首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
P Bull  L Yanez  F Nervi 《Mutation research》1987,187(3):113-117
Chilean home-made and commercial wines were analyzed for the presence of mutagenic substances using the Salmonella mutagenicity test with preincubation. Strains TA98 and TA100 were used in the absence and in the presence of S9 mix. 90% of red wines from a total of 30 samples and 54% of white wines from a total of 22 were found to be mutagenic. In all cases, S9 mix did not affect the mutagenicity of the samples. At least in one case, more than one mutagen was present, since the mutagenicity with TA98 could be selectively inactivated without affecting that with TA100. This study supports the hypothesis that wine consumption may be an important risk factor for upper gastrointestinal cancer, particularly for adenocarcinoma of the stomach, which is highly prevalent in Chile.  相似文献   

2.
2-Amino-alpha-carboline [26148-68-5] which was isolated from a pyrolysate of soybean globulin and which was mutagenic to Salmonella typhimurium in the presence of a rat-liver microsomal fraction (S9 mix), was converted into non-mutagenic 2-hydroxy-alpha-carboline by treatment with nitrite in acidic conditions. However, on prolonged treatment with nitrite and acid, 2-hydroxy-alpha-carboline was further converted into a new mutagen which did not require S9 mix for exhibition of the mutagenicity. This direct-acting mutagen was found to be 2-hydroxy-3-nitroso-alpha-carboline by mass and proton magnetic resonance spectroscopies.  相似文献   

3.
The mutagenicity of nitrosopyrrolidine (NPYR) and its derivatives was determined by use of the Ames Salmonella assay. A clear specificity to revert the missense stain of TA1535 and a requirement for the phenobarbital-induced rat-liver activation system (S9 mix) were noted. 3,4-Dichloronitrosopyrrolidine was more mutagenic than NPYR, whereas 3-hydroxynitrosopyrrolidine was weakly mutagenic. The carcinogenic nitroso-3-pyrrolidine was not mutagenic under the test conditions. The noncarcinogenic derivatives (2,5-dimethylnitrosopyrrolidine, nitrosoproline and 4-hydroxynitrosoproline) were not mutagenic. Liquid preincubation assays were not any more effective than the pour-plate assays. Selected derivatives of NPYR were tested in the Escherichia coli K-12 (343/113) assay A specificity to revert the missense mutation at the arg locus and a dependence on phenobarbital-induced rat-liver S9 mix were noted with NPYR and its derivatives. 3,4-Dibromonitrosopyrrolidine, which was not mutagenic in Salmonella, was effective in E. coli, and the weakly carcinogenic NPRL was a weak mutagen resulting in a 2-fold enhancement in the E. coli arginine reversion assay.  相似文献   

4.
Norharman, abundantly present in cigarette smoke and cooked foods, is not mutagenic to Salmonella typhimurium strains. However, norharman shows mutagenicity to S. typhimurium TA98 and YG1024 in the presence of S9 mix when coexisting with aromatic amines, including aniline, o- and m-toluidines. We previously reported that the mutagenicity from norharman and aniline in the presence of S9 mix was due to the formation of a mutagenic compound, 9-(4'-aminophenyl)-9H-pyrido[3,4-b]indole (aminophenylnorharman). In the present study, we analyzed the mutagens produced by norharman with o- or m-toluidine in the presence of S9 mix. When norharman and o-toluidine were reacted at 37 degrees C for 20 min, two mutagenic compounds, which were mutagenic with and without S9 mix, respectively, were produced, and these were isolated by HPLC. The former mutagen was deduced to be 9-(4'-amino-3'-methylphenyl)-9H-pyrido[3,4-b]indole (amino-3'-methylphenylnorharman) on the basis of various spectral data, and this new heterocyclic amine was confirmed by its chemical synthesis. The latter mutagen was identified to be the hydroxyamino derivative. Amino-3'-methylphenylnorharman induced 41,000 revertants of TA98, and 698,000 revertants of YG1024 per microg with S9 mix. Formation of the same DNA adducts was observed in YG1024 when amino-3'-methylphenylnorharman or a mixture of norharman plus o-toluidine was incubated with S9 mix. These observations suggest that norharman reacts with o-toluidine in the presence of S9 mix to produce amino-3'-methylphenylnorharman, and this compound is metabolically activated to yield its hydroxyamino derivative. After activation by O-acetyltransferase, it might bind to DNA and exert mutagenicity in S. typhimurium TA98 and YG1024. When norharman and m-toluidine were reacted in the presence of S9 mix, 9-(4'-amino-2'-methylphenyl)-9H-pyrido[3,4-b]indole (amino-2'-methylphenylnorharman) was identified as a mutagen. Thus, the mutagenicity of norharman with m-toluidine may follow a mechanism similar to that with o-toluidine.  相似文献   

