staining (SCD) in which bifilarly substituted chromatids stained dark. On the other hand, when BUdR-substituted chromosomes were pretreated with a 4Na-EDTA solution and then stained with Giemsa, a B-light type SCD was obtained in which bifilarly substituted chromatids stained light.  相似文献   

3.
A differential Giemsa staining between sister chromatids was obtained by treating chromosomes replicated twice in medium containing 5-bromodeoxyuridine (BrdU) with Hoechst 33258 plus black light at 55 degrees C (HB pretreatment) and deoxyribonuclease (DNase) I, II, or micrococcal nuclease. In this staining pattern the BrdU bifilarly substituted chromatids were darkly and the unifilarly substituted chromatids lightly stained. This staining pattern was obtained only by staining the HB-DNase I-treated chromosomes with Giemsa and methylene blue, not by several other dyes tested. Relatively more DNA labelling was removed from the non-BrdU-substituted than the BrdU-substituted chromosomes, when the HB-pretreated chromosomes were digested with DNase I. But the protein labelling was not removed appreciably in the same treatment. The differential DNase I sensitivity between the non-BrdU-substituted and BrdU-substituted chromosomes disappeared when the HB-pretreated chromosomes were incubated with proteinase K before The DNase I digestion. Moreover, no differential DNase I sensitivity was found between the HB-pretreated isolated DNA containing and not containing BrdU. We propose that during the HB pretreatment, more DNA-protein cross-linkings are induced in BrdU bifilarly substituted than the unifilarly substituted chromatids. This structure protects the chromosomal DNA against the DNase I digestion. Thus, a reverse differential Giemsa staining between sister chromatids is obtained by the HB-DNase I treatment.  相似文献   

4.
Chinese hamster strain cells were cultured in the presence of BUdR and air-dried on slides. The chromosome preparations were incubated in 1 M NaH2PO4 at 88 °C for 4–6 min and stained with Giemsa. The reverse type of sister chromatid differential staining occurred, in which unifilarly BUdR-substituted chromatids stained faintly and bifilarly substituted chromatids stained darkly. Feulgen reaction performed on the same chromosomes after removing Giemsa stain showed the same type of differential staining.  相似文献   

5.
The fluorescence of human lymphocyte chromosomes stained with sulfhydryl group-specific fluorochromes is markedly enhanced by a mild near-ultraviolet irradiation pretreatment, indicating breakage of protein disulfide bonds. When metaphase preparations of cells cultured in the presence of BrdU during two cell cycles are irradiated and subsequently stained with the sulfhydryl group-specific fluorescent reagents used in this study, a differential fluorescence of sister chromatids is observed. After staining with the DNA-specific fluorochrome DAPI an opposite pattern of lateral differentiation appears. It can be concluded that the chromatid containing bifilarly BrdU-substituted DNA has a higher content of sulfhydryl groups than the chromatid containing unifilarly BrdU-substituted DNA. This implies a more pronounced effect of breakage of disulfide bonds in the chromatid with the higher degree of BrdU-substitution. BrdU-containing chromosomes pretreated with the mild near-ultraviolet irradiation procedure used by us, do not show any differentiation of sister chromatids after Feulgen staining. Using sulfhydryl group-specific reagents, differential fluorescence of sister chromatids could still be induced by irradiation with near-ultraviolet light after the complete removal of DNA from the chromosomes by incubation with DNase I. Thus, the protein effect of irradiation of BrdU-containing chromosomes takes place independently of what occurs to DNA.Our results indicate that subsequent to the primary alteration of chromatin structure caused by the incorporation of BrdU into DNA, breakage of disulfide bonds of chromosomal proteins might play an important role in bringing about differential staining of sister chromatids, at least for those procedures that use irradiation as a pretreatment or prolonged illumination during microscopic examination.  相似文献   

6.
Summary Fixed chromosomes of human lymphocytes, cultured in the presence of bromodeoxyuridine (BrdU) during two cell cycles, were exposed to near-ultraviolet irradiation, stained with Giemsa, and after destaining, were subjected to either Coomassie Blue or Feulgen-Schiff staining. A differential reaction of sister chromatids was first revealed by Coomassie Blue staining. Differential staining with Giemsa required a longer irradiation time. This appeared to be reduced after the addition of dithiodipyridine to the cells during their last few hours of culture. The differential pattern obtained after Coomassie Blue staining was the inverse of that obtained after Giemsa staining. From these findings we concluded that the induction of sister chromatid differentiation by light in BrdU-substituted DNA containing chromosomes occurs primarily via chromosomal proteins, presumably by differential breakage of their disulphide bonds. The results of the Feulgen-Schiff staining indicated that differential depurination of BrdU-containing DNA could occur, although only after very prolonged irradiation. A faint though distinctly differential Feulgen-Schiff pattern of sister chromated staining, resulting from differential removal of DNA, was observed after photosensitization by specific DNA-binding dyes. Thus, DNA seems to be affected only under more extreme conditions.  相似文献   

