首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Nuclear intermediate filaments (IFs) are made from fibrous proteins termed lamins that assemble, in association with several transmembrane proteins of the inner nuclear membrane and an unknown number of chromatin proteins, into a filamentous scaffold called the nuclear lamina. In man, three types of lamins with significant sequence identity, i.e. lamin A/C, lamin B1 and B2, are expressed. The molecular characteristics of the filaments they form and the details of the assembly mechanism are still largely unknown. Here we report the crystal structure of the coiled-coil dimer from the second half of coil 2 from human lamin A at 2.2A resolution. Comparison to the recently solved structure of the homologous segment of human vimentin reveals a similar overall structure but a different distribution of charged residues and a different pattern of intra- and interhelical salt bridges. These features may explain, at least in part, the differences observed between the lamin and vimentin assembly pathways. Employing a modeled lamin A coil 1A dimer, we propose that the head-to-tail association of two lamin dimers involves strong electrostatic attractions of distinct clusters of negative charge located on the opposite ends of the rod domain with arginine clusters in the head domain and the first segment of the tail domain. Moreover, lamin A mutations, including several in coil 2B, have been associated with human laminopathies. Based on our data most of these mutations are unlikely to alter the structure of the dimer but may affect essential molecular interactions occurring in later stages of filament assembly and lamina formation.  相似文献   

2.
The elementary building block of all intermediate filaments (IFs) is a dimer featuring a central α-helical rod domain flanked by the N- and C-terminal end domains. In nuclear IF proteins (lamins), the rod domain consists of two coiled-coil segments, coil1 and coil2, that are connected by a short non-helical linker. Coil1 and the C-terminal part of coil2 contain the two highly conserved IF consensus motifs involved in the longitudinal assembly of dimers. The previously solved crystal structure of a lamin A fragment (residues 305-387) corresponding to the second half of coil2 has yielded a parallel left-handed coiled coil. Here, we present the crystal structure and solution properties of another human lamin A fragment (residues 328-398), which is largely overlapping with fragment 305-387 but harbors a short segment of the tail domain. Unexpectedly, no parallel coiled coil forms within the crystal. Instead, the α-helices are arranged such that two anti-parallel coiled-coil interfaces are formed. The most significant interface has a right-handed geometry, which is accounted for by a characteristic 15-residue repeat pattern that overlays with the canonical heptad repeat pattern. The second interface is a left-handed anti-parallel coiled coil based on the predicted heptad repeat pattern. In solution, the fragment reveals only a weak dimerization propensity. We speculate that the C-terminus of coil2 might unzip, thereby allowing for a right-handed coiled-coil interface to form between two laterally aligned dimers. Such an interface might co-exist with a heterotetrameric left-handed coiled-coil assembly, which is expected to be responsible for the longitudinal ACN contact.  相似文献   

3.
Nuclear lamins like cytoplasmic intermediate filament proteins exhibit a characteristic tripartite domain structure with a segmented alpha-helical rod domain flanked by an N-terminal head and a C-terminal tail domain. To examine the influence of the head and tail domains on the structure and assembly properties of nuclear lamins, we have engineered "headless," "tailless," and "rod" chicken lamin B2 cDNAs and expressed them in Escherichia coli. A full-length chicken lamin A cDNA was also expressed in E. coli, and the recombinant protein compared with the structure and assembly properties of full-length chicken lamin B2 (E. Heitlinger et al. (1991) J. Cell Biol. 113, 485-495). As with lamin B2, at their first level of structural organization, lamin A and the headless lamin B2 formed myosin-like dimers consisting of a 51- to 52-nm-long tail flanked by two globular heads at one end. Similarly, the tailless and rod lamin B2 fragments formed tropomyosin-like dimers consisting of a 51 to 52-nm-long rod. In contrast to the lateral mode of association of cytoplasmic IF dimers into four-chain tetramers, at their second level of structural organization, lamin A dimers, just as lamin B2 dimers (E. Heitlinger et al. (1991) J. Cell Biol. 113, 485-495), associated longitudinally to form polar head-to-tail polymers. Whereas dimers made of the truncated B2 headless and rod lamins had lost their propensity to associate head-to-tail, tailless lamin B2 dimers revealed an enhanced head-to-tail association. Finally, at their third level of structural organization, rather than assembling into stable 10-nm filaments, both lamin A and the three truncated B2 lamins formed paracrystalline arrays exhibiting distinct transverse banding patterns with axial repeats of either 24 or 48-49 nm depending on the species.  相似文献   

4.
The lamins of the tunicate Ciona intestinalis and the nematode Caenorhabditis elegans show unusual sequence features when compared to the more than 35 metazoan lamin sequences currently known. We therefore analyzed the in vitro assembly of these two lamins by electron microscopy using chicken lamin B2 as a control. While lamin dimers usually appear as a rod carrying two globules at one end, these globules are absent from Ciona lamin, which lacks the central 105-residue region of the tail domain. The deletion of 14 residues or two heptads from the coiled coil rod domain of the single C.elegans lamin results in a 1.5-nm shortening of the dimer rod. Similarly, the paracrystals assembled from the C.elegans lamin exhibit a 3.1-nm reduction of the true axial repeat compared to that of chicken lamin B2 paracrystals. We speculate that the banding pattern in the C.elegans lamin paracrystals arises from a relative stagger between dimers and/or a positioning of the globular tail domain relative to the central rod that is distinct from that observed in chicken lamin B2 paracrystals. Here we show that a nuclear lamin can assemble in vitro into 10-nm intermediate filaments (IFs). C.elegans lamin in low ionic strength Tris-buffers at a pH of 7.2-7.4 provides a stable population of lamin IFs. Some implications of this filament formation are discussed.  相似文献   

5.
Half-minilamins, representing amino- and carboxy-terminal fragments of human lamins A, B1 and B2 with a truncated central rod domain, were investigated for their ability to form distinct head-to-tail-type dimer complexes. This mode of interaction represents an essential step in the longitudinal assembly reaction exhibited by full-length lamin dimers. As determined by analytical ultracentrifugation, the amino-terminal fragments were soluble under low ionic strength conditions sedimenting with distinct profiles and s-values (1.6-1.8 S) indicating the formation of coiled-coil dimers. The smaller carboxy-terminal fragments were, except for lamin B2, largely insoluble under these conditions. However, after equimolar amounts of homotypic amino- and carboxy-terminal lamin fragments had been mixed in 4 M urea, upon subsequent renaturation the carboxy-terminal fragments were completely rescued from precipitation and distinct soluble complexes with higher s-values (2.3-2.7 S) were obtained. From this behavior, we conclude that the amino- and carboxy-terminal coiled-coil dimers interact to form distinct oligomers (i.e. tetramers). Furthermore, a corresponding interaction occurred also between heterotypic pairs of A- and B-type lamin fragments. Hence, A-type lamin dimers may interact with B-type lamin dimers head-to-tail to yield linear polymers. These findings indicate that a lamin dimer principally has the freedom for a “combinatorial” head-to-tail association with all types of lamins, a property that might be of significant importance for the assembly of the nuclear lamina. Furthermore, we suggest that the head-to-tail interaction of the rod end domains represents a principal step in the assembly of cytoplasmic intermediate filament proteins too.  相似文献   

6.
Familial partial lipodystrophy (FPLD), Dunnigan variety, is an autosomal dominant disorder characterized by marked loss of subcutaneous adipose tissue from the extremities and trunk but by excess fat deposition in the head and neck. The disease is frequently associated with profound insulin resistance, dyslipidemia, and diabetes. We have localized a gene for FPLD to chromosome 1q21-q23, and it has recently been proposed that nuclear lamin A/C is altered in FPLD, on the basis of a novel missense mutation (R482Q) in five Canadian probands. This gene had previously been shown to be altered in autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD-AD) and in dilated cardiomyopathy and conduction-system disease. We examined 15 families with FPLD for mutations in lamin A/C. Five families harbored the R482Q alteration that segregated with the disease phenotype. Seven families harbored an R482W alteration, and one family harbored a G465D alteration. All these mutations lie within exon 8 of the lamin A/C gene-an exon that has also been shown to harbor different missense mutations that are responsible for EDMD-AD. Mutations could not be detected in lamin A/C in one FPLD family in which there was linkage to chromosome 1q21-q23. One family with atypical FPLD harbored an R582H alteration in exon 11 of lamin A. This exon does not comprise part of the lamin C coding region. All mutations in FPLD affect the globular C-terminal domain of the lamin A/C protein. In contrast, mutations responsible for dilated cardiomyopathy and conduction-system disease are observed in the rod domain of the protein. The FPLD mutations R482Q and R482W occurred on different haplotypes, indicating that they are likely to have arisen more than once.  相似文献   

7.
Emery-Dreifuss muscular dystrophy (EMD) is a condition characterized by the clinical triad of early-onset contractures, progressive weakness in humeroperoneal muscles, and cardiomyopathy with conduction block. The disease was described for the first time as an X-linked muscular dystrophy, but autosomal dominant and autosomal recessive forms were reported. The genes for X-linked EMD and autosomal dominant EMD (AD-EMD) were identified. We report here that heterozygote mutations in LMNA, the gene for AD-EMD, may cause diverse phenotypes ranging from typical EMD to no phenotypic effect. Our results show that LMNA mutations are also responsible for the recessive form of the disease. Our results give further support to the notion that different genetic forms of EMD have a common pathophysiological background. The distribution of the mutations in AD-EMD patients (in the tail and in the 2A rod domain) suggests that unique interactions between lamin A/C and other nuclear components exist that have an important role in cardiac and skeletal muscle function.  相似文献   

8.
M Peter  E Heitlinger  M Hner  U Aebi    E A Nigg 《The EMBO journal》1991,10(6):1535-1544
The nuclear lamina is an intermediate filament-type network underlying the inner nuclear membrane. At the onset of mitosis it depolymerizes, presumably in response to phosphorylation of the lamin proteins. Recently, cdc2 kinase, a major regulator of the eukaryotic cell cycle, was shown to induce lamina depolymerization when incubated with isolated nuclei. Here, we have analysed the structural consequences of lamin phosphorylation by cdc2 kinase using lamin head-to-tail polymers reconstituted in vitro from bacterially expressed chicken lamin B2 protein as a substrate. The effects of phosphorylation were monitored by both a pelleting assay and electron microscopy. We show that lamin B2 head-to-tail polymers disassemble in response to phosphorylation of specific sites that are phosphorylated also during mitosis in vivo. These sites are located within SP/TP motifs N- and C-terminal to the central alpha-helical rod domain of lamin proteins. Subsequent dephosphorylation of these sites by purified phosphatase 1 allows reformation of lamin head-to-tail polymers. The relative importance of N- and C-terminal phosphorylation sites for controlling the assembly state of nuclear lamins was assessed by mutational analysis. Polymers formed of lamin proteins carrying mutations in the C-terminal phosphoacceptor motif could still be disassembled by cdc2 kinase. In contrast, a single point mutation in the N-terminal site (Ser16----Ala) rendered head-to-tail polymers resistant to disassembly. These results emphasize the importance of the N-terminal end domain for lamin head-to-tail polymerization in vitro, and they demonstrate that phosphorylation-dephosphorylation is sufficient to control the longitudinal assembly of lamin B2 dimers.  相似文献   

9.
This study provides insights into the role of nuclear lamins in DNA replication. Our data demonstrate that the Ig-fold motif located in the lamin C terminus binds directly to proliferating cell nuclear antigen (PCNA), the processivity factor necessary for the chain elongation phase of DNA replication. We find that the introduction of a mutation in the Ig-fold, which alters its structure and causes human muscular dystrophy, inhibits PCNA binding. Studies of nuclear assembly and DNA replication show that lamins, PCNA, and chromatin are closely associated in situ. Exposure of replicating nuclei to an excess of the lamin domain containing the Ig-fold inhibits DNA replication in a concentration-dependent fashion. This inhibitory effect is significantly diminished in nuclei exposed to the same domain bearing the Ig-fold mutation. Using the crystal structures of the lamin Ig-fold and PCNA, molecular docking simulations suggest probable interaction sites. These findings also provide insights into the mechanisms underlying the numerous disease-causing mutations located within the lamin Ig-fold.  相似文献   

10.
We have investigated the mechanism and the evolutionary pathway of protein dimerization through analysis of experimental structures of dimers. We propose that the evolution of dimers may have multiple pathways, including (1) formation of a functional dimer directly without going through an ancestor monomer, (2) formation of a stable monomer as an intermediate followed by mutations of its surface residues, and (3), a domain swapping mechanism, replacing one segment in a monomer by an equivalent segment from an identical chain in the dimer. Some of the dimers which are governed by a domain swapping mechanism may have evolved at an earlier stage of evolution via the second mechanism. Here, we follow the theory that the kinetic pathway reflects the evolutionary pathway. We analyze the structure-kinetics-evolution relationship for a collection of symmetric homodimers classified into three groups: (1) 14 dimers, which were referred to as domain swapping dimers in the literature; (2) nine 2-state dimers, which have no measurable intermediates in equilibrium denaturation; and (3), eight 3-state dimers, which have stable intermediates in equilibrium denaturation. The analysis consists of the following stages: (i) The dimer is divided into two structural units, which have twofold symmetry. Each unit contains a contiguous segment from one polypeptide chain of the dimer, and its complementary contiguous segment from the other chain. (ii) The division is repeated progressively, with different combinations of the two segments in each unit. (iii) The coefficient of compactness is calculated for the units in all divisions. The coefficients obtained for different cuttings of a dimer form a compactness profile. The profile probes the structural organization of the two chains in a dimer and the stability of the monomeric state. We describe the features of the compactness profiles in each of the three dimer groups. The profiles identify the swapping segments in domain swapping dimers, and can usually predict whether a dimer has domain swapping. The kinetics of dimerization indicates that some dimers which have been assigned in the literature as domain swapping cases, dimerize through the 2-state kinetics, rather than through swapping segments of performed monomers. The compactness profiles indicate a wide spectrum in the kinetics of dimerization: dimers having no intermediate stable monomers; dimers having an intermediate with a stable monomer structure; and dimers having an intermediate with a stable structure in part of the monomer. These correspond to the multiple evolutionary pathways for dimer formation. The evolutionary mechanisms proposed here for dimers are applicable to other oligomers as well.  相似文献   

11.
Nuclear envelope defects in muscular dystrophy   总被引:2,自引:0,他引:2  
Muscular dystrophies are a heterogeneous group of disorders linked to defects in 20-30 different genes. Mutations in the genes encoding a pair of nuclear envelope proteins, emerin and lamin A/C, have been shown to cause the X-linked and autosomal forms respectively of Emery-Dreifuss muscular dystrophy. A third form of muscular dystrophy, limb girdle muscular dystrophy 1b, has also been linked to mutations in the lamin A/C gene. Given that these two genes are ubiquitously expressed, a major goal is to determine how they can be associated with tissue specific diseases. Recent results suggest that lamin A/C and emerin contribute to the maintenance of nuclear envelope structure and at the same time may modulate the expression patterns of certain mechanosensitive and stress induced genes. Both emerin and lamin A/C may play an important role in the response of cells to mechanical stress and in this way may help to maintain muscle cell integrity.  相似文献   

12.
We have applied the fluorescence loss of intensity after photobleaching (FLIP) technique to study the molecular dynamics and organization of nuclear lamin proteins in cell lines stably transfected with green fluorescent protein (GFP)-tagged A-type lamin cDNA. Normal lamin A and C proteins show abundant decoration of the inner layer of the nuclear membrane, the nuclear lamina, and a generally diffuse localization in the nuclear interior. Bleaching studies revealed that, while the GFP-tagged lamins in the lamina were virtually immobile, the intranuclear fraction of these molecules was partially mobile. Intranuclear lamin C was significantly more mobile than intranuclear lamina A. In search of a structural cause for the variety of inherited diseases caused by A-type lamin mutations, we have studied the molecular organization of GFP-tagged lamin A and lamin C mutants R453W and R386K, found in Emery-Dreifuss muscular dystrophy (EDMD), and lamin A and lamin C mutant R482W, found in patients with Dunnigan-type familial partial lipodystrophy (FPLD). In all mutants, a prominent increase in lamin mobility was observed, indicating loss of structural stability of lamin polymers, both at the perinuclear lamina and in the intranuclear lamin organization. While the lamin rod domain mutant showed overall increased mobility, the tail domain mutants showed mainly intranuclear destabilization, possibly as a result of loss of interaction with chromatin. Decreased stability of lamin mutant polymers was confirmed by flow cytometric analyses and immunoblotting of nuclear extracts. Our findings suggest a loss of function of A-type lamin mutant proteins in the organization of intranuclear chromatin and predict the loss of gene regulatory function in laminopathies.  相似文献   

13.
14.
Mutations in the LMNA gene, which encodes nuclear lamins A and C by alternative splicing, can give rise to Emery-Dreifuss muscular dystrophy. The mechanism by which lamins A and C separately contribute to this molecular phenotype is unknown. To address this question we examined ten LMNA mutations exogenously expressed as lamins A and C in COS-7 cells. Eight of the mutations when expressed in lamin A, exhibited a range of nuclear mislocalisation patterns. However, two mutations (T150P and delQ355) almost completely relocated exogenous lamin A from the nuclear envelope to the cytoplasm, disrupted nuclear envelope reassembly following cell division and altered the protein composition of the mid-body. In contrast, exogenously expressed DsRed2-tagged mutant lamin C constructs were only inserted into the nuclear lamina if co-expressed with any EGFP-tagged lamin A construct, except with one carrying the T150P mutation. The T150P, R527P and L530P mutations reduced the ability of lamin A, but not lamin C from binding to emerin. These data identify specific functional roles for the emerin-lamin C- and emerin-lamin A- containing protein complexes and is the first report to suggest that the A-type lamin mutations may be differentially dysfunctional for the same LMNA mutation.  相似文献   

15.
Like Duchenne and Becker muscular dystrophies, Emery-Dreifuss muscular dystrophy (EDMD) is characterized by myopathic and cardiomyopathic abnormalities. EDMD has the particularity of being linked to mutations in nuclear proteins. The X-linked form of EDMD is caused by mutations in the emerin gene, whereas autosomal dominant EDMD is caused by mutations in the lamin A/C gene. Emerin colocalizes with lamin A/C in interphase cells, and binds in vitro to lamin A/C. Recent work suggests that lamin A/C might serve as a receptor for emerin. We have undertaken a structural analysis of emerin, and in particular of its N-terminal domain, which is comprised in the emerin segment critical for binding to lamin A/C. We show that region 2-54 of emerin adopts the LEM fold. This fold was originally described in the two N-terminal domains of another inner nuclear membrane protein called lamina-associated protein 2 (LAP2). The existence of a conserved solvent-exposed surface on the LEM domains of LAP2 and emerin is discussed, as well as the nature of a possible common target.  相似文献   

16.

