首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our three-dimensional (3-D) images showed that paxillin co-localized on actin filaments as fibrous structures, as well as clusters, in endothelial cells (ECs). In living ECs under flow condition, we monitored concurrently the intracellular dynamics of DsRed2-paxillin and GFP-actin by time-lapse video recording and dual-color fluorescence imaging. The results showed that the dynamic motion of paxillin as fibrous structures was associated with actin filaments, but not with microtubules. Our findings suggest that the actin network plays an important role not only in the assembly/disassembly of paxillin at focal adhesions, but also as a track for the intracellular transport of paxillin, which is involved in signaling pathway.  相似文献   

2.
Summary The intra-axonal organization of the smooth endoplasmic reticulum was studied in the neurohypophysis of rats during and after water deprivation. Parallel to conventional electron microscopy, the material was treated with a double impregnation staining technique specifically designed to contrast the intracellular membranous system. In conventionally stained ultrathin sections from severely dehydrated rats most axons appeared to be free of membranous organelles, whereas corresponding axons treated with the double-impregnation technique generally exhibited a highly developed system of smooth endoplasmic reticulum. In axonal endings, both techniques revealed a profusion of microvesicles in intimate relationship with tubular elements of the smooth endoplasmic reticulum. In short-term (12 h) rehydrated rats, a similarly developed system of smooth endoplasmic reticulum was still observed at all axonal levels with both procedures. After 24 to 48 h of rehydration the tubules of the smooth endoplasmic reticulum exhibited, in double impregnated material, numerous dilatations which resembled the adjacent neurosecretory granules. In conventionally stained ultrathin sections, an accumulation of electron dense material occurred within tubules of the smooth endoplasmic reticulum in the more proximal axonal segments, while in the more terminal segments, which contained numerous elongated granules, membrane continuity was frequently observed between newly formed granules and the smooth endoplasmic reticulum. After 7 days of rehydration the general pattern of the axonal smooth endoplasmic reticulum was comparable to that in untreated rats. These results are discussed in the light of a suggested involvement of the axonal smooth endoplasmic reticulum in the non-granular transport of neurosecretory material in connection with (1) storage in distally formed granules, and (2) release via microvesicles. Acknowledgements: The authors wish to express their gratitude to Mrs. M. Balmefrézol for her skillful technical assistance  相似文献   

3.
Summary Mouse eggs at fertilization were permeated with glycerol solutions and then reacted with heavy meromyosin to show actin filaments by electron microscopy. The meiotic area of the egg surface is devoid of microvilli and is supported by a thick layer (0.6–0.8 m in width) of submembranous filaments. A much thinner layer (less than 0.3 m) is present in the remaining non-meiotic microvillous area and underlying its membrane is a very thick layer of cross-filaments and filament bundles.  相似文献   

4.
Summary Muscle actin filaments labeled with rhodamine-phalloidin were observed to move on the surface coated with a crude extract of pollen tubes ofLilium longiflorum with an average velocity of 1.99±0.55 m/sec. The movement required both Mg2+ and ATP. These results indicate that the extract of pollen tubes contains a myosin-like translocatorAbbreviations ATP adenosine-5-triphosphate - DTT dithiothreitol - EGTA ethyleneglycol-bis-(-aminoethylether)N,N,N,N-tetraacetic acid - PIPES piperazine-N,N-bis-(2-ethanesulfonic acid) - PMSF phenylmethylsulfonyl fluoride  相似文献   

5.
Close to the bases of the photoreceptive microvilli, arthropod photoreceptors contain a dense network of endoplasmic reticulum that is involved in the regulation of the intracellular calcium concentration, and in the biogenesis of the photoreceptive membrane. Here, we examine the role of the cytoskeleton in organizing this submicrovillar endoplasmic reticulum in honeybee photoreceptors. Immunofluorescence microscopy of taxol-stabilized specimens, and electron-microscopic examination of high-pressure frozen, freeze-substituted retinae demonstrate that the submicrovillar cytoplasm lacks microtubules. The submicrovillar region contains a conspicuous F-actin system that codistributes with the submicrovillar endoplasmic reticulum. Incubation of retinal tissue with cytochalasin B leads to depolymerization of the submicrovillar F-actin system, and to disorganization and disintegration of the submicrovillar endoplasmic reticulum, indicating that an intact F-actin cytoskeleton is required to maintain the architecture of this domain of the endoplasmic reticulum. We have also developed a permeabilized cell model in order to study the physiological requirements for the interaction of the endoplasmic reticulum with actin filaments. The association of submicrovillar endoplasmic reticulum with actin filaments appears to be independent of ATP, Ca2+ and Mg2+, suggesting a tight static anchorage.  相似文献   