7.
Factors involved in differential giemsa-staining of sister chromatids   总被引:4,自引:0,他引:4  
Microspectrophotometric evaluation of differentially stained sister chromatids made it possible to analyse precisely the factors involved in the Giemsa methods. The concentration of Hoechst 33258, pH of the mounting medium, temperature during UV-exposure and the quality (wavelength) of UV-light influenced the differential staining. Exposure of blacklight of 10–5 M Hoechst 33528-stained BrdU-labeled chromosome specimens mounted in McIlvaine buffer (pH 8.0) at 50° C reproducibly allowed differential staining of sister chromatids within 15 min. On the other hand, Korenberg-Freedlender's method using no Hoechst 33258 was also UV-light-dependent. Thus, photolysis of BrdU-substituted DNA was considered the basic mechanism of the Giemsa methods where the photosensitive Hoechst 33258 played a role as a sensitizer.  相似文献   

8.
This paper analyses the effect of acid hydrolysis on the differential Giemsa staining of 5-bromo-2deoxyuridine (BrdU) substituted chromatids in human and plant chromosomes, after treatment with a fluorochrome and light. Human lymphocytes and Allium cepa L. root tips were grown in BrdU for two or three cell cycles. Lymphocyte spreadings and meristem squashes were treated with fluorochrome Hoechst 33258, exposed to sunlight, hydrolysed with 5N HCl and stained with Giemsa. This acid hydrolysis improves the differential staining of BrdU substituted and non-substituted chromatin. It also allows the differentiation of sister chromatids with the DNA specific dye azure-A.  相似文献   

9.
Summary When fixed metaphase preparations of lymphocytes cultured in the presence of BrdU during two cell cycles are subjected to a 1-min simple irradiation treatment with near-ultraviolet light (radiation dose 3×105 J/m2), subsequent Giemsa staining produces differential staining of sister chromatids irrespective of previous exposure to a photosensitizer. The effects of this procedure were analyzed by irradiating single metaphases under the microscope, thus allowing precise dosage of radiation: Metaphase were subsequently stained with Giemsa and then subjected to the Feulgen-Schiff procedure. Whereas in the presence of DAPI as a photosensitizer a differential breakdown of BrdU-containing DNA in the chromatids under the influence of irradiation appeared to be the cause of sister chromatid differentiation, alterations presumably in the higher oeder structure of chromatin, not accompanied by removal of DNA, induced sister chromatid differentiation without DAPI.  相似文献   

10.
Chromosomes of Chinese hamster strain cells were air-dried on slides after BrdU substitution for two or three rounds of replication. The preparations were treated with 20% PCA at 55 degrees C for 20-30 min, or 5N HCl at 55 degrees C for 15-20 min. After staining with Giemsa, unifilarly BrdU-substituted chromatids stained faintly and bifilarly substituted chromatids stained darkly. Such a pattern of sister chromatid differential staining was confirmed by the examination of metaphase cells grown with BrdU for three rounds of replication.  相似文献   

11.
Chinese hamster cells were grown with 50 M 5-bromodeoxyuridine (BrdU) during the penultimate S phase to obtain chromosomes with the TB-TT chromatid constitution. Chromosome preparations made by the air-drying method were used to study the sister chromatid differential staining (SCD) resulting from ultraviolet (UV) irradiation followed by Giemsa staining by light and scanning electron microscopy (SEM). When chromosomes irradiated with UV light (253.7 nm, 5.2 J/m2/s) for more than 5 h were stained with 1% to 4% Giemsa in phosphate buffered saline (PBS) or in distilled water, the resulting SCD invariably belonged to the B-light type in which the TB-chromatid stained lightly. SEM observations of these chromosomes suggested that the B-light SCD was due to the selective photolysis of the TB-chromatid. On the other hand, when chromosomes were irradiated for only 10 min, and stained with 1% Giemsa in PBS, they showed a B-dark type SCD in which the TB-chromatid stained darkly. However, when chromosomes irradiated for 10 min were stained with 4% Giemsa in PBS or 1% Giemsa in distilled water, the resulting SCD again belonged to the B-light type. These findings indicate that when the irradiation dose is small, the resultant SCD is not a simple reflection of selective photolysis in the TB-chromatids and the type of SCD depends not only on the concentration of Giemsa but also on the salinity of the staining solution.  相似文献   

