首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of ATP hydrolysis was studied at 0 degrees C and pH 7.5 using purified leaky vesicles of sarcoplasmic reticulum Ca2+-ATPase and enzyme solubilized in monomeric form with high concentrations of octaethylene glycol monododecyl ether (C12E8). The enzyme reaction of membranous Ca2+-ATPase was characterized by an initial burst in the hydrolysis of ATP and modulated by millimolar concentrations of ATP. For detergent-solubilized Ca2+-ATPase no burst and moderate low affinity modulation was observed, but the reaction was activated both at low (phosphorylating) and intermediate (K0.5 = 0.06 mM) ATP concentrations. A study of the partial reactions indicated that the effects of detergent and ATP were attributable to activation of the E1P----E2P transition which was rate-limiting. E32P dephosphorylation of membranous Ca2+-ATPase and the detergent-solubilized monomer comprised both a slow and a rapid component. The inhibitory effect of high Ca2+ was correlated with the development of a dominant contribution of slow phase dephosphorylation and with ATP-induced extra binding of Ca2+ binding which presumably takes place at the phosphorylation site (ECaP). Ca2+ was bound with lesser affinity to detergent-solubilized Ca2+-ATPase but with qualitatively the same characteristics as to membranous ECaP. Either Ca2+ or Mg2+ was required for dephosphorylation, also after detergent solubilization. It is concluded that ATP hydrolysis occurs by the same steps for membranous and monomeric Ca2+-ATPase and involves formation of either EMgP or ECaP as reaction intermediates, leading to biphasic kinetics, which, therefore, cannot be taken as evidence of an oligomeric function of the enzyme.  相似文献   

2.
The activation of purified and phospholipid-depleted plasma membrane Ca2+-ATPase by phospholipids and ATP was studied. Enzyme activity increased with [ATP] along biphasic curves representing the sum of two Michaelis-Menten equations. Acidic phospholipids (phosphatidylinositol (PI) and phosphatidylserine (PS)) increased Vmax without affecting apparent affinities of the ATP sites. In the presence of 20 microm ATP, phosphorylation of the enzyme preincubated with Ca2+ (CaE1) was very fast (kapp congruent with 400 s-1). vo of phosphorylation of CaE1 increased with [ATP] along a Michaelis-Menten curve (Km of 15 microm) and was phospholipid-independent. Without Ca2+ preincubation (E1 + E2), vo of phosphorylation was also phospholipid-independent, but was slower and increased with [ATP] along biphasic curves. The high affinity component reflected rapid phosphorylation of CaE1, the low affinity component the E2 --> E1 shift, which accelerated to a rate higher than that of the ATPase activity when ATP was bound to the regulatory site. Dephosphorylation of EP did not occur without ATP. Dephosphorylation increased along a biphasic curve with increasing [ATP], showing that ATP accelerated dephosphorylation independently of phospholipid. PI, but not phosphatidylethanolamine (PE), accelerated dephosphorylation even in the absence of ATP. kapp for dephosphorylation was 57 s-1 at 0 microM ATP; that rate was further increased by ATP. Steady-state [EP] x kapp for dephosphorylation varied with [ATP], and matched the Ca2+-ATPase activity measured under the same conditions. Apparently, the catalytic cycle is rate-limited by dephosphorylation. Acidic phospholipids stimulate Ca2+-ATPase activity by accelerating dephosphorylation, while ATP accelerates both dephosphorylation and the conformational change from E2 to E1, further stimulating the ATPase activity.  相似文献   

