首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
3.
Pleiotrophin (PTN) is a heparin-binding growth/differentiation inducing cytokine that shares 50% amino acid sequence identity and striking domain homology with Midkine (MK), the only other member of the Ptn/Mk developmental gene family. The Ptn gene is expressed in sites of early vascular development in embryos and in healing wounds and its constitutive expression in many human tumors is associated with an angiogenic phenotype, suggesting that PTN has an important role in angiogenesis during development and in wound repair and advanced malignancies. To directly test whether PTN is angiogenic in vivo, we injected a plasmid to express PTN into ischemic myocardium in rats. Pleiotrophin stimulated statistically significant increases in both normal appearing new capillaries and arterioles each of which had readily detectable levels of the arteriole marker, smooth muscle cell alpha-actin. Furthermore, the newly formed blood vessels were shown to interconnect with the existent coronary vascular system. The results of these studies demonstrate directly that PTN is an effective angiogenic agent in vivo able to initiate new vessel formation that is both normal in appearance and function. The data suggest that PTN signals the more "complete" new blood vessel formation through its ability to stimulate different functions in different cell types not limited to the endothelial cell.  相似文献   

4.
Astrocytes are the major source of angiotensinogen in the brain and play an important role in the brain renin-angiotensin system. Regulating brain angiotensinogen production alters blood pressure and fluid and electrolyte homeostasis. In turn, several physiological and pathological manipulations alter expression of angiotensinogen in brain. Surprisingly, little is known about the factors that regulate astrocytic expression of angiotensinogen. There is evidence that angiotensinogen production in both hepatocytes and cardiac myocytes can be positively regulated via the angiotensin type 1 receptor, but this effect has not yet been studied in astrocytes. Therefore, the aim of this project was to establish whether angiotensin II modulates angiotensinogen production in brain astrocytes. Primary astrocyte cultures, prepared from neonatal C57Bl6 mice, expressed angiotensinogen measured by immunocytochemistry and real-time PCR. Using a variety of approaches we were unable to identify angiotensin receptors on cultured astrocytes. Exposure of cultured astrocytes to angiotensin II also did not affect angiotensinogen expression. When astrocyte cultures were transduced with the angiotensin type 1A receptor, using adenoviral vectors, angiotensin II induced a robust down-regulation (91.4% ± 1.8%, p < 0.01, n = 4) of angiotensinogen gene expression. We conclude that receptors for angiotensin II are present in extremely low levels in astrocytes, and that this concurs with available data in vivo. The signaling pathways activated by the angiotensin type 1A receptor are negatively coupled to angiotensinogen expression and represent a powerful pathway for decreasing expression of this protein, potentially via signaling pathways coupled to Gα(q/11) .  相似文献   

5.
Neoplasms progress through genetic and epigenetic mutations that deregulate pathways in the malignant cell that stimulate more aggressive growth of the malignant cell itself and/or remodel the tumor microenvironment to support the developing tumor mass. The appearance of new blood vessels in malignant tumors is known as the "angiogenic switch." The angiogenic switch triggers a stage of rapid tumor growth supported by extensive tumor angiogenesis and a more aggressive tumor phenotype and its onset is a poor prognostic indicator for host survival. Identification of the factors that stimulate the angiogenic switch thus is of high importance. Pleiotrophin (PTN the protein, Ptn the gene) is an angiogenic factor and the Ptn gene has been found to be constitutively expressed in many human tumors of different cell types. These studies use a nude mouse model to test if Ptn constitutively expressed in premalignant cells is sufficient to trigger an angiogenic switch in vivo. We introduced an ectopic Ptn gene into "premalignant" SW-13 cells and analyzed the phenotype of SW-13 Ptn cell tumor implants in the flanks of nude mice. SW-13 Ptn cell subcutaneous tumor implants grew very rapidly and had a striking increase in the density of new blood vessels compared to the SW-13 cell tumor implants, suggesting that constitutive PTN signaling in the premalignant SW-13 cell implants in the nude mouse recapitulates fully the angiogenic switch. It was found also that ectopic expression of the C-terminal domain of PTN in SW-13 cell implants was equally effective in initiating an angiogenic switch as the full-length PTN whereas implants of SW-13 cells in nude mice that express the N-terminal domain of PTN grew rapidly but failed to develop tumor angiogenesis. The data suggest the possibility that mutations that activate Ptn in premalignant cells are sufficient to stimulate an angiogenic switch in vivo and, since these mutations are frequently found in human malignancies, that constitutive PTN signaling may be an important contributor to progression of human tumors. The data also suggest that the C-terminal and the N-terminal domains of PTN equally initiate switches in premalignant cells to cells of a more aggressive tumor phenotype but the separate domains of PTN signal different mechanisms and perhaps signal through activation of a separate receptor-like protein.  相似文献   

6.
A complete functional renin-angiotensin system exists in human adipose tissue, but its regulation and the effects of angiotensin II on cells from this tissue are only beginning to be understood. In this study, we examined the effects of angiotensin II on changes in lipid accumulation, specific glycerol-3-phosphate dehydrogenase activity, and the expression of five genes of the renin-angiotensin system during the adipose conversion of human primary cultured preadipocytes. Angiotensin II leads to a distinct reduction in insulin-induced differentiation, but only has a marginal effect on the adipose conversion of cells stimulated with insulin, cortisol, and isobutyl methyl xanthine. During differentiation, angiotensinogen mRNA levels rise, renin mRNA levels decline, whereas renin-binding protein and angiotensin-converting enzyme levels are unaffected. Angiotensin II downregulates angiotensinogen and renin gene expression, but it does not affect renin-binding protein and angiotensin-converting enzyme levels. Angiotensin II thus prevents the development of adipocytes in contact with high insulin levels, while not inhibiting differentiation, which is further stimulated. Therefore, angiotensin II could be a protective factor against uncontrolled expansion of adipose tissue. Further studies are needed to find out whether the effects of angiotensin II on the renin-angiotensin system are direct feedback loops or secondary to changes in the differentiation program.  相似文献   

7.
多效生长因子(pleiotrophin,PTN指蛋白,Ptn指基因)是一种可同肝素结合的分泌性的生长/分化因子,具有刺激细胞粘附、迁移、存活、生长和分化等功能.我们前期研究发现,Ptn稳定沉默可以显著降低细胞的生长及成瘤能力.为进一步了解Ptn表达沉默后小鼠基因转录谱的变化,用小鼠表达谱芯片比较了对照及Ptn沉默细胞的基因表达差异.在检测的24 000个基因中,Ptn沉默后上调2倍以上的基因有240个,下调2倍以上的基因有129个.值得引起注意的是,在Ptn沉默的MEFs细胞中,同DDK综合症相关的基因家族,schlafen(Slfn)家族的Slfn 2、Slfn 3、Slfn 4以及基质金属蛋白酶(matrix metalloproteinase,MMP)家族的Mmp 3、Mmp 10、Mmp 13表达均显著上调;而可促进内皮细胞运动,参与血管发生的基因angiomotin(Amot)表达显著下调.通过研究,获得了一系列Ptn沉默后表达变化的基因信息.  相似文献   

8.
9.
PTEN deletion leads to up-regulation of a secreted growth factor pleiotrophin   总被引:13,自引:0,他引:13  
Li G  Hu Y  Huo Y  Liu M  Freeman D  Gao J  Liu X  Wu DC  Wu H 《The Journal of biological chemistry》2006,281(16):10663-10668
Tumor suppressor gene PTEN is highly mutated in a wide variety of human tumors. To identify unknown targets or signal transduction pathways that are regulated by PTEN, microarray analysis was performed to compare the gene expression profiles of Pten null mouse embryonic fibroblasts (MEFs) cell lines and their isogenic counterparts. Expression of a heparin binding growth factor, pleiotrophin (Ptn), was found to be up-regulated in Pten-/- MEFs as well as Pten null mammary tumors. Further experiments revealed that Ptn expression is regulated by the PTEN-PI3K-AKT pathway. Knocking down the expression of Ptn by small interfering RNA resulted in the reduction of Akt and GSK-3beta phosphorylation and suppression of the growth and the tumorigenicity of Pten null MEFs. Our results suggest that PTN participates in tumorigenesis caused by PTEN loss and PTN may be a potential target for anticancer therapy, especially for those tumors with PTEN deficiencies.  相似文献   

10.
A Nakamura  H Iwao  K Fukui  S Kimura  T Tamaki  Y Abe 《Life sciences》1990,46(23):1657-1660
The present study was performed to examine the effect of angiotensin II on hepatic angiotensinogen production in adrenalectomized rats. The hepatic angiotensinogen mRNA levels in rats without adrenal glands increased 2.8-fold 4 h after the start of angiotensin II infusion. In intact rats with adrenal glands, the hepatic angiotensinogen mRNA levels increased 2.7-fold 4 h after the start. The angiotensin II infusions did not only increase angiotensinogen mRNA levels in intact rats but also increased those in adrenalectomized rats. The results suggest that the angiotensinogen response to ANG II was not dependent on adrenal glucocorticoid.  相似文献   

11.
12.
Hypertensive cardiac hypertrophy is associated with the accumulation of collagen in the myocardial interstitium. Previous studies have demonstrated that this myocardial fibrosis accounts for impaired myocardial stiffness and ventricular dysfunction. Although cardiac fibroblasts are responsible for the synthesis of fibrillar collagen, the factors that regulate collagen synthesis in cardiac fibroblasts are not fully understood. We investigated the effects of angiotensin II on cardiac collagen synthesis in cardiac fibroblasts. Cardiac fibroblasts of 10 week old spontaneously hypertensive rats and age-matched Wistar-Kyoto rats were prepared and maintained in culture medium supplemented with 10% fetal calf serum. The expression of mRNA of the renin-angiotensin system (renin, angiotensinogen, angiotensin converting enzyme) was determined by using a ribonuclease protection assay. Basal collagen synthesis in cardiac fibroblasts from spontaneously hypertensive rats was 1.6 fold greater than that in the cell of Wistar-Kyoto rats. Angiotensin II stimulated collagen synthesis in cardiac fibroblasts in a dose-dependent manner. The responsiveness of collagen production to angiotensin II was significantly enhanced in cardiac fibroblasts from spontaneously hypertensive rats (100 nM angiotensin II resulted in 185 ± 18% increase above basal levels, 185 ± 18 versus 128 ± 19% in Wistar-Kyoto rats p < 0.01). This effect was receptor-specific, because it was blocked by the competitive inhibitor saralasin and MK 954. These results indicate that collagen production was enhanced in cardiac fibroblasts from spontaneously hypertensive rats, that angiotensin II had a stimulatory effect on collagen synthesis in cardiac fibroblasts, and that cardiac fibroblasts from spontaneously hypertensive rats were hyper-responsive to stimulation by angiotensin II.Level of angiotensin and renin mRNA expressed in ventricles, and angiotensinogen mRNA expressed in fibroblasts from SHR were higher than those from WKY.These findings suggest that the cardiac renin-angiotensin system may play an important role in collagen accumulation in hypertensive cardiac hypertrophy.  相似文献   

13.
Pleiotrophin: a cytokine with diverse functions and a novel signaling pathway.   总被引:23,自引:0,他引:23  
Pleiotrophin (PTN the protein, Ptn the gene) is a 136 amino acid secreted heparin-binding cytokine that signals diverse functions, including lineage-specific differentiation of glial progenitor cells, neurite outgrowth, and angiogenesis. Pleiotrophin gene expression is found in cells in early differentiation during different development periods and upregulated in cells with an early differentiation phenotype in wound repair. The Ptn gene is a protooncogene. It is strongly expressed in different human tumor cells and expression of the Ptn gene in tumor cells in vivo accelerates growth and stimulates tumor angiogenesis. Separate independent domains have been identified in PTN to signal transformation and tumor angiogenesis. Pleiotrophin is the first ligand of any of the known transmembrane tyrosine phosphatases. Pleiotrophin inactivates the receptor protein tyrosine phosphatase (RPTP) beta/zeta. The interaction of PTN and RPTP beta/zeta increases steady-state tyrosine phosphorylation of beta-catenin. Pleiotrophin thus regulates both normal cell functions and different pathological conditions at many levels. It signals these functions through a transmembrane tyrosine phosphatase.  相似文献   

14.
Although elevated plasma prorenin levels are commonly found in diabetic patients and correlate with microvascular complications, the pathological role of these increases, if any, remains unclear. Prorenin/renin binding to the prorenin/renin receptor [(p)RR] enhances the efficiency of angiotensinogen cleavage by renin and unmasks prorenin catalytic activity. We asked whether plasma prorenin could be activated in local vascular tissue through receptor binding. Immunohistochemical staining showing localization of the (p)RR in the aorta to vascular smooth muscle cells (VSMCs). After cultured rat VSMCs were incubated with 10(-7) M inactive prorenin, cultured supernatant acquired the ability to generate ANG I from angiotensinogen, indicating that prorenin had been activated. Activated prorenin facilitated angiotensin generation in cultured VSMCs when exogenous angiotensinogen was added. Small interfering RNA (siRNA) against the (p)RR blocked this activation and subsequent angiotensin generation. Prorenin alone induced dose- and time-dependent increases in mRNA and protein for the profibrotic molecule plasminogen activator inhibitor (PAI)-1, effects that were blocked by siRNA, but not by the ANG II receptor antagonist saralasin. When inactive prorenin and angiotensinogen were incubated with cells, PAI-1 mRNA increased a striking 54-fold, 8-fold higher than the increase seen with prorenin alone. PAI-1 protein increased 2.75-fold. These effects were blocked by treatment with siRNA + saralasin. We conclude that prorenin at high concentration binds the (p)RR on VSMCs and is activated. This activation leads to increased expression of PAI-1 via ANG II-independent and -dependent mechanisms. These data provide a mechanism by which elevated prorenin levels in diabetes may contribute to the progression of fibrotic disease.  相似文献   

15.
16.
Overfeeding of rodents leads to increased local formation of angiotensin II due to increased secretion of angiotensinogen from adipocytes. Whereas angiotensin II promotes adipocyte growth and preadipocyte recruitment, increased secretion of angiotensinogen from adipocytes also directly contributes to the close relationship between adipose-tissue mass and blood pressure in mice. In contrast, angiotensin II acts as an antiadipogenic substance in human adipose tissue, and the total increase in adipose-tissue mass may be more important in determining human plasma angiotensinogen levels than changes within the single adipocyte. However, as increased local formation of angiotensin II in adipose tissue may be increased especially in obese hypertensive subjects, a contribution of the adipose-tissue renin-angiotensin system to the development of insulin resistance and hypertension is conceivable in humans, but not yet proven. Insulin resistance may be aggravated by the inhibition of preadipocyte recruitment, which results in the redistribution of triglycerides to the liver and skeletal muscle, and blood pressure may be influenced by local formation of angiotensin II in perivascular adipose tissue. Thus, although the mechanisms are still speculative, the beneficial effects of ACE-inhibition and angiotensin-receptor blockade on the development of type 2 diabetes in large clinical trials suggest a pathophysiological role of the adipose-tissue renin-angiotensin system in the metabolic syndrome.  相似文献   

17.
To examine the effects of acute stimulation on the peripheral and central renin-angiotensin system, simultaneous sampling of blood and cerebrospinal fluid (CSF) for measurements of plasma renin activity (PRA), plasma angiotensin I-immunoreactivity (PAng I-ir), plasma angiotensin II-immunoreactivity (PAng II-ir), plasma angiotensinogen and cerebrospinal fluid angiotensin II-ir (CSF Ang II-ir) and CSF angiotensinogen was carried out following intravenous injection of furosemide (5 mg/kg) in conscious dogs. Administration of furosemide induced marked increases in PRA, Ang I-ir, PAng II-ir and CSF Ang II-ir, however, neither plasma nor CSF angiotensinogen was changed. Furthermore, a relatively large dose (20 mg/kg/min) of intravenously infused synthetic Ang II for 20 min produced a five-fold increase in PAng II-ir compared with no significant increase in CSF Ang II-ir. In spite of significant suppression of PRA and PAng I-ir, there were no significant changes in either plasma or CSF angiotensinogen. These results primarily suggest that the peripheral and the brain renin-angiotensin systems may be linked and that acute changes in the peripheral renin-angiotensin system do not alter either plasma or CSF angiotensinogen.  相似文献   

18.
Pleiotrophin (PTN the protein, Ptn the gene) signals downstream targets through inactivation of its receptor, the transmembrane receptor protein tyrosine phosphatase (RPTP)beta/zeta, disrupting the balanced activity of RPTPbeta/zeta and the activity of a constitutively active tyrosine kinase. As a consequence of the inactivation of RPTPbeta/zeta, PTN stimulates a sharp increase in the levels of tyrosine phosphorylation of the substrates of RPTPbeta/zeta in PTN-stimulated cells. We now report that the Src family member Fyn interacts with the intracellular domain of RPTPbeta/zeta in a yeast two-hybrid system. We further demonstrate that Fyn is a substrate of RPTPbeta/zeta, and that tyrosine phosphorylation of Fyn is sharply increased in PTN-stimulated cells. In previous studies, we demonstrated that beta-catenin and beta-adducin are targets of the PTN/RPTPbeta/zeta-signaling pathway and defined the mechanisms through which tyrosine phosphorylation of beta-catenin and beta-adducin disrupts cytoskeletal protein complexes. We conclude that Fyn is a downstream target of the PTN/RPTPbeta/zeta-signaling pathway and suggest that PTN coordinately regulates tyrosine phosphorylation of beta-catenin, beta-adducin, and Fyn through the PTN/RPTPbeta/zeta-signaling pathway and that together Fyn, beta-adducin, and beta-catenin may be effectors of the previously described PTN-stimulated disruption of cytoskeletal stability, increased cell plasticity, and loss of cell-cell adhesion that are characteristic of PTN-stimulated cells and a feature of many human malignant cells in which mutations have established constitutive expression of the Ptn gene.  相似文献   

19.
Angiotensinogen is cleaved by renin and angiotensin-converting enzyme to liberate the potent vasocontrictor peptide angiotensin II. We have recently identified a cis-acting genetic lesion associated with high levels of angiotensinogen mRNA in the testis and salivary gland of Swiss mice. To determine the molecular basis of this mutation, the Swiss angiotensinogen gene was cloned, and its structure was compared to that from a low-expressing strain (BALB/c). I show that a retrovirus-like element belonging to the intracisternal A-particle gene family has been inserted 9 kb upstream from the cap site of the Swiss angiotensinogen gene. This intracisternal A-particle, named IAP-Agt, segregated concordantly with angiotensinogen expression phenotypes in CXB recombinant inbred mice. However, genomic Southern analysis showed that IAP-Agt was present in some, but not all, inbred laboratory mouse strains displaying high levels of angiotensinogen gene expression. On the basis of this evolutionary evidence, it is unlikely that IAP-Agt is the cause of the angiotensinogen mutation. It is intriguing that Ren-2, the duplicated mouse renin gene, is expressed to high levels in the male salivary gland and also contains a transposed intracisternal A-particle genome.  相似文献   

20.
We generated transgenic mice with two P1 artificial chromosomes, each containing the human renin (HREN) gene and extending to -35 and -75 kilobase pairs, respectively. HREN protein production was restricted to juxtaglomerular cells of the kidney, and its expression was tightly regulated by angiotensin II and sodium. The magnitude of the up- and down-regulation in HREN mRNA caused by the stimuli tested was identical to the endogenous renin gene, suggesting tight physiological regulation. P1 artificial chromosome mice were mated with transgenic mice overexpressing human angiotensinogen to determine if there was a chronic compensatory down-regulation of the transgene. Despite a 3-fold down-regulation of HREN mRNA, plasma angiotensin II and blood pressure was modestly elevated in the double transgenic mice. Nevertheless, this elevation was significantly less than a different double transgenic model containing a poorly regulated HREN transgene. The increase in blood pressure, despite the decrease in HREN mRNA, suggests that the HREN gene can partially, but not completely, compensate for excess circulating angiotensinogen. These data suggest the possibility that increases in circulating or tissue angiotensinogen may cause an increase in blood pressure in humans, even in the presence of a functionally active servo-mechanism to down-regulate HREN expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号