12.
Electron microscopy of unstained BrdU-substituted chromosomes treated with 1.0 M NaH2PO4 at high pH and high temperature has demonstrated that there is a structural basis for the light microscopic observation of differentially Giemsa-stained unifilarly and bifilarly BrdU-substituted chromatids and the appearance of chromosome dots. At progressively higher treatment temperatures, sequential structural changes occurred in the chromosomes. After treatment with NaH2PO4 at 70–80° C, unifilarly BrdU-substituted chromatids were much more electron opaque than bifilarly substituted chromatids, and the overall data suggest that this difference in electron opacity is a result of the preferential extraction of chromosomal DNA from the bifilarly BrdU-substituted chromatids. NaH2PO4 treatment of the BrdU-substituted chromosomes at 80–90° ° C resulted in the formation of highly electron opaque spots (dots) on one or both chromatids. Dots first appeared on the electron lucent bifilarly BrdU-substituted chromatid, indicating that the chromatin with the greatest substitution of BrdU in its DNA is most susceptible to dot formation. At a slightly higher temperature, dots also appeared on the unifilarly BrdU-substituted chromatid concomitant with a disappearance of the electron opacity characterizing this chromatid at the lower treatment temperature. The dots may be formed by an extreme reorganization of residual chromatin or by some kind of interaction or reaction between the chromatin and the salts in the incubation medium. G-band regions may serve as focal points for dot formation.  相似文献   

13.
Summary Experiments were performed to find out whether different mechanisms are involved in FPG-(fluorescent plus Giemsa) staining for the demonstration of replication patterns and sister chromatid differentiation (SCD) after bromodeoxyuridine (BrdU)-substitution of V79 Chinese hamster chromosomes. The influence of variations of the staining procedure on the quality of both SCD and replication patterns was comparatively investigated and differences in the demonstration of these two phenomena within the same chromosome were studied using various BrdU-labeling protocols. The results show that at least graduated differences exist. For a good differentiation of replication patterns a stronger FPG-treatment is necessary than it is for SCD. Partial BrdU substitution only leads to replication patterns in the next mitosis. A further round of replication either in the presence or absence of BrdU causes a reduced staining of the complete chromatid and three-way differentiation is seen in third generation mitoses. These results support the view that alterations of chromosomal proteins during BrdU-incorporation and replication of BrdU-substituted DNA are decisive for differential staining.  相似文献   

14.
Summary The staining properties of unifilarly bromodeoxyuridine (BrdU)-substituted chromatids were compared using fluorescent-plus-Giemsa (FPG) staining methods. It was found that the staining intensity of chromatids which had incorporated BrdU in the next to last S-phase is less than that of chromatids whose BrdU-containing strand came from the last cell cycle. Thus, FPG-staining is not a function of the number of BrdU-substituted DNA strands alone. These findings lead to the conclusion that the primary point of action of PFG staining leading to sister chromatid differentiation (SCD) are chromosomal proteins which have been altered in the replication of BrdU-substituted DNA and that the demonstration of the SCD and replication patterns with the same staining procedure is based on different mechanisms.  相似文献   

15.
A sister chromatid differential staining pattern is observed if chromosomes replicate for two cycles in the presence of 5-bromodeoxyuridine (BUdR) and are subsequently stained in Hoechst 33258, irradiated with black light, and then stained in Coomassie Brilliant Blue R-250. In this pattern the chromatids containing DNA that is bifilarly substituted with BrdUrd are darkly stained and the chromatids with DNA that is unifilarly substituted are lightly stained. This staining pattern is the reverse of that found when slides are stained in Hoechst plus Giemsa. Slides stained with either Giemsa or Coomassie Blue can be destained and restained repeatedly with the other stain to alternate the pattern observed.  相似文献   