3.
The Ca2+-pumping ATPase has been isolated from calf heart sarcolemma by calmodulin affinity chromatography (Caroni, P., and Carafoli, E. (1981) J. Biol. Chem. 256, 3263-3270) as a polypeptide of Mr about 140,000. The purified enzyme has high affinity for Ca2+ in the presence of calmodulin (Km about 0.4 microM) but shifts to a low affinity state (Km about 20 microM) in its absence. Calmodulin increases also the Vmax of the enzyme. The effects of calmodulin are mimicked by phosphatidylserine and by a limited proteolytic treatment of the enzyme with trypsin. The purified ATPase can be reconstituted in asolectin liposomes, where it pumps Ca2+ with an approximate stoichiometry to ATP of 1. The purified (and reconstituted) enzyme is not phosphorylated by added ATP and cAMP-dependent protein kinase under conditions where the enzyme in situ is stimulated concomitant with the phosphorylation of the sarcolemmal membrane (Caroni, P., and Carafoli, E. (1981) J. Biol. Chem. 256, 9371-9373). Hence, the target of the regulatory phosphorylation system is not the ATPase molecule. The purified ATPase cross-reacts with an antibody raised against the erythrocyte Ca2+-pumping ATPase. Under the same conditions, the purified sarcoplasmic reticulum Ca2+-ATPase does not react. The proteolytic splitting pattern of the purified heart sarcolemma and erythrocyte enzymes are similar but not identical.  相似文献   

4.
ATP hydrolysis and Ca(2+) transport by the sarco-endoplasmic reticulum Ca(2+) ATPase (SERCA) are inhibited by 1,3-dibromo-2,4,6-tris(methylisothiouronium) benzene (Br(2)-TITU) in the micromolar range (Berman, M. C., and Karlish, S. J. (2003) Biochemistry 42, 3556-3566). In a study of the mechanism of inhibition, we found that Br(2)-TITU allows the enzyme to bind Ca(2+) and undergo phosphorylation by ATP. The level of ADP-sensitive phosphoenzyme (i.e. E1P-2Ca(2+)) observed in the transient state following addition of ATP is much higher in the presence than in the absence of the inhibitor. Br(2)-TITU does not interfere with enzyme phosphorylation by P(i) in the reverse direction of the cycle (i.e. E2P) and produces only a slight inhibition of its hydrolytic cleavage. The inhibitory effect of Br(2)-TITU on steady state ATPase velocity is attributed to interference with the E1P-2Ca(2+) to E2P-2Ca(2+) transition. In fact, experiments on conformation-dependent protection from proteolytic digestion suggest that, in the presence of Br(2)-TITU, the loops connecting the "A" domain to the ATPase transmembrane region undergo greater fluctuation than expected in the E2 and E2P states. Optimal stability of the gathered headpiece domains is thereby prevented. These effects are opposite to those of thapsigargin, in which the mechanism of inhibition is related to stabilization of a highly compact ATPase conformation and interference with Ca(2+) binding and phosphoenzyme formation. Our experiments with Br(2)-TITU provide the first demonstration of a kinetic limit posed by an inhibitor on the E1P-2Ca(2+) to E2P-2Ca(2+) transition in the wild-type enzyme.  相似文献   