Background  

The autosomal dominant form of Emery-Dreifuss muscular dystrophy (AD-EDMD) is caused by mutations in the gene encoding for the lamins A and C (LMNA). Lamins are intermediate filament proteins which form the nuclear lamina underlying the inner nuclear membrane. We have studied the expression and the localization of nuclear envelope proteins in three different cell types and muscle tissue of an AD-EDMD patient carrying a point mutation R377H in the lamin A/C gene.  相似文献   

17.
Mutations in the human LMNA gene underlie many laminopathic diseases, including Emery-Dreifuss muscular dystrophy (EDMD); however, a mechanistic link between the effect of mutations on lamin filament assembly and disease phenotypes has not been established. We studied the ΔK46 Caenorhabditis elegans lamin mutant, corresponding to EDMD-linked ΔK32 in human lamins A and C. Cryo-electron tomography of lamin ΔK46 filaments in vitro revealed alterations in the lateral assembly of dimeric head-to-tail polymers, which causes abnormal organization of tetrameric protofilaments. Green fluorescent protein (GFP):ΔK46 lamin expressed in C. elegans was found in nuclear aggregates in postembryonic stages along with LEM-2. GFP:ΔK46 also caused mislocalization of emerin away from the nuclear periphery, consistent with a decreased ability of purified emerin to associate with lamin ΔK46 filaments in vitro. GFP:ΔK46 animals had motility defects and muscle structure abnormalities. These results show that changes in lamin filament structure can translate into disease-like phenotypes via altering the localization of nuclear lamina proteins, and suggest a model for how the ΔK32 lamin mutation may cause EDMD in humans.  相似文献   

18.
19.
The mammalian lamin B2 gene codes for two proteins, the somatic lamin B2 and the germ line-specific lamin B3. Lamin B3 lacks the N-terminus and a part of the alpha-helical rod domain present in lamin B2. These domains are substituted by 84 amino acids unique for lamin B3. When ectopically expressed in somatic cells, lamin B3 causes severe deformation of nuclei which adopt a hook-like configuration. Accordingly, it was proposed that lamin B3 provides the germ line cells with a more flexible nuclear periphery that facilitates spermatogenesis-specific nuclear reorganization events. Here we investigated which protein domains of lamin B3 are responsible for nuclear deformation in transfected cells, and how stable is the nuclear periphery of these cells. Expression of wild-type and mutant lamins evidenced that nuclear deformations are due to the shortened rod domain of lamin B3. Cell fractionation experiments revealed that lamin B3 can be solubilized more easily than lamin B2. Fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) analyses of transfected cells showed that lamin B3 has an increased mobility compared to B2. Our results lead to the conclusion that lamin B3 reduces the stability of the nuclear periphery. They are also consistent with the notion that lamin B3 is relevant to specific properties of the nuclear envelope during spermiogenesis.  相似文献   

20.
The nuclear lamina is an important determinant of nuclear architecture. Mutations in A-type but not B-type lamins cause a range of human genetic disorders, including muscular dystrophy. Dominant mutations in nuclear lamin proteins have been shown to disrupt a preformed lamina structure in Xenopus egg extracts. Here, a series of deletion mutations in lamins A and B1 were evaluated for their ability to disrupt lamina structure in Chinese hamster ovary cells. Deletions of either the lamin A "head" domain or the C-terminal CaaX domain formed intranuclear aggregates and resulted in the disruption of endogenous lamins A/C but not lamins B1/B2. By contrast, "head-less" lamin B1 localized to the nuclear rim with no detectable effect on endogenous lamins, whereas lamin B1 CaaX domain deletions formed intranuclear aggregates, disrupting endogenous lamins A/C but not lamins B1/B2. Filter binding assays revealed that a head/CaaX domain lamin B1 mutant interacted much more strongly with lamins A/C than with lamins B1/B2. Regulated induction of this mutant in stable cell lines resulted in the rapid elimination of all detectable lamin A protein, whereas lamin C was trapped in a soluble form within the intranuclear aggregates. In contrast to results in Xenopus egg extracts, dominant negative lamin B1 (but not lamin A) mutants trapped replication proteins involved in both the initiation and elongation phases of replication but did not effect cellular growth rates or the assembly of active replication centers. We conclude that elimination of the CaaX domain in lamin B1 and elimination of either the CaaX or head domain in lamin A constitute dominant mutations that can disrupt A-type but not B-type lamins, highlighting important differences in the way that A- and B-type lamins are integrated into the lamina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号