首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the native purple bacterial reaction center (RC), light-driven charge separation utilizes only the A-side cofactors, with the symmetry related B-side inactive. The process is initiated by electron transfer from the excited primary donor (P*) to the A-side bacteriopheophytin (P* --> P+ H(A)-) in approximately 3 ps. This is followed by electron transfer to the A-side quinone (P+ H(A)- --> P+ Q(A)-) in approximately 200 ps, with an overall quantum yield of approximately 100%. Using nanosecond flash photolysis and RCs from the Rhodobacter capsulatus F(L181)Y/Y(M208)F/L(M212)H mutant (designated YFH), we have probed the decay pathways of the analogous B-side state P+ H(B)-. The rate of the P+ H(B)- --> ground-state charge-recombination process is found to be (3.0 +/- 0.8 ns)(-1), which is much faster than the analogous (10-20 ns)(-1) rate of P+ H(A)- --> ground state. The rate of P+ H(B)- --> P+ Q(B)- electron transfer is determined to be (3.9 +/- 0.9 ns)(-1), which is about a factor of 20 slower than the analogous A-side process P+ H(A)- --> P+ Q(A)-. The yield of P+ H(B)- --> P+ Q(B)- electron-transfer calculated from these rate constants is 44%. This value, when combined with the known 30% yield of P+ H(B)- from P in YFH RCs, gives an overall yield of 13% for B-side charge separation P* --> P+ H(B)- --> P+ Q(B)- in this mutant. We determine essentially the same value (15%) by comparing the P-bleaching amplitude at approximately 1 ms in YFH and wild-type RCs.  相似文献   

2.
From the crystal structures of reaction centers (RCs) from purple photosynthetic bacteria, two pathways for electron transfer (ET) are apparent but only one pathway (the A side) operates in the native protein-cofactor complex. Partial activation of the B-side pathway has unveiled the true inefficiencies of ET processes on that side in comparison to analogous reactions on the A side. Of significance are the relative rate constants for forward ET and the competing charge recombination reactions. On the B side, these rate constants are nearly equal for the secondary charge-separation step (ET from bacteriopheophytin to quinone), relegating the yield of this process to < 50%. Herein we report efforts to optimize this step. In surveying all possible residues at position 131 in the M subunit, we discovered that when glutamic acid replaces the native valine the efficiency of the secondary ET is nearly two-fold higher than in the wild-type RC. The positive effect of M131 Glu is likely due to formation of a hydrogen bond with the ring V keto group of the B-side bacteriopheophytin leading to stabilization of the charge-separated state involving this cofactor. This change slows charge recombination by roughly a factor of two and affords the improved yield of the desired forward ET to the B-side quinone terminal acceptor.  相似文献   

3.
Photosynthetic organisms transform the energy of sunlight into chemical potential in a specialized membrane-bound pigment-protein complex called the reaction center. Following light activation, the reaction center produces a charge-separated state consisting of an oxidized electron donor molecule and a reduced electron acceptor molecule. This primary photochemical process, which occurs via a series of rapid electron transfer steps, is complete within a nanosecond of photon absorption. Recent structural data on reaction centers of photosynthetic bacteria, combined with results from a large variety of photochemical measurements have expanded our understanding of how efficient charge separation occurs in the reaction center, and have changed many of the outstanding questions.Abbreviations BChl bacteriochlorophyll - P a dimer of BChl molecules - BPh bacteriopheophytin - QA and QB quinone molecules - L, M and H light, medium and heavy polypeptides of the reaction center  相似文献   

4.
The replacement of tyrosine by aspartic acid at position M210 in the photosynthetic reaction center of Rhodobacter sphaeroides results in the generation of a fast charge recombination pathway that is not observed in the wild-type. Apparently, the initially formed charge-separated state (cation of the special pair, P, and anion of the A-side bacteriopheophytin, HA) can decay rapidly via recombination through the neighboring bacteriochlorophyll (BA) soon after formation. The charge-separated state then relaxes over tens of picoseconds and recombination slows to the hundreds-of-picoseconds or nanosecond timescale. This dielectric relaxation results in a time-dependent blue shift of BA absorption, which can be monitored using transient absorbance measurements. Protein dynamics also appear to modulate the electron transfer between HA and the next electron carrier, QA (a ubiquinone). The kinetics of this reaction are complex in the mutant, requiring two kinetic terms, and the spectra associated with the two terms are distinct; a red shift of the HA ground-state bleaching is observed between the shorter and longer HA-to-QA electron-transfer phases. The kinetics appears to be pH-independent, suggesting a negligible contribution of static heterogeneity originating from protonation/deprotonation in the ground state. A dynamic model based on the energy levels of the two early charge-separated states, P+BA and P+HA, has been developed in which the energetics of these states is modulated by fast protein dielectric relaxations and this in turn alters both the kinetic complexity of the reaction and the reaction pathway.  相似文献   

5.

In bacterial reaction centers (RCs), photon-induced initial charge separation uses an A-side bacteriochlorophyll (BChl, BA) and bacteriopheophytin (BPh, HA), while the near-mirror image B-side BB and HB cofactors are inactive. Two new sets of Rhodobacter capsulatus RC mutants were designed, both bearing substitution of all amino acids for the native histidine M180 (M-polypeptide residue 180) ligand to the core Mg ion of BB. Residues are identified that largely result in retention of a BChl in the BB site (Asp, Ser, Pro, Gln, Asn, Gly, Cys, Lys, and Thr), ones that largely harbor the Mg-free BPh in the BB site (Leu and Ile), and ones for which isolated RCs are comprised of a substantial mixture of these two RC types (Ala, Glu, Val, Met and, in one set, Arg). No protein was isolated when M180 is Trp, Tyr, Phe, or (in one set) Arg. These findings are corroborated by ground state spectra, pigment extractions, ultrafast transient absorption studies, and the yields of B-side transmembrane charge separation. The changes in coordination chemistries did not reveal an RC with sufficiently precise poising of the redox properties of the BB-site cofactor to result in a high yield of B-side electron transfer to HB. Insights are gleaned into the amino acid properties that support BChl in the BB site and into the widely observed multi-exponential decay of the excited state of the primary electron donor. The results also have direct implications for tuning free energies of the charge-separated intermediates in RCs and mimetic systems.

  相似文献   

6.
Chuang JI  Boxer SG  Holten D  Kirmaier C 《Biochemistry》2006,45(12):3845-3851
We present studies on a series of photosynthetic reaction center (RC) mutants created in the background of the Rhodobacter capsulatus D(LL) mutant, in which the D helix of the M subunit has been substituted with that from the L subunit. Previous work on the D(LL) mutant in chromatophore preparations showed that RCs assembled without the bacteriopheophytin H(L) electron acceptor and performed no charge separation following light absorption. We have successfully isolated poly-His-tagged D(LL) RCs by using the detergent Deriphat 160-C and shown that the RCs are devoid of H(L). The excited state of the primary electron donor, P*, is found to have a lifetime of 180 +/- 20 ps and to decay exclusively (>95%) via internal conversion to the ground state, with no evidence for formation of any charge-separated intermediates. By additional mutation in the D(LL) background of two residues that affect the P/P+ oxidation potential and one that facilitates M-side electron transfer, we achieve an unprecedented 70% yield of P+ H(M)-, more than doubling the highest yield of this state achieved previously. This result underscores the importance of the relative free energies of P* and the charge-separated states in governing the rates and yields of electron transfer in bacterial RCs and provides a basis for systematically investigating M-side electron transfer without any competition from the native L-side pathway.  相似文献   

7.
We report time-resolved optical measurements of the primary electron transfer reactions in Rhodobacter capsulatus reaction centers (RCs) having four mutations: Phe(L181) --> Tyr, Tyr(M208) --> Phe, Leu(M212) --> His, and Trp(M250) --> Val (denoted YFHV). Following direct excitation of the bacteriochlorophyll dimer (P) to its lowest excited singlet state P, electron transfer to the B-side bacteriopheophytin (H(B)) gives P(+)H(B)(-) in approximately 30% yield. When the secondary quinone (Q(B)) site is fully occupied, P(+)H(B)(-) decays with a time constant estimated to be in the range of 1.5-3 ns. In the presence of excess terbutryn, a competitive inhibitor of Q(B) binding, the observed lifetime of P(+)H(B)(-) is noticeably longer and is estimated to be in the range of 4-8 ns. On the basis of these values, the rate constant for P(+)H(B)(-) --> P(+)Q(B)(-) electron transfer is calculated to be between approximately (2 ns)(-)(1) and approximately (12 ns)(-)(1), making it at least an order of magnitude smaller than the rate constant of approximately (200 ps)(-)(1) for electron transfer between the corresponding A-side cofactors (P(+)H(A)(-) --> P(+)Q(A)(-)). Structural and energetic factors associated with electron transfer to Q(B) compared to Q(A) are discussed. Comparison of the P(+)H(B)(-) lifetimes in the presence and absence of terbutryn indicates that the ultimate (i.e., quantum) yield of P(+)Q(B)(-) formation relative to P is 10-25% in the YFHV RC.  相似文献   

8.
The high efficiency of the energy storage in the photosynthetic reaction center (RC) is determined by a successful competition of electron transfer from bacteriopheophytin to quinone, as compared to backward recombination of the primary charge-separated state. This relationship is caused by a fine matching of the reorganization energy and the free energy gap making the forward processes activationless, and hence very fast, and mismatching of these two quantities for the backreaction, therefore retarding it strongly. In this study, we show that this matching is due to a low dielectric constant of the RC's protein core because a low dielectric affects strongly electrostatic polarization components of both the reorganization energy and the equilibrium free energy of reaction. If the protein and membrane were replaced by a homogeneous medium with a high dielectric constant, the effective energy storage would be impractical.  相似文献   

9.
The bacteriopheophytin a molecules at the H(A) and H(B) binding sites of reaction centers (RCs) of the Y(M210)W mutant of Rhodobacter sphaeroides were chemically exchanged with plant pheophytin a. The Y(M210)W mutation slows down the formation of H(A)(-), presumably by raising the free energy level of the P(+)B(A)(-) state above that of P* due to increasing the oxidation potential of the primary electron donor P and lowering the reduction potential of the accessory bacteriochlorophyll B(A). Exchange of the bacteriopheophytins with pheophytin a on the contrary lowers the redox potential of H(A), inhibiting its reduction. A combination of the mutation and pigment exchange was therefore expected to make the A-side of the RC incapable of electron transfer and cause the excited state P* to deactivate directly to the ground state or through the B-side, or both. Time-resolved absorption difference spectroscopy at 10 K on the RCs that were modified in this way showed a lifetime of P* lengthened to about 500 ps as compared to about 200 ps measured in the original Y(M210)W RCs. We show that the decay of P* in the pheophytin-exchanged preparations is accompanied by both return to the ground state and formation of a new charge-separated state, the absorption difference spectrum of which is characterized by bleachings at 811 and 890 nm. This latter state was formed with a time constant of ca. 1.7 ns and a yield of about 30%, and lasted a few nanoseconds. On the basis of spectroscopic observations these bands at 811 and 890 nm are tentatively attributed to the presence of the P(+)B(B)(-) state, where B(B) is the accessory bacteriochlorophyll in the "inactive" B-branch of the cofactors. The B(B) molecules in Y(M210)W RCs are suggested to be spectrally heterogeneous, absorbing in the Q(y) region at 813 or 806 nm. The results are discussed in terms of perturbation of the free energy level of the P(+)B(B)(-) state and absorption properties of the B(B) bacteriochlorophyll in the mutant RCs due to a long-range effect of the Y(M210)W mutation on the protein environment of the B(B) binding pocket.  相似文献   

10.
In bright light the photosynthetic reaction center (RC) of Rhodobacter sphaeroides stabilizes the P(+)(870).Q(-)(A) charge-separated state and thereby minimizes the potentially harmful effects of light saturation. Using X-ray diffraction we report a conformational change that occurs within the cytoplasmic domain of this RC in response to prolonged illumination with bright light. Our observations suggest a novel structural mechanism for the regulation of electron transfer reactions in photosynthesis.  相似文献   

11.
The photo-oxidation of the reaction center bacteriochlorophyll dimer or special pair was monitored at 1235 nm in Chromatium vinosum and at 1301 nm in Rhodopseudomonas viridis. In both species, the photo-oxidation was apparently complete within 10 ps after light excitation and proceeded unimpeded at low temperatures regardless of the prior state of reduction of the traditional primary electron acceptor, a quinone-iron complex. Thus the requirement for an intermediary electron carrier (I), previously established by picosecond measurements in Rps. sphaeroides (see ref. 4), is clearly a more general phenomenon.

The intermediary carrier, which involves bacteriopheophytin, was examined from the standpoint of its role as the direct electron acceptor from the photo-excited reaction center bacteriochlorophyll dimer. To accomplish this, the extent of light induced bacteriochlorophyll dimer oxidation was measured directly by the picosecond response of the infrared bands and indirectly by EPR assay of the triplet/biradical, as a function of the state of reduction of the I/I couple (measured by EPR) prior to activation. Two independent methods of obtaining I in a stably reduced form were used: chemical equilibrium reduction, and photochemical reduction. In both cases, the results demonstrated that the intermediary carrier, which we designate I, alone governs the capability for reaction center bacteriochlorophyll photooxidation, and as such I appears to be the immediate and sole electron acceptor from the light excited reaction center bacteriochlorophyll dimer.  相似文献   


12.
The freeze-trapped bacteriopheophytin alpha radical anion phi(*)A- has been investigated by 1H-ENDOR/Special TRIPLE resonance spectroscopy in photosynthetic reaction centers of Rhodobacter sphaeroides, in which the Tyr at position M210 had been replaced by either Phe, Leu, His or Trp. In the wild type reaction center and the mutants YF(M210) and YW(M210) two distinct states of phi(*)A-, denoted I(*)1- and I(*)2-, can be stabilized below 200 K. The state I(*)1 is metastable and relaxes to I(*)2- as the temperature is raised from 135 K to 180 K. The difference in the electronic structure of phi(*)A- between the two states is interpreted in terms of a conformational change of phiA after freeze-trapping, involving a reorientation of the 3-acetyl group with respect to the macrocycle of the bacteriopheophytin. This interpretation is supported by the results of RHF-INDO/SP calculations. In the YH(M210) reaction center only one phiA- state is obtained that is distinct from I(*)1- and I(*)2, and the observed electronic structure indicates an almost in-plane orientation of the 3-acetyl group. This is consistent with the proposal that a hydrogen bond is formed between His M210 and the 3(1)-keto oxygen of phiA that impedes the reorientation of the acetyl group. Only one phi(*)A- state is observed in the YL(M210) reaction center, which is similar to the metastable state I(*)1 in the wild type complex. This result is interpreted in terms of a steric hindrance of the reorientation of the 3-acetyl group that is exerted by the side chain of Leu at position M210. Possible implications of these findings for the mechanism of electron transfer in bacterial reaction centers are discussed.  相似文献   

13.
The influence of the protein environment on the primary electron donor, P, a bacteriochlorophyll a dimer, of reaction centers from Rhodobacter sphaeroides, has been investigated using electron paramagnetic resonance and electron nuclear double resonance spectroscopy. These techniques were used to probe the effects on P that are due to alteration of three amino acid residues, His L168, Asn L170, and Asn M199. The introduction of Glu at L168, Asp at L170, or Asp at M199 changes the oxidation/reduction midpoint potential of P in a pH-dependent manner (Williams et al. (2001) Biochemistry 40, 15403-15407). For the double mutant His L168 to Glu and Asn at L170 to Asp, excitation results in electron transfer along the A-side branch of cofactors at pH 7.2, but at pH 9.5, a long-lived state involving B-side cofactors is produced (Haffa et al. (2004) J Phys Chem B 108, 4-7). Using electron paramagnetic resonance spectroscopy, the mutants with alterations of each of the three individual residues and a double mutant, with changes at L168 and L170, were found to have increased linewidths of 10.1-11.0 G compared to the linewidth of 9.6 G for wild type. The Special TRIPLE spectra were pH dependent, and at pH 8, the introduction of aspartate at L170 increased the spin density ratio, rho (L)/rho (M), to 6.1 while an aspartate at the symmetry related position, M199, decreased the ratio to 0.7 compared to the value of 2.1 for wild type. These results indicate that the energy of the two halves of P changes by about 100 meV due to the mutations and are consistent with the interpretation that electrostatic interactions involving these amino acid residues contribute to the switch in pathway of electron transfer.  相似文献   

14.
In Part I of the article, a review of recent data on electron-transfer reactions in photosystem II (PSII) and bacterial reaction center (RC) has been presented. In Part II, transient absorption difference spectroscopy with 20-fs resolution was applied to study the primary charge separation in PSII RC (DI/DII/Cyt b 559 complex) excited at 700 nm at 278 K. It was shown that the initial electron-transfer reaction occurs within 0.9 ps with the formation of the charge-separated state P680(+)Chl(D1)(-), which relaxed within 14 ps as indicated by reversible bleaching of 670-nm band that was tentatively assigned to the Chl(D1) absorption. The subsequent electron transfer from Chl(D1)(-) within 14 ps was accompanied by a development of the radical anion band of Pheo(D1) at 445 nm, attributable to the formation of the secondary radical pair P680(+)Pheo(D1)(-). The key point of this model is that the most blue Q(y) transition of Chl(D1) in RC is allowing an effective stabilization of separated charges. Although an alternative mechanism of charge separation with Chl(D1)* as a primary electron donor and Pheo(D1) as a primary acceptor can not be ruled out, it is less consistent with the kinetics and spectra of absorbance changes induced in the PSII RC preparation by femtosecond excitation at 700 nm.  相似文献   

15.
A split-plate method with two media in different concentrations in each compartment was applied for the mycelial growth of four strains of Suillus luteus, S. grevillei, S. granulatus, and S. bovinus. As the glucose concentration in the A-side (the side containing higher concentrations of glucose) increased, the mycelial growth in both A- and B-sides (the side containing lower concentrations of glucose) increased. The mycelial density in both sides and B/A ratio (the ratio of the mycelial growth in the B-side to that in the A-side) also increased, and the colony morphology changed. In both A- and B-sides, the colony area reached maximum at 10g/l glucose in the A-side in most cases and at 33.3g/l in several cases. The results indicated nutrients are translocated from mycelia in the A-side to those in the B-side. High concentration of phosphate or fructose + glucose in the A-side induced better mycelial growth in the B-side. Addition of high concentrations of phosphate to one side enhanced mycelial growth in the other side. Low-temperature incubation promoted the growth in the B-side. Our split-plate culture method will be useful for qualitative study of translocation in ectomycorrhizal fungi.  相似文献   

16.
The rate of the photocycle (quinone reduction cycle) was measured under continuous light excitation in an isolated reaction center protein of the photosynthetic bacterium Rhodobacter sphaeroides. The rate is determined by the slowest step of the photocycle, which could be the photochemistry (charge separation), the quinone/quinol and cytochrome c(2+)/c(3+) exchanges, or proton delivery to the secondary quinone. The photocycle was driven by high light intensity of a laser diode (5 W/cm(2) at 808 nm) to avoid light limitation of the observed rate. The fast turnover of the reaction center (up to 10(3) s(-1)) was slowed down by inhibition of the proton delivery to the secondary quinone by transition metal ions (Cd(2+) and Ni(2+)), by mutation of a key protonatable group (L213Asp --> Asn), or by use of low-affinity ubiquinone (UQ(0)) to the secondary quinone binding site. Although in all of these cases the rate of turnover was 2-3 orders of magnitude less than that of the primary photochemistry, marked light intensity dependence was observed. The rate of the photocycle increased from 7 s(-1) (Ni(2+), low light intensity) to 27 s(-1) (high light intensity) at pH 8.4. The anomalous reacceleration is due to alternative events on the acceptor side induced by continuous excitation. We argue that the continuous excitation of the protein trapped in the reduced acceptor (Q(A)(-)Q(B)(-)) state produces short-lived reduced bacteriopheophytin (I(-)) that delivers activation energy to anomalous changes on the acceptor side as second interquinone electron transfer before proton uptake or increase of the quinone dissociation constant.  相似文献   

17.
The bacterial reaction center (RC) has become a reference model in the study of the diverse interactions of quinones with electron transfer complexes. In these studies, the RC functionality was probed through flash-induced absorption changes where the state of the primary donor is probed by means of a continuous measuring beam and the electron transfer is triggered by a short intense light pulse. The single-beam set-up implies the use as reference of the transmittance measured before the light pulse. Implicit in the analysis of these data is the assumption that the measuring beam does not elicit the protein photochemistry. At variance, measuring beam is actinic in nature at almost all the suitable wavelengths. In this contribution, the analytical modelling of the time evolution of neutral and charge-separated RCs has been performed. The ability of measuring light to elicit RC photochemistry induces a first order growth of the charge-separated state up to a steady state that depends on the light intensity and on the occupation of the secondary quinone (Q(B)) site. Then the laser pulse pumps all the RCs in the charge-separated state. The following charge recombination is still affected by the measuring beam. Actually, the kinetics of charge recombination measured in RC preparation with the Q(B) site partially occupied are two-exponential. The rate constant of both fast and slow phases depends linearly on the intensity of the measuring beam while their relative weights depend not only on the fractions of RC with the Q(B) site occupied but also on the measuring light intensity itself.  相似文献   

18.
We have designed and synthesized a molecular dyad comprising a carotenoid pigment linked to a fullerene derivative (C-C(60)) in which the carotenoid acts both as an antenna for the fullerene and as an electron transfer partner. Ultrafast transient absorption spectroscopy was carried out on the dyad in order to investigate energy transfer and charge separation pathways and efficiencies upon excitation of the carotenoid moiety. When the dyad is dissolved in hexane energy transfer from the carotenoid S(2) state to the fullerene takes place on an ultrafast (sub 100 fs) timescale and no intramolecular electron transfer was detected. When the dyad is dissolved in toluene, the excited carotenoid decays from its excited states both by transferring energy to the fullerene and by forming a charge-separated C.+ -C(60).- . The charge-separated state is also formed from the excited fullerene following energy transfer from the carotenoid. These pathways lead to charge separation on the subpicosecond time scale (possibly from the S(2) state and the vibrationally excited S(1) state of the carotenoid), on the ps time scale (5.5 ps) from the relaxed S(1) state of the carotenoid, and from the excited state of C(60) in 23.5 ps. The charge-separated state lives for 1.3 ns and recombines to populate both the low-lying carotenoid triplet state and the dyad ground state.  相似文献   

19.
Time-correlated single photon counting was used to study energy trapping and detrapping kinetics at 295 K in Rhodobacter sphaeroides chromatophore membranes containing mutant reaction centers. The mutant reaction centers were expressed in a background strain of Rb. sphaeroides which contained only B880 antenna complexes and no B800-850 antenna complexes. The excited state decay times in the isolated reaction centers from these strains were previously shown to vary by roughly 15-fold, from 3.4 to 52 ps, due to differences in the charge separation rates in the different mutants (Allen and Williams (1995) J Bioenerg Biomembr 27: 275–283). In this study, measurements were also performed on wild type Rhodospirillum rubrum and Rb. sphaeroides B880 antenna-only mutant chromatophores for comparison. The emission kinetics in membranes containing mutant reaction centers was complex. The experimental data were analyzed in terms of a kinetic model that involved fast excitation migration between antenna complexes followed by reversible energy transfer to the reaction center and charge separation. Three emission time constants were identified by fitting the data to a sum of exponential decay components. They were assigned to trapping/quenching of antenna excitations by the reaction center, recombination of the P+H charge-separated state of the reaction center reforming an emitting state, and emission from uncoupled antenna pigment-protein complexes. The first varied from 60 to 160 ps, depending on the reaction center mutation; the second was 200–300 ps, and the third was about 700 ps. The observed weak linear dependence of the trapping time on the primary charge separation time, together with the known sub-picosecond exciton migration time within the antenna, supports the concept that it is energy transfer from the antenna to the reaction center, rather than charge separation, that limits the overall energy trapping time in wild type chromatophores. The component due to charge recombination reforming the excited state is minor in wild type membranes, but increases substantially in mutants due to the decreasing free energy gap between the states P* and P+H.Abbreviations PSU photosynthetic unit - Bchl bacteriochlorophyll - Bphe bacteriopheophytin - P reaction center primary electron donor - RC reaction center - Rb. Rhodobacter - Rs. Rhodospirillum - EDTA (ethylenediamine)tetraacetic acid - Tris tris(hydroxymethyl)aminomethane Author for correspondence  相似文献   

20.
The relative orientation of the pigments of reaction centers from Rhodopseudomonas sphaeroides has been studied by the photoselection technique. A high value (+0.45) of p=(delta AV--delta AH)/(delta AV + delta AH) is obtained when exciting and observing within the 870 nm band which is contradictory to the results of Mar and Gingras (Mar, T. and Gringras, G. (1976) Biochim. Biophys. Acta 440, 609-621) and Shuvalov et al. (Shuvalov, V.A., Asadov, A.A. and Krakhmaleva, I.N. (1977) FEBS Lett. 16, 240-245). It is shown that the low values of p obtained by both groups were erroneous due to excitation conditions. Analysis of the polarization of light-induced changes when exciting with polarized light in single transitions (spheroiden band and bacteriopheophytin Qx bands) enable us to propose a possible arrangement of the pigments within the reaction center. It is concluded that the 870 nm band corresponds to a single transition and is one of the two bands of the primary electron donor (P-870). The second band of the bacteriochlorophyll dimer is centered at 805 nm. The Qx transitions of the molecules constituting the bacteriochlorophyll dimer are nearly parallel (angle less than 25 degrees). The two bacteriopheophytin molecules present slightly different absorption spectra in the near infra-red. Both bacteriopheophytin absorption bands are subject to a small shift under illumination. The angle between the Qy bacteriopheophytin transitions is 55 degrees or 125 degrees. Both Qy transitions are nearly perpendicular to the 870 nm absorption band. Finally, the carotenoid molecules makes an angle greater than 70 degrees with the 870 nm band and the other bacteriochlorophyll molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号