5.
We investigated the functional aspects of the interaction between the sarcoplasmic reticulum (SR) membranous Ca(2+)-ATPase and the non-ionic detergent dodecylmaltoside, using detergent concentrations allowing perturbation of the membrane but not its solubilization. At pH 7.5, the effects of dodecylmaltoside on ATPase activity and delipidation had previously been shown to resemble, in some respects, those of octa(ethylene glycol) monododecylether (C12E8), an appropriate detergent for ATPase studies. Our aim here was to explore the specific effects of dodecylmaltoside on the different steps in the ATPase catalytic cycle, which may owe their specificity to the difference between the polar head groups of dodecylmaltoside and C12E8. This was done at 20 degrees C, both at pH 6 in the absence of KCl and at pH 7.5 in the presence of 100 mM KCl, two conditions under which the characteristics of unperturbed ATPase have already been well defined. Preliminary estimation of dodecylmaltoside partition between water and SR membranes at pH 6 yielded a partition coefficient K close to 4 x 10(5) (ratio of the molar fraction of dodecylmaltoside in the lipid to that in the aqueous phase at a low detergent concentration, assuming that most of this detergent was present in the lipid phase). At near saturation of SR membranes, bound dodecylmaltoside was roughly equimolar with the constituent phospholipids. Non-solubilizing concentrations of dodecylmaltoside inhibited SR ATPase activity by up to 65-70% at pH 7.5, but not at pH 6, unlike the results of similar experiments with C12E8. The rates of the four main steps in the ATPase catalytic cycle were measured by fast kinetic techniques; they were similarly modified at both pH. Dodecylmaltoside slowed down both the rate of calcium-saturated ATPase phosphorylation and the rate of ATPase isomerization after phosphorylation, two steps which were not targets of perturbation by C12E8. The slowing down of the isomerization step by dodecylmaltoside might well explain why it inhibited overall ATPase activity at pH 7.5. In contrast to C12E8, dodecylmaltoside did not affect the dephosphorylation step, which was the main target of inhibition by C12E8 and the main rate-limiting step at pH 6. However, like C12E8, dodecylmaltoside accelerated the calcium binding-induced transition of nonphosphorylated ATPase. Another striking feature of the perturbation induced by dodecylmaltoside was that it significantly altered the binding of 45Ca2+ to the ATPase and the corresponding conformational changes. At pCa 5-5.5, it almost halved calcium binding to the ATPase but ATPase phosphorylation was unimpaired.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
ATP plays dual roles in the reaction cycle of the sarcoplasmic reticulum Ca2+-ATPase by acting as the phosphorylating substrate as well as in nonphosphorylating (modulatory) modes accelerating conformational transitions of the enzyme cycle. Here we have examined the involvement of actuator domain residues Arg174, Ile188, Lys204, and Lys205 by mutagenesis. Alanine mutations to these residues had little effect on the interaction of the Ca2E1 state with nucleotide or on the HnE 2 to Ca2E1 transition of the dephosphoenzyme. The phosphoenzyme processing steps, Ca2E1P to E2P and E2P dephosphorylation, and their stimulation by MgATP/ATP were markedly affected by mutations to Arg174, Ile188, and Lys205. Replacement of Ile188 with alanine abolished nucleotide modulation of dephosphorylation but not the modulation of the Ca2E1P to E2P transition. Mutation to Arg174 interfered with nucleotide modulation of either of the phosphoenzyme processing steps, indicating a significant overlap between the modulatory nucleotide-binding sites involved. Mutation to Lys205 enhanced the rates of the phosphoenzyme processing steps in the absence of nucleotide and disrupted the nucleotide modulation of the Ca2E1P to E2P transition. Remarkably, the mutants with alterations to Lys205 showed an anomalous inhibition by ATP of the dephosphorylation, and in the alanine mutant the affinity for the inhibition by ATP was indistinguishable from that for stimulation by ATP of the wild type. Hence, the actuator domain is an important player in the function of ATP as modulator of phosphoenzyme processing, with Arg174, Ile188, and Lys205 all being critically involved, although in different ways. The data support a variable site model for the modulatory effects with the nucleotide binding somewhat differently in each of the conformational states occurring during the transport cycle.  相似文献   

7.
The Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum exhibits complex kinetics of activation with respect to ATP. ATPase activity is pH-dependent, with similar pH-activity profiles at high and low concentrations of ATP. Low concentrations of Ca2+ in the micromolar range activate the ATPase, whereas activity is inhibited by Ca2+ at millimolar concentrations. The pH-dependence of this Ca2+ inhibition and the effect of the detergent C12E8 (dodecyl octaethylene glycol monoether) on Ca2+ inhibition are similar to those observed on activation by low concentrations of Ca2+. On the basis of these and other studies we present a kinetic model for the ATPase. The ATPase is postulated to exist in one of two conformations: a conformation (E1) of high affinity for Ca2+ and MgATP and a conformation (E2) of low affinity for Ca2+ and MgATP. Ca2+ binding to E2 and to the phosphorylated form E2P are equal. Proton binding at the Ca2+-binding sites in the E1 and E2 conformations explains the pH-dependence of Ca2+ effects. Binding of MgATP to the phosphorylated intermediate E1'PCa2 and to E2 modulate the rates of the transport step E1'PCa-E2'PCa2 and the return of the empty Ca2+ sites to the outside surface of the sarcoplasmic reticulum, as well as the rate of dephosphorylation of E2P. Only a single binding site for MgATP is postulated.  相似文献   