5.
To identify the major mutagen in pyroligneous acid (PA), 10 wood and 10 bamboo pyroligneous acids were examined using the Ames test in Salmonella typhimurium strains TA100 and TA98. Subsequently, the mutagenic dicarbonyl compounds (DCs), glyoxal, methylglyoxal (MG), and diacetyl in PA were quantified using high-performance liquid chromatography, and the mutagenic contribution ratios for each DC were calculated relative to the mutagenicity of PA. Eighteen samples were positive for mutagens and showed the strongest mutagenicity in TA100 in the absence of S9 mix. MG had the highest mutagenic contribution ratio, and its presence was strongly correlated with the specific mutagenicity of PA. These data indicate that MG is the major mutagen in PA.  相似文献   

6.
Sediments in estuaries are of important environmental concern because they may act as pollution sinks and sources to the overlying water body. These sediments can be accumulated by benthic organisms. This study assessed the mutagenic potential of sediment extracts from the Yangtze River estuary by using the Ames fluctuation assay with the Salmonella typhimurium his (−) strain TA98 (frameshift mutagen indicator) and TA100 (baseshift mutagen indicator). Most of the sediment samples were mutagenic to the strain TA98, regardless of the presence or absence of exogenous metabolic activation (S9 induction by β-naphthoflavone/phenobarbital). However, none of the samples were mutagenic to the strain TA100. Thus, the mutagenicity pattern was mainly frameshift mutation, and the responsible toxicants were both direct (without S9 mix) and indirect (with S9 mix) mutagens. The mutagenicity of the sediment extracts increased when S9 was added. Chemical analysis showed a poor correlation between the content of priority polycyclic aromatic hydrocarbons and the detected mutagenicity in each sample. The concept of effect-directed analysis was used to analyze possible compounds responsible for the detected mutagenic effects. With regard to the mutagenicity of sediment fractions, non-polar compounds as well as weakly and moderately polar compounds played a main role. Further investigations should be conducted to identify the responsible components.  相似文献   

7.
Contrary to findings published up to now, allyl chloride, a well known directly acting mutagen for Salmonella typhimurium, is efficiently activated by rat-liver homogenate (S9 mix) under non-standard mutagenicity testing conditions. Its indirect, S9-mediated mutagenic activity is greatly enhanced when longer than standard preincubation times are applied. The indirect mutagenicity of allyl chloride, thus revealed, greatly exceeds its direct mutagenic activity. Obviously, standard mutagenicity testing conditions cannot be regarded as reliable tools for the evaluation of the full genotoxic potential of allyl chloride and, possibly, of other related compounds.  相似文献   

8.
The mutagenicity of fenitrothion was determined in strains of Salmonella typhimurium and Escherichia coli. Fenitrothion was found to be non-mutagenic in Salmonella typhimurium strains of TA98, TA1535 and TA1537 and in Escherichia coli WP2uvrA both with and without S9 mix, while weak mutagenicity was observed only in Salmonella typhimurium TA100 and enhanced by the addition of S9 mix. The mutagenicity observed in the TA100 strain was not expressed in a nitroreductase-deficient strain, TA100 NR, and decreased in a transacetylase-deficient strain, TA100 1,8-DNP6. The mutagenicity of fenitrothion was also examined by a gene mutation assay using the gene for hypoxanthine-guanine phosphoribosyltransferase (hgprt) in V79 Chinese hamster lung cells. Fenitrothion did not induce any increment of 6-thioguanine-resistant mutant cells at doses ranging from 0.01 to 0.3 mM regardless of the presence or absence of S9 mix. These results suggest that reduction of fenitrothion by a bacterial nitroreductase of TA100 to an active form is essential for the expression of the mutagenicity of fenitrothion in TA100 and that a bacterial transacetylase of TA100 also has an important role in the process of mutagenic activation.  相似文献   