16.
Cytological and biochemical experiments were undertaken to elucidate the mechanisms responsible for the reciprocal Giemsa staining of BrdU-substituted and unsubstituted chromosome regions subjected to high or low pH NaH2PO4 treatments. These experiments included staining of chromosome preparations with ethidium bromide (EB), acridine orange (AO), or dansyl chloride, digestion of BrdU-substituted and unsubstituted chromatin with pancreatic DNase I, and SDS polyacrylamide gel electrophoresis of the proteins extracted from, and those remaining in isolated, fixed, air-dried nuclei subjected to either NaH2PO4 treatment. The collective evidence from this and previous work clearly indicates that, although the staining reactions following the different pH treatments are reciprocal, the mechanisms of induction of the staining effects are not. After the high pH treatment, BrdU-substituted and unsubstituted chromosome regions are palely and intensely stained with Giemsa, respectively. This treatment preferentially solubilizes BrdU-substituted DNA, probably as a result of the photolysis or high temperature hydrolysis of BrdU-DNA. Concomitantly, this treatment selectively denatures the BrdU-DNA. The reduction in the amount of DNA in the BrdU regions leads to a quantitative decrease in Giemsa-dye binding, resulting in pale staining relative to unsubstituted regions. The extraction of BrdU-substituted DNA does not appear to simultaneously extract much chromosomal protein. After the low pH treatment, BrdU-substituted and unsubstituted regions appear intensely and palely stained with Giemsa, respectively. BrdU substitution greatly increases the binding affinity of histone H1 to DNA, and the low pH treatment preferentially extracts the less tightly bound H1 of the unsubstituted chromatin. This extraction of H1 is presumably responsible for the preferential dispersion of unsubstituted DNA outside the boundaries of the chromosome onto the surrounding area of the slide. The unsubstituted chromosome regions subsequently stain relatively palely with Giemsa, because the DNA in these regions is more dispersed than that in the BrdU-substituted regions. The low pH treatment concomitantly denatures the unsubstituted DNA.  相似文献   

17.
Summary After substitution with 5-bromodeoxyuridine (BrdUrd) for two rounds of replication, chromosomes in cytological preparations stained with 33258 Hoechst show upon epiluminescence an immediate differential sister chromatid fluorescence. When stained with DAPI, however, which has a structural resemblance to part of the 33258 Hoechst molecule, such a differential pattern of fluorescence was only induced after some delay. Upon restaining with the same dye the differential fluorescence appeared instantly. In preparations double stained with ethidium bromide and 33258 Hoechst the induction of a differential staining of sister chromatids with 33258 Hoechst was not accompanied by a differential staining with ethidium bromide. Once a differential staining was obtained with DAPI in preparations double stained with ethidium bromide and DAPI, the ethidium bromide pattern also appeared to be differential upon subsequent observation. No differentiation could be obtained with ethidium bromide alone. The observations described in the case of 33258 Hoechst staining are in agreement with a molecular quenching by BrdUrd without gross structural consequences for the DNA. In the case of DAPI staining, however, there occurs a differential photolysis of BrdUrd-substituted DNA. Besides the nature, most likely the size, of the fluorochrome molecules themselves, the state of the fixed chromatin appeared also to play a role in determining the mechanism of the sister chromatid differentiation: after prolonged incubation in buffer, BrdUrd-containing chromosomes stained with 33258 Hoechst showed a differential staining evidently caused by photolysis, indicating that they had become more susceptible to light.  相似文献   

18.
A technique for the differential staining of sister chromatids with basic fuchsin is described. The resulting staining pattern is the reverse of that obtained with a similar technique using Giemsa dye.  相似文献   

19.
T. Haaf  G. Ott  M. Schmid 《Chromosoma》1986,94(5):389-394
The deoxycytidine analogue 5-azadeoxycytidine (5-aza-dC) induces differential inhibition of sister chromatid condensation when cells are treated with this substance for two replication cycles, as the subsequent staining of metaphase chromosomes with Giemsa shows. The bifilarly substituted chromatid is dramatically longer than the unifilar one. A percentage of the metaphases treated with 5-azad-C even show a complete undercondensation of the bifilarly substituted chromatid. The optimum conditions for inducing sister chromatid differentiation were determined. No method has been developed as yet to permit enhancement of the differential staining in 5-aza-dC-treated preparations. The interactions between 5-aza-dC and chromosomal DNA as well as the factors involved in the differential staining of sister chromatids are discussed.  相似文献   

20.
Summary The three-way differentiation of sister chromatids (3-way SCD) in M3 endoreduplicated chromosomes in a Bloom syndrome (BS) B-lymphoid cell line, suggested that in addition to exchanges between sister chromatids (intra-exchanges), non-sister chromatid exchanges (inter-exchanges) also occur, especially in BS high SCE cells. In BS diploid chromosomes such inter-exchanges probably get confused with intra-exchanges when total SCEs are accounted for. Bloom syndrome high SCE cells probably do not follow the same bromodeoxyuridine (BrdU) uptake pattern over three cell cycles as normal cells. The 3-way SCD in M3 endoreduplicated chromosomes can be explained on the basis of Schvartzman's second model (1979) as well as Miller's model (1976), depending on the pattern of uptake of BrdU over three cell cycles. An interference in the previous events of exchanges in the following cell cycle (i.e., cancellation of SCEs) in BS chromosomes was observed in some regions, though not in high numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号