8.
Ca2+ binding sites located on the Ca2+-dependent ATPase purified from the fragmented sarcoplasmic reticulum (Ikemoto, N (1974) J. Biol. Chem. 249, 649) have been further studied. At 0 degrees there are three classes of binding sites denoted as alpha (K congruent to 3 times 10(61 M-1), beta(K congruent to 5 times 10(4) M-1), and gamma (K congruent to 1 times 10(3) M-1) sites. At 22 degrees there is no beta site but there are about two alpha sites per 10(5) daltons, while at 0 degrees there is one alpha and one beta site. The change is reversible. The parallelism between the temperature-induced changes in the alpha site and the reported (Sumida, M., and Tonomura, Y. (1974) J. Biochem. 75, 283) temperature dependence of the ratio of Ca2+ transport and ATP cleavage (deltaCa2+/deltaATP is 2 at 22 degrees and 1 at 0 degrees) suggests the involvement of the alpha site in transport. Studies at a low ATP to enzyme ratio (0.5 to 2.5 mol of ATP/10(5) g of ATPase unit) permitting the separate investigation of the phosphorylation and dephosphorylation process show that concomitantly with the formation of the phosphorylated enzyme (E approximately P) bound calcium is released from, and concomitantly with the dephosphorylation it is rebound to, the alpha site. Binding of Ca2+ to the E approximately P moiety inhibits the liberation of Pi. Analysis by use of a Hill plot of the Ca2+ dependence of the inhibition suggests the involvement of two sites with an average affinity of approximately 10(3) M-1. These have tentatively been identified as alpha (low affinity form) and gamma sites.  相似文献   

9.
Effect of divalent cations bound to the phosphoenzyme intermediate of the ATPase of sarcoplasmic reticulum was investigated at 0 degree C and pH 7.0 using the purified ATPase preparations. Our previous study (Shigekawa, M., Wakabayashi, S., and Nakamura, H. (1983) J. Biol. Chem. 258, 14157-14161) indicated that 1 mol of the ADP-sensitive phosphoenzyme (E1P) formed from CaATP has 3 mol of high affinity binding sites for Ca2+, of which two are transport sites for calcium while the remainder is the acceptor site for calcium derived from the substrate, CaATP ("substrate site"). When incubated with a chelator of divalent cation, E1P formed from CaATP released all of its bound calcium to form a divalent cation-free phosphoenzyme. Evidence was presented that calcium dissociation from the substrate site was faster than that from the transport sites and primarily responsible for the ADP sensitivity loss of E1P induced by the chelator. Divalent cation-free phosphoenzyme was kinetically stable but when treated with divalent cations, it behaved similarly to the ADP-insensitive phosphoenzyme (E2P) which is the normal reaction intermediate of ATP hydrolysis. 45Ca bound at the substrate site on E1P formed from 45CaATP exchanged readily with nonradioactive ionized Ca2+ in the reaction medium whereas 45Ca at the transport sites on E1P was displaced only at a very slow rate which was almost the same as that for the phosphoenzyme hydrolysis. It was suggested that calcium at the transport sites on E1P formed from CaATP is released only after the rate-limiting conformational transition of the phosphoenzyme from E1P to E2P and that removal of calcium by a chelator from the substrate site facilitates this conformational transition, thereby allowing calcium bound at the transport sites to be released readily from the phosphoenzyme.  相似文献   