9.
alpha-Bisabolol (BISA) is a sesquiterpene alcohol found in the oils of chamomile (Matricaria chamomilla) and other plants. BISA has been widely used in dermatological and cosmetic formulations. This study was undertaken to investigate the mutagenicity and antimutagenicity of BISA in the Salmonella/microsome assay. Mutagenicity of BISA was evaluated with TA100, TA98, TA97a and TA1535 Salmonella typhimurium strains, without and with addition of S9 mixture. No increase in the number of his+ revertant colonies over the negative (solvent) control values was observed with any of the four tester strains. In the antimutagenicity assays, BISA was tested up to the highest nontoxic dose (i.e. 50 and 150 microg/plate, with and without S9 mix, respectively) against direct-acting (sodium azide, SA; 4-nitroquinoline-N-oxide, 4-NQNO; 2-nitrofluorene, 2-NF; and nitro-o-phenylenediamine, NPD) as well as indirect-acting (cyclophosphamide, CP; benzo[a]pyrene, B[a]P; aflatoxin B1, AFB1; 2-aminoanthracene, 2-AA; and 2-aminofluorene, 2-AF) mutagens. BISA did not alter mutagenic activity of SA and of NPD, and showed only a weak inhibitory effect on the mutagenicity induced by 4-NQNO and 2-NF. The mutagenic effects of AFB1, CP, B[a]P, 2-AA and 2-AF, on the other hand, were all markedly and dose-dependently reduced by BISA. It was also found that BISA inhibited pentoxyresorufin-o-depentylase (PROD, IC50 2.76 microM) and ethoxyresorufin-o-deethylase (EROD, 33.67 microM), which are markers for cytochromes CYP2B1 and 1A1 in rat liver microsomes. Since CYP2B1 converts AFB1 and CP into mutagenic metabolites, and CYP1A1 activates B[a]P, 2-AA and 2-AF, results suggest that BISA-induced antimutagenicity could be mediated by an inhibitory effect on the metabolic activation of these promutagens.  相似文献   

10.
Diethylstilbestrol was tested for mutagenicity with his- S. typhimurium strains under 10 different matabolic situations (no exogenous metabolizing system; S9 mix from liver homogenate of rats induced with Aroclor 1254, with or without inhibition of epoxide hydratase; liver and/or kidney S9 mix from control or hamsters treated with Aroclor 1254; horse-radish peroxidase + H2O2). Under none of these conditions did diethylstilbestrol give any indication of a mutagenic effect. Furthermore, 11 metabolites and other derivatives of diethylstilbestrol, 2 of them potent inducers of sister-chromatid exchange in cultured fibroblasts, were not mutagenic with any of the 4 tester strains (S. typhimurium TA100, TA98, TA1537, TA1535) in the presence or absence of S9 mix from liver homogenate of rats induced with Aroclor 1254. Thus, one of the few known human carcinogens is very resistant to detection by the mammalian enzyme-mediated Salmonella typhimurium mutagenicity test (Ames test). This is especially remarkable since the metabolizing systems used included: (1) some of very high metabolic activity (S9 mix from liver homogenate of rats and hamsters induced with Aroclor 1254); (2) metabolizing systems from organs susceptible to the carcinogenic activity of diethylstilbestrol (hamster kidney); as well as (3) a mixture of (1) and (2) in case both activities are required for the carcinogenic effect in the whole animal.  相似文献   

11.
Fourteen new quinoline derivatives were synthesised and their mutagenicity compared in the Ames test using Salmonella typhimurium TA100 as indicator strain with and without (Aroclor-induced) S9 mix. None of the synthesised quinoline derivatives had to our knowledge been examined before in the Ames test. Quinoline and the monohydroxyquinolines were included as reference compounds. Three of the new derivatives, i.e., quinoline 7,8-oxide, N-methyl-quinoline 5,6-oxide and trans-quinoline-5,6,7,8-dioxide appeared to be mutagenic. Quinoline 7,8-oxide was positive only in the presence of S9 mix, the specific mutagenicity amounting to 2498 +/- 96 and 1289 +/- 120 revertants per mumole with 20 and 10% S9 in the mix, respectively. Both N-methyl-quinoline 5,6-oxide and trans-quinoline-5,6,7,8-dioxide were weakly positive, the former only in the presence of the S9 mix, and the latter irrespective of the presence of S9 mix, the specific mutagenicity amounting to 134 +/- 6 and 123 +/- 10 revertants per mumole, respectively. The mutagenic potency of quinoline 7,8-oxide was of the same order as that of quinoline itself and was distinctly lower than that of 8-hydroxyquinoline. Inconclusive results were obtained with trans-7,8-dihydroxy-7,8-dihydroquinoline, 5,6-dihydroxy-7,8-epoxy-5,6,7,8-tetrahydroquinoline and 8-hydroxyquinoline-N-oxide; if these compounds are mutagenic their mutagenic potency would be at least 20-30 times lower than that of the parent compounds. None of the other chemically synthesised quinoline derivatives showed mutagenic activity with TA100 either in the presence or in the absence of S9 mix. The results obtained with the reference compounds were in accordance with literature data.  相似文献   

12.
We compared several phenylenediamines (4-nitro-o-phenylenediamine, NOP; 2-nitro-p-phenylenediamine, NPD; o-phenylenediamine, OPD; p-phenylenediamine, PPD; m-phenylenediamine, MPD) and aniline (ANL) for mutagenicity to Salmonella directly and following activation by plant and mammalian hepatic S9 using plate incorporation and preincubation protocols. In addition, we assayed each chemical for activation by intact plant cells using the plant cell/microbe coincubation protocol. At the concentrations tested, NOP, NPD, OPD, MPD and ANL were active in one or more assays. NPD, OPD and MPD were activated by mammalian hepatic S9 in one or more assay and each was activated by plant S9 or intact plant cells. ANL was mutagenic only in the presence of plant S9. PPD was not active under any of the test conditions.  相似文献   

13.
In plate assays in the presence of S. typhimurium TA100 and various amounts of liver 9000 X g supernatant (S9) from either untreated, phenobarbitone- (PB) or Aroclor-treated rats, the S9 concentration required for optimal mutagenicity of aflatoxin B1 (AFB) depended both on the source of S9 and on the concentration of the test compound. In these assays, the water-soluble procarcinogen, dimethylnitrosamine (DMN) was mutagenic in S. typhimurium TA1530 only in the presence of a 35-fold higher concentration of liver S9 from PB-treated rats than that required for AFB, a lipophilic compound. In liquid assays, a biphasic relationship was observed in the mutagenicities in S. typhimurium TA100 of benzo[a]pyrene (BP) and AFB and the concentration of liver S9. For optimal mutagenesis of BP, the concentration of liver S9 from rats treated with methylcholanthrene (MC) was 4.4% (v/v); for AFB it was 2.2% (v/v) liver S9 from either Aroclor-treated or untreated rats. At higher concentrations of S9 the mutagenicity of BP and of AFB was related inversely to the amount of S9 per assay. The effect of Aroclor treatment on the microsomemediated mutagenicity of AFB was assay-dependent: in the liquid assay, AFB mutagenicity was decreased, whereas in the plate assay it did not change or was increased. As virtually no bacteria-bound microsomes were detected by electron microscopy, after the bacteria had been incubated in a medium containing 1-34% (v/v) MC-treated rat-liver S9, it is concluded that, in mutagenicity assays, mutagenic metabolites generated by microsomal enzymes from certain pro-carcinogens have to diffuse through the assay medium before reaching the bacteria. Thus the mutagenicity of BP was dependent on both the concentration of rat-liver microsomes and that of total cytosolic proteins and other soluble nucleophiles such as glutathione. At a concentration of 4.4% (v/v) liver S9, the mutagenicity of BP was about 3.6 times higher than in assays containing a 4-fold higher concentration of cytosolic fraction. Studies on the glutathione-dependent reduction of BP mutagenicity in plate assays has shown that, in the presence of liver S9 concentrations greater than that required for optimal mutagenicity, the reduction in mutagenicity was related directly to the concentration of liver S9. Thus, in the Salmonella/microsome assay, when the concentration of rat-liver S9 was increased over and above the amount required for the optimal mutagenicity of BP, the mutagenic metabolites of BP were inactivated (by being trapped with cytosolic nucleophiles and/or by enzymic conjugation with glutathione); this effect increased more rapidly than their rate of formation. The concentration of liver S9 for optimal mutagenicity of test compounds requiring activation catalyzed by mono-oxygenases seems, therefore, to be related to the departure from linearity of the relationship between the rate of formation of mutagenic metabolites and the concentration of liver S9.  相似文献   

14.
Recently, mutagenic activity on several strains of Salmonella typhimurium has been found in many heat-processed foodstuffs. The previously reported direct-acting mutagenic activity of coffee in Salmonella typhimurium TA100 (Ames assay) was confirmed in our study. In addition to TA100, a mutagenic effect of coffee was also found by using the newly developed strain TA102. The mutagenic activity was abolished by the addition of rat-liver homogenate. 10% S9 mix completely eliminated the mutagenic activity of 30 mg of coffee per plate. The addition of reduced glutathione to active S9 further decreased the mutagenic activity and also reduced the mutagenicity together with inactivated S9. The compound or compounds responsible for this inactivation are heat-labile and seem to be located in the cytosol fraction of the S9. Part of the mutagenicity of coffee was also lost spontaneously upon incubation at temperatures between 0 degrees and 50 degrees C. The loss of activity was dependent on temperature, being more pronounced at 50 degrees C compared to 0 degrees C (at 50 degrees C approximately 50% of the mutagenic activity was lost after 6 h). As anaerobic conditions prevented this loss of mutagenicity almost totally, oxidative processes are probably responsible for the inactivation. The stability of the mutagen was not influenced by incubation at low pH values (pH 1-3), with or without the addition of pepsinogen. The mutagenic properties of methylglyoxal, which to some extent could be responsible for the mutagenic activity of coffee, were compared with those of coffee. Methylglyoxal was strongly mutagenic towards Salmonella typhimurium TA100 and TA102. Its mutagenic activity was partially inactivated by the addition of 10% S9. Glyoxalase I and II together with reduced glutathione abolished the mutagenic activity of methylglyoxal but reduced the mutagenicity of coffee by only 80%. Since these enzymes occur in mammalian cells, the mutagenic compound(s) of coffee could also be degraded in vivo. This conclusion is supported by the fact that a long-term carcinogenicity study with rats was negative. These results clearly demonstrate that the effects observed in vitro do not necessarily also occur in vivo, but that in vitro experiments may contribute to the understanding of fundamental mechanisms of chemical carcinogenesis.  相似文献   

15.
The mutagenic activities of the chlorinated butenoic acids recently identified in chlorinated drinking waters were determined by the Salmonella microsome assay and by the SOS chromotest. The Salmonella typhimurium tester strains TA97, TA98 and TA100 were used without and with S9 mix. In the SOS chromotest Escherichia coli PQ37 was used as an indicator organism with and without metabolic activation. In addition, the extremely potent Ames test mutagen (Z)-2-chloro-3-(dichloromethyl)-4-oxobutenoic acid (MX, in the open form), was studied by the micronucleus test with mice using intraperitoneal treatment. The results of the Salmonella assay and the SOS chromotest showed that MX was by far the most potent mutagen of the compounds tested. Mutations were also induced by the reduced form of MX, (Z)-2-chloro-3-(dichloromethyl)-4-hydroxybut-2-enoic acid (red-MX), and by the geometric isomer of MX, (E)-2-chloro-3-(dichloromethyl)-4-oxobutenoic acid (EMX). However, since the solution of EMX contained approximately 5% MX, most of its activity might be attributable to MX. The oxidised form of EMX, (E)-2-chloro-3-(dichloromethyl)-butenedioic acid (ox-EMX), was marginally active in the SOS chromotest only. All these compounds were directly acting mutagens and in the presence of metabolic activation (S9 mix) they did not generate mutagenicity. The oxidised form of MX, (Z)-2-chloro-3-(dichloromethyl)-butenedioic acid (ox-MX), was not mutagenic at the dose levels tested. MX did not induce micronuclei in the bone marrow of mice.  相似文献   

16.
Coffee prepared in the usual way for drinking contains a substance(s) that is mutagenic to Salmonella typhimurium TA100 without mammalian microsomal enzymes. One cup of coffee (200 ml) contains mutagen(s) inducing 1.4-4.6 X 10(5) revertants under standard conditions. Instant coffee too is mutagenic to TA100 and one cup of instant coffee prepared from 1 g of coffee powder and 200 ml of water induced 5.6-5.8 X 10(4) revertants of TA100. Caffeine-free instant coffee also has similar mutagenicity. Addition of microsomal enzymes abolished the mutagenicity. Black tea, green tea and Japanese roasted tea were also mutagenic to TA100 without S9 mix and one cup of these teas prepared in the ordinary way produced 1.7-3.8 X 10(4) revertants of TA100. Black tea and green tea were also mutagenic to TA98 in the presence of S9 mix after treatment with a glycosidase from Aspergillus niger, hesperidinase. This type of mutagen in one cup of black tea induced 2.4 X 10(5) revertants of TA98.  相似文献   

17.
Four nitrated aromatic amines (2-nitro-p-phenylenediamine [2NPD], 3-nitro-o-phenylenediamine [3NPD], 4-nitro-o-phenylenediamine [4NPD] and 4,4'-dinitro-2-biphenylamine [DNBA]) are direct-acting mutagens in Salmonella typhimurium strain TA100. These compounds were tested further using the Xenometrix strains of S. typhimurium: TA7001, TA7002, TA7003, TA7004, TA7005, and TA7006, with and without S9 mix in the plate incorporation assay. The direct-acting mutagenicity of 2NPD, 4NPD, and DNBA was detected with TA7002, TA7004 and TA7005. 2NPD and DNBA showed some activity in TA7006; DNBA also showed some activity in TA7003. Mutagenicity was generally decreased in these strains when S9 was added. 3NPD was mutagenic in TA7004 without S9 and in TA7005 with and without S9. These data suggest that 2NPD, 4NPD and DNBA induced TA-->AT and CG-->AT transversions as well as GC-->AT transitions in the his gene. 3NPD induced CG-->AT transversions and GC-->AT transitions. 2NPD and DNBA also induced a small portion of CG-->GC transversions.  相似文献   

18.
Urinary mutagenic activity detected by the bacterial fluctuation assay, using Salmonella typhimurium TA98 and Escherichia coli WP2 uvrA with and without metabolic activation (S9 mix), was studied in a group of 21 workers exposed to inorganic lead and a control group of 22 non-occupationally exposed subjects. Occupational exposure to inorganic lead had no effect on urinary mutagenicity in the strains considered, with or without metabolic activation. In smokers (exposed and non-exposed), urinary mutagenic activity appeared to increase compared to non-smokers (exposed and non-exposed), only with Salmonella typhimurium TA98 in the presence of S9 mix.  相似文献   

19.
The nitrosating agent tetranitromethane (TNM) and the nitrosation product 3-nitro-L-tyrosine (NT) were tested for mutagenic activity in the Salmonella/mammalian microsome assay. TNM showed strong genotoxic activity: it was mutagenic in all tester strains used (TA97, TA98, TA100, and TA102). The maximum mutagenic activity was reached between 16 and 32 micrograms/plate using the standard plate test; higher amounts led to distinct bactericidal effects. The mutagenicity was independent of an in vitro activation system. In the preincubation assay an increased bactericidal effect was observed. In contrast to TNM, NT, the nitrosation product, was non-mutagenic and non-toxic in the standard plate test and with the preincubation method up to 5000 micrograms/plate with and without S9 mix and with all tester strains used. Although TNM is a strong direct-acting mutagen, its nitrosating effect on proteins does lead to nongenotoxic nitro products of tyrosine in proteins.  相似文献   

20.
《Mutation Research Letters》1993,301(4):213-222
Alkylhydrazines are important carcinogens. However, they show generally only weak mutagenicity and the activities reported from different laboratories are contradictory. We have developed a sensitive method to detect the mutagenicity of alkylhydrazines. The method is based on a modified preculturing procedures in the Ames test, the emphasis in the modification being a change in the growth period of tester strains. The optimal growth periods were found to be 11 h in Salmonella typhimurium TA100 and 5 h in Salmonella typhimurium TA102. We tested the mutagenic activity of 12 alkylhydrazines; 1,2-dimetehylhydrazine, 1,2-diethylhydrazine, 1,2-dipropylhydrazine. 1,2-dibutylhydrazine, 1,1-dimethylhydrazine, 1,1-diethylhydrazine, 1,1-dipropylhydrazine, 1,1-dibutylhydrazine, methylhydrazine, ethylhydrazine, propylhydrazine, and butylhdyrazine. All 12 alkylhydrazines were clearly mutagenic in Salmonella typhimurium TA102, and 10 hydrazines were mutagenic in Salmonella typhimurium TA100, both in the absence of S9 mix. The mutagenicity was inhibited by the addition of S9 mix or bovine serum albumin. This suggests deactivation of the mutagens by proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号