6.
Summary A new method described in the present paper allows identification of neurophysine-containing (NP) vesicles of the magnocellular neurosecretory system of vertebrates. After oxidation of ultrathin sections, the content of NP vesicles can be dissolved specifically in an alkaline medium. This procedure marks NP vesicles selectively in all portions of the classical neurosecretory system.Dedicated to Professor Dr. Dres h.c. W. Bargmann on the occasion of his 70th birthday.Granted by the Ministerium für Wissenschaft und Technik der DDR.  相似文献   

7.
Excellent visualisation of microtubules and actin filaments was obtained in fixed tobacco BY-2 suspension cells after optimising a protocol for whole mount immunolabelling. The procedure is based on modification of fixation, cell wall digestion, dimethyl sulfoxide (DMSO) treatment, post fixation, and blocking. The most critical aspects of successful preservation and visualization of cytoskeletal elements appeared to be: a two-step fixation with paraformaldehyde and glutaraldehyde before enzymatic cell wall digestion and a post fixation with aldehydes thereafter. The method allows the improved visualization of the organisation of the microtubular and actin filament arrays during the successive stages of cell division and at interphase. Although we present the application of our protocols for cytoskeleton labelling, the excellent results show the potential of using this method for the analysis of various proteins and molecules in plant cells.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

8.
Summary As previously reported, in anterior pituitary cells of the rat, secretory granules are linked with adjacent granules, cytoorganelles, microtubules, and plasma membrane by thin filaments, 4–10 nm in diameter. The quick-freeze, deep-etching method revealed that some of the filaments linking adjacent secretory granules show 5 nm-spaced striations on their surface which are known to be characteristic of actin. Immunocytochemistry showed that actin is localized in the cytoplasm beneath the plasma membrane, and around or between secretory granules. The heavy meromyosin decoration method demonstrated that actin filaments are mainly located in the cytoplasm beneath the plasma membrane, while some actin filaments are connected with the limiting membrane of the secretory granules. The actin filaments associated with the secretory granules are considered to be involved in the intracellular transport of the granules, while those localized in the peripheral cytoplasmic matrix might control the approach of the secretory granules to the plasma membrane and their release.This study was supported in part by grants from the Research Fund of the Ministry of Education, Science, and Culture, Japan  相似文献   

9.
Summary The ultrastructural study of cross sections of normal skeletal muscle cells showed the existence of irregular patterns of actin filaments in connection with the hexagonal pattern of the myosin filaments. The actin filaments surrounding each myosin filament vary in number from 6 to 11. The most frequent relationship is 9 to 1, followed by 10 to 1 and 8 to 1. The hexagonal pattern of actin filaments was observed only in the 6 to 1 arrays; as the actin filaments increase in number, they tend to form different polygons or circles around the myosin filaments. All described patterns may occur in each sarcomere. The actin to myosin filament ratio varies from 3 to 4 within each individual myofibril. The described variability of the actin filaments arrays leads to several difficulties in an explanation of the mechanism of muscular contraction.Director, Chief of Section, Histology. Profesor Agregado de Embriología e HistologíaProfesor Adjunto de Embriología e HistologíaResidente de Anatomía Patol'ogica de la Ciudad Sanitaria La Paz  相似文献   

10.
Summary The newly-formed guard cell mother cells (GMCs) ofAsplenium nidus are small, lens-shaped and are formed by one or two asymmetrical divisions. Their growth axis is parallel to the plane of their future division, a process during which the internal periclinal wall (IPW) is detached from the partner wall of the underlying cell(s). This oriented GMC expansion occurs transversely to a microfibril bundle, which is deposited externally to a U-like microtubule (Mt) bundle and a co-localized actin filament (Af) bundle. They line the IPW and the major part of the anticlinal walls. The deposition of the microfibril bundle is followed by the slight constriction of the internal part of the GMCs and the broadening of the substomatal cavity. The IPW forms a distinct bulging distal to the neighbouring leaf margin, as well as a less defined proximal one. During the IPW bulging, the Mts and Afs under the external periclinal wall (EPW) attain a radial organization. This is followed by thinning of the central EPW region, which becomes impregnated with a callose-like glucan. The rest of the EPW becomes unequally thickened. The disintegration of the U-like Mt bundle is succeeded by the organization of radial Mt and Af arrays under the IPW. The radial Mt systems, controlling the alignment of the newly-deposited microfibrils, allow the GMC to assume a round paradermal profile. The GMCs form a preprophase Mt band (PPB) perpendicular to the interphase U-like Mt bundle. The anticlinal PPB portions appear first and those lining the periclinal walls later. The cytoplasm adjacent to the latter walls retain the radial Mt systems during early preprophase, simultaneously with the anticlinal PPB portions. The observations suggest that the GMCs of the fernA. nidus obtain a unique form, as a result of a particular polarity established in the cortical cytoplasm of the periclinal walls, in which Mts and Afs appear involved. This polarity persists in cell division and is inherited to guard cells (GCs). It provides primary morphogenetic information not only to GMCs but also to GCs.Abbreviations Af actin filament - EPW external periclinal wall - GC guard cell - GMC guard cell mother cell - IPW internal periclinal wall - Mt microtubule - MTOC microtubule organizing centre - PPB preprophase microtubule band  相似文献   

11.
Summary The ultrastructural organization of myofilaments in skeletal muscle was studied in four mammalian species (mouse, rat, hamster, goat). In all these species, myofibrils showing irregularly distributed arrays of a variable number of actin filaments (from 6 to 11) were observed. The proportion of such myofibrils and the predominant patterns of actin filaments varied from one species to another. These results are in agreement with those previously reported for human skeletal muscle.  相似文献   

12.
Summary Anti-mitochondrial autoantibody and fluorescent derivatives of insulin stain phase-dense mitochondria in acetone-fixed monolayers of fibroblasts. Double fluorochrome studies show mitochondria in close topographic association with intermediate filaments. In cells treated with vinblastine or colchicine, mitochondria are relocated in sites closely associated with coils of perinuclear intermediate filaments. In contrast, autoantibody to polyribosomes stains granules aligned in the long axis of well spread embryonic cells, in the direction of actin-containing fibrils, an arrangement that is lost in cells pretreated with the actin filament disrupting drug cytochalasin B. In more mature fibroblasts, antiribosomal antibody reacts with phase-dense rough endoplasmic reticulum and this staining pattern is not affected by cytochalasin B. The observations suggest that mitochondria are associated with intermediate filaments and that free polyribosomes, but not polyribosomes attached to rough endoplasmic reticulum, are associated with cytoplasmic actin.Supported by a grant from the Anti-Cancer Council of Victoria. We thank Mrs. I. Burns for technical assistance and Dr. H.A. Ward and staff for preparation of fluorescent conjugates  相似文献   

13.
T. Kakimoto  H. Shibaoka 《Protoplasma》1987,140(2-3):151-156
Summary Treatment with lysine prior to fixation of tobacco BY-2 cells with formaldehyde improved the preservation of actin filaments in the cells and enabled us to observe both networks of actin filaments and microtubules in the same cells. By using this method, we observed that (1) actin filaments were present in the preprophase band; (2) the actin filaments in the preprophase band and phragmoplast were runnig in the same direction as the microtubules in their respective structures; (3) a cortical network of actin filaments was present throughout all stages of cell cycle.The present method did not preserve the cortical actin filaments in interphase cells. The procedure for staining microtubules destroyed them.Abbreviations EGTA Ethyleneglycol-bis(-aminoethyl ether)N,N,N,N-tetraacetic acid - PIPES Piperazine-N,N-bis(2-ethanesulfonic acid) - PMSF Phenylmethylsulfonyl fluoride - TLCK Na-p-tosyl-L-lysine chloromethyl ketone  相似文献   

14.
Summary A quantitative ultrastructural study was performed to determine the changes in the neurosecretory neurons of the supraoptic (SON) and circularis (NC) nuclei following 4–24 h of water deprivation (WD) and subsequent rehydration (12 and 24 h). In both nuclei, the amount of direct soma-somatic contact increased throughout WD, apparently by retraction of fine glial processes from between the cells. Rehydration reversed these changes. The number of smaller (<1600 Å) neurosecretory granules (NSG's) decreased in both nuclei at 4 h of WD but returned to control levels by 24 h of WD and remained so during rehydration. Larger (<1600 Å) NSG's decreased in number at 4 h of WD in SON and then returned to control levels by 24 h of WD and remained the same throughout rehydration. In NC, these NSG's did not change in number with WD, but significantly increased between 12 and 24 h of rehydration. No cells with dilated rough endoplasmic reticulum were seen in NC during this study. In SON, however, the percentage of such cells increased at 4 and 12 h of dehydration only to decrease to control levels at 24 h of dehydration and throughout rehydration. Lysosomes decreased at 4 h of dehydration in SON and returned to control levels thereafter. In NC, lysosomes tended to decrease with dehydration and increase with rehydration. These findings indicate that detectable morphological changes take place in the course of alterations in hydration state that are well within the physiological range.Supported by NIH Grant NS 09140. The use of the electron microscope facility of the College of Osteopathic Medicine is gratefully acknowledged. Thanks are due W.E. Armstrong and W.A. Gregory for helpful comments, and R. Meyers, A. Ridener, and R. Herbold for technical assistance  相似文献   

15.
Postnatal change in the distribution of actin filaments in endothelial cells was studied in the rat aorta by use of rhodamine-phalloidin staining and confocal laser scanning microscopy. Endothelial cells of the rat aorta possessed two populations of actin filament bundles, namely, peripheral bands at the cell border and stress fibers running longitudinally in the cytoplasm. Aortic endothelial cells of the neonatal rat contained only stress fibers, whereas those of the 10-day-old rat developed both peripheral bands and stress fibers. After 20 days of age, aortic endothelial cells had predominantly peripheral bands with occasional stress fibers around the branch orifices. During postnatal development the length density of stress fibers in aortic endothelial cells decreased, whereas individual stress fibers in endothelial cells were shortened. Electron-microscopic observation revealed that the high intercellular boundaries of aortic endothelial cells at birth decreased in height and developed cytoplasmic interdigitations after 20 days of age. The occurrence of peripheral bands at the cell border is thought to be closely related to formation of cytoplasmic interdigitation which strengthens the mechanical connection between endothelial cells against increasing transmural pressure. Expression of stress fibers in aortic endothelial cells of the neonatal rat is supposed to be affected by longitudinal elongation of the developing aorta, whereas their postnatal decrease is though to be correlated with the change of fluid shear stress loaded in the aortic endothelium.  相似文献   

16.
Summary Using fluorescent probes and confocal laser scanning microscopy we have examined the organisation of the microtubule and actin components of the cytoskeleton in kidney-shaped guard cells of six species of Selaginella. The stomata of Selaginella exhibit novel cytoskeletal arrangements, and at different developmental stages, display similarities in microtubule organisation to the two major types of stomata: grass (dumbbell-shaped) and non-grass (kidney-shaped). Initially, cortical microtubules and F-actin radiate from the stomatal pore and extend across the external and internal periclinal cell surfaces of the guard cells. As the stomata differentiate, the cytoskeleton reorients only along the internal periclinal walls. Reorganisation is synchronous in guard cells of the same stoma. Microtubules on the inner periclinal walls of the guard cells now emanate from areas of the ventral wall on either side of the pore and form concentric circles around the pore. The rearrangement of F-actin is similar to that of microtubules although F-actin is less well organised. Radial arrays of both microtubules and F-actin are maintained adjacent to the external surfaces. Subsequently, in two of the six species of Selaginella examined, microtubules on both the internal and external walls become oriented longitudinally and exhibit no association with the ventral wall. In the other four species, microtubules adjacent to the internal walls revert to the initial radial alignment. These findings may have implications in the development and evolution of the stomatal complex.Abbreviations GC guard cell - MT microtubule  相似文献   

17.
18.
Gao XQ  Chen J  Wei PC  Ren F  Chen J  Wang XC 《Plant cell reports》2008,27(10):1655-1665
Actin filaments in guard cells and their dynamics function in regulating stomatal movement. In this study, the array and distribution of actin filaments in guard cells during stomatal movement were studied with two vital labeling, microinjection of alexa-phalloidin in Vicia faba and expression of GFP-mTn in tobacco. We found that the random array of actin filaments in the most of the closed stomata changed to a ring-like array after stomatal open. And actin filaments, which were throughout the cytoplasm of guard cells of closed stomata (even distribution), were mainly found in the cortical cytoplasm in the case of open stomata (cortical distribution). These results revealed that the random array and even distribution of actin filaments in guard cells may be required for keeping the closed stomata; similarly, the ring-like array and cortical distribution of actin filaments function in sustaining open stomata. Furthermore, we found that actin depolymerization, the trait of moving stomata, facilitates the transformation of actin array and distribution with stomatal movement. So, the depolymerization of actin filaments was favorable for the changes of actin array and distribution in guard cells and thus facilitated stomatal movement.  相似文献   

19.
Two types of filaments were observed within the subacrosomal space of rat spermatids. The first of these types was characterized as actin by demonstration of actin filament affinity for myosin S-1 subfragments. Actin filaments were noted in the subacrosomal space shortly after the acrosomal sac made contact with the nucleus. As the acrosome increased its surface area contact with the spermatid nucleus, the number of layers of subacrosomal filaments increased. Pre-treatment with detergent, which in addition to permeablizing cells to allow entry of S-1, also caused the acrosome to vesiculate and the subacrosomal space to widen. In such preparations filaments were more easily visualized and appeared to extend between the nuclear and acrosomal membranes, indicating, but not proving, attachment to these membranes. During spermatid clongation, the number of actin filaments in the subacrosomal space increased greatly, especially over the dorsal convex region of the spermatid head. The polarity of the majority of filaments was not ascertainable since filaments were tightly packed within the narrow subacrosomal space. In late spermiogenesis (steps 18 and 19), actin filaments were no longer detected within the subacrosomal space. A second and much thicker type of filamentous structure was observed in the subacrosomal space of spermatids at steps 14-17 of spermiogenesis. About 14 nm in diameter (10-15 nm measurement range depending on fixation protocol utilized), these filaments did not decorate with myosin S-1 subfragments and were found in subacrosomal regions not containing actin. Fourteen nanometer filaments were seen in parallel array along the ventral folded portion of the nuclear membrane and extended partially around the nucleus. Like actin filaments. 14 nm filaments were not seen in the subacrosomal space during late spermiogenesis.  相似文献   

20.
Summary Seven morphologically different types of neurosecretory granules have been found in the axon terminals of the sinus gland of the blue crab, Callinectes sapidus. They differ from each other in size, shape, staining characteristics, solubility characteristics, core matrix characteristics, axon terminal matrix characteristics, presence or absence of space between the granule membrane and granule core matrix, and frequency of occurrence. Five of the types are segregated in different axon terminals and are believed to represent different hormone-protein complexes. Two of the types, which have lost part or all of their granular contents, are thought to be variants of the other five types. The differences in granular morphology are better revealed by some fixation procedures than others. Palade's acetate-veronal buffered osmium tetroxide, in particular, reveals striking differences. The following observations suggest that different hormone-protein complexes are segregated in different axon terminals and that these complexes may be morphologically distinguished at the level of the electron microscope.Supported by USPHS-NIH Training Grant GM-00669 and Grant GB-7595X from the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号