10.
The decomposition of 32P phosphorylated enzyme intermediate formed by incubation of sarcoplasmic reticulum ATPase with [gamma-32P]ATP was studied following dilution of the reaction medium with a large excess of nonradioactive ATP. The phosphoenzyme decomposition includes two kinetic components. The fraction of intermediate undergoing slower decomposition is minimal in the presence of low (microM) Ca2+ and maximal in the presence of high (mM) Ca2+. A large fraction of phosphoenzyme undergoes slow decomposition when the Ca2+ concentration is high inside the vesicles, even if the Ca2+ concentration in the medium outside the vesicles is low. Parallel measurements of ATPase steady state velocity in the same experimental conditions indicate that the apparent rate constant for the slow component of phosphoenzyme decomposition is inadequate to account for the steady state ATPase velocity observed under the same conditions and cannot be the rate-limiting step in a single, obligatory pathway of the catalytic cycle. On the contrary, the steady state enzyme velocity at various Ca2+ concentrations is accounted for by the simultaneous contribution of both phosphoenzyme fractions undergoing fast and slow decomposition. Contrary to its slow rate of decomposition in the forward direction of the cycle, the phosphoenzyme pool formed in the presence of high Ca2+ reacts rapidly with ADP to form ATP in the reverse direction of the cycle. Detailed analysis of these experimental observations is consistent with a branched pathway following phosphoryl transfer from ATP to the enzyme, whereby the phosphoenzyme undergoes an isomeric transition followed by ADP dissociation, or ADP dissociation followed by the isomeric transition. The former path is much faster and is prevalent when the intravesicular Ca2+ concentration is low. When the intravesicular Ca2+ concentration rises, a pool of phosphoenzyme is formed by reverse equilibration through the alternate path. In the absence of ADP this intermediate decays slowly in the forward direction, and in the presence of ADP it decays rapidly in the reverse direction of the cycle.  相似文献   

11.
The contractile properties of skinned single fibers from rabbit psoas muscle were investigated under conditions of low MgATP and no Ca2+ (i.e., less than 10(-8) M). At 1 microM MgATP, fibers shortened at a maximum velocity of 660 +/- 420 A/half sarcomere/s (n = 9), compared with 34,000 A/half sarcomere/s measured during maximum Ca2+-activation at 1 mM MgATP (Moss, R. L., 1982. J. Muscle Res. Cell. Motil ., 3:295-311). The observed dependence of Vmax on pMgATP between 7.0 and 5.3 was similar to that of actomyosin ATPase measured previously by Weber, A., R. Herz , and I. Reiss (1969, Biochemistry, 8:2266-2270). Isometric tension was found to vary with pMgATP in a manner much like that reported by Reuben , J. P., P. W. Brandt, M. Berman , and H. Grundfest (J. Gen. Physiol. 1971. 57:385-407). A simple cross-bridge model was developed to simulate contractile behaviour at both high and low levels of MgATP. It was found that the pMgATP dependence of Vmax and ATPase could be successfully modeled if the rate of detachment of the cross-bridge was made proportional to the concentration of MgATP. In the model, the similar dependence of Vmax and ATPase on pMgATP was derived from the fact that in this range of pMgATP every pass of a cross-bridge by an actin site resulted in an attachment-detachment cycle, and every such cycle caused hydrolysis of one molecule of ATP.  相似文献   

12.
Formation and decomposition of the phosphorylated intermediate of endoplasmic reticulum (Ca2+ + Mg2+)-ATPase from pancreatic acinar cells have been studied using lithium dodecyl sulfate- and tetradecyltrimethylammonium bromide-polyacrylamide gel electrophoresis. Incorporation of 32P from [gamma-32P]ATP is Ca2+-dependent (approximate Km for free [Ca2+] = 2-3 X 10(-8) mol/liter). Formation of the 100-kDa phosphoprotein is rapid, reaching maximal 32Pi incorporation within 1 s at room temperature. At 4 degrees C, phosphorylation is slower and dephosphorylation is drastically decreased. For dephosphorylation, Mg2+ and monovalent cations such as K+ or Na+ are necessary. Vanadate inhibits both 32P incorporation and 32P liberation dose dependently (Km = 3 X 10(-6) mol/liter), whereas mitochondrial inhibitors and ouabain have no effect. The phosphoprotein is stable at pH 2 and destabilizes with increasing pH being completely decomposed at pH 9. Reduction of 32P incorporation in the presence of high concentrations of cold ATP and hydroxylamine suggests formation of acylphosphate present in the ATPase intermediate. The characteristics of Ca2+, cation, and pH dependencies of the ATPase activity are similar to those previously described for MgATP-dependent Ca2+ transport into rough endoplasmic reticulum from pancreatic acinar cells (Bayerd?rffer, E., Streb, H., Eckhardt, L., Haase, W., and Schulz, I. (1984) J. Membr. Biol. 81, 69-82). The data suggest that the 100-kDa phosphoprotein as described in this study is the intermediate of this Ca2+ transport ATPase.  相似文献   

13.
The mechanism of ATP modulation of E2P dephosphorylation of sarcoplasmic reticulum Ca(2+)-ATPase wild type and mutant forms was examined in nucleotide binding studies of states analogous to the various intermediates of the dephosphorylation reaction, obtained by binding of metal fluorides, vanadate, or thapsigargin. Wild type Ca(2+)-ATPase displays an ATP affinity of 4 μM for the E2P ground state analog, 1 μM for the E2P transition state and product state analogs, and 11 μM for the E2 dephosphoenzyme. Hence, ATP binding stabilizes the transition and product states relative to the ground state, thereby explaining the accelerating effect of ATP on dephosphorylation. Replacement of Phe(487) (N-domain) with serine, Arg(560) (N-domain) with leucine, or Arg(174) (A-domain) with alanine or glutamate reduces ATP affinity in all E2/E2P intermediate states. Alanine substitution of Ile(188) (A-domain) increases the ATP affinity, although ATP acceleration of dephosphorylation is disrupted, thus indicating that the critical role of Ile(188) in ATP modulation is mechanistically based rather than being associated with the binding of nucleotide. Mutants with alanine replacement of Lys(205) (A-domain) or Glu(439) (N-domain) exhibit an anomalous inhibition by ATP of E2P dephosphorylation, due to ATP binding increasing the stability of the E2P ground state relative to the transition state. The ATP affinity of Ca(2)E2P, stabilized by inserting four glycines in the A-M1 linker, is similar to that of the E2P ground state, but the Ca(2+)-free E1 state of this mutant exhibits 3 orders of magnitude reduction of ATP affinity.  相似文献   

14.
The purified Ca2+-pumping ATPase of human erythrocyte membranes (Niggli, V., Adunyah, E. S., Penniston, J. T., and Carafoli, E. (1981) J. Biol. Chem. 256, 395-401) can be stimulated, in the absence of calmodulin, by other treatments. 1. A variety of acidic phospholipids (phosphatidylserine, cardiolipin, phosphatidylinositol, and phosphatidic acid) stimulate the Vmax and decrease the Km (Ca2+) of the isolated enzyme to the same extent as calmodulin. Unsaturated fatty acids (oleic and linoleic acid) have the same effect as phospholipids but at lower concentrations. Neutral phospholipids (phosphatidylcholine, sphingomyelin, and phosphatidylethanolamine) have no effect on the enzyme. The minimal proportion of acidic phospholipids in the environment of the enzyme necessary for full stimulation is about 40%. 2. The isolated enzyme, after reconstitution in phosphatidylcholine liposomes in the absence of calmodulin, can be activated by limited proteolysis. The trypsinized enzyme has the same high Vmax and high affinity for Ca2+ of the enzyme in the presence of calmodulin.  相似文献   

15.
Enzymes entrapped in reverse micelles can be studied in low-water environments that have the potential of restricting conformational mobility in specific steps of the reaction cycle. Sarcoplasmic reticulum Ca2+-ATPase was incorporated into a reverse-micelle system (TPT) composed of toluene, phospholipids, Triton X-100 and varying amounts of water (0.5-7%, v/v). Phosphorylation of the Ca2+-ATPase by ATP required the presence of both water and Ca2+ in the micelles. No phosphoenzyme (EP) was detected in the presence of EGTA. Phosphorylation by Pi (inorganic phosphate) in the absence of Ca2+ was observed at water content below that necessary for phosphorylation by ATP. In contrast to what is observed in a totally aqueous medium, EP formed by Pi was partially resistant to dephosphorylation by Ca2+. However, the addition of non-radioactive Pi to the EP already formed caused a rapid decrease in radiolabelled enzymes, as expected for the isotopic dilution, indicating the existence of an equilibrium (E+Pi<-->EP). Phosphorylation by Pi also occurred in TPT containing millimolar Ca2+ concentrations in a range of water concentrations (2-5% v/v). The substrates p-nitrophenyl phosphate, acetyl phosphate, ATP and GTP increased the EP level under these conditions. These results suggest that: (1) the rate of conversion of the ATPase conformer E2 into E1 is greatly reduced at low water content, so that E2-->E1 becomes the rate-limiting step of the catalytic cycle; and (2) in media of low water content, Pi can phosphorylate both E1Ca and E2. Thus, the effect of enzyme hydration is complex and involves changes in the phosphorylation reaction at the catalytic site, in the equilibrium between E2 and E1 conformers, and in their specificity for substrates.  相似文献   

16.
Melittin, a cationic, amphiphilic polypeptide, has been reported to inhibit the ATPase activity of the catalytic portions of the mitochondrial (MF1) and chloroplast (CF1) ATP synthases. Gledhill and Walker [J.R. Gledhill, J.E. Walker. Inhibition sites in F1-ATPase from bovine heart mitochondria, Biochem. J. 386 (2005) 591-598.] suggested that melittin bound to the same site on MF1 as IF1, the endogenous inhibitor polypeptide. We have studied the inhibition of the ATPase activity of CF1 and of F1 from Escherichia coli (ECF1) by melittin and the cationic detergent, cetyltrimethylammonium bromide (CTAB). The Ca2+- and Mg2+-ATPase activities of CF1 deficient in its inhibitory epsilon subunit (CF1-epsilon) are sensitive to inhibition by melittin and by CTAB. The inhibition of Ca2+-ATPase activity by CTAB is irreversible. The Ca2+-ATPase activity of F1 from E. coli (ECF1) is inhibited by melittin and the detergent, but Mg2+-ATPase activity is much less sensitive to both reagents. The addition of CTAB or melittin to a solution of CF1-epsilon or ECF1 caused a large increase in the fluorescence of the hydrophobic probe, N-phenyl-1-naphthylamine, indicating that the detergent and melittin cause at least partial dissociation of the enzymes. ATP partially protects CF1-epsilon from inhibition by CTAB. We also show that ATP can cause the aggregation of melittin. This result complicates the interpretation of experiments in which ATP is shown to protect enzyme activity from inhibition by melittin. It is concluded that melittin and CTAB cause at least partial dissociation of the alpha/beta heterohexamer.  相似文献   

17.
We previously demonstrated that, in contrast to the hydrolysis of ATP, the hydrolysis of GTP by canine cardiac sarcoplasmic reticulum is not sensitive to calcium. Based on a variety of qualitative and quantitative considerations (cf. Tate, C. A., Bick, R. J., Chu, A., Van Winkle, W. B., and Entman, M. L. (1985) J. Biol. Chem. 260, 9618-9623), we suggested that the hydrolysis of ATP and GTP appears to be effected by the same enzyme. In the present paper, we examined the sensitivity of both enzymatic activities to low concentrations of detergent. With nonsolubilizing concentrations of the nonionic detergent, octaethylene glycol monododecyl ether, the hydrolysis of GTP was rendered partially calcium-sensitive resulting from a slightly increased total (Ca2+ + Mg2+)-GTPase activity and a markedly inhibited calcium-independent (Mg2+-dependent) GTPase activity. Calcium-dependent ATPase activity was increased with octaethylene glycol monododecyl ether, mimicking the effect of the ionophore, A23187. Calcium-dependent ATPase activity and detergent-induced calcium-dependent GTPase activity were similar in (a) calcium sensitivity, (b) sensitivity to mersalyl, and (c) pressure inactivation through dilution and centrifugation, all of which differed from the untreated calcium-independent GTPase activity. Calcium-dependent ATPase activity differed from calcium-dependent GTPase activity with (a) a higher nucleotide affinity, (b) a lower vanadate sensitivity, and (c) a calcium sensitivity for phosphoenzyme formation. Thus, the detergent-induced perturbation of the GTPase resulted in an enzyme with many characteristics qualitatively and quantitatively similar to the calcium ATPase.  相似文献   

18.
Uncoupling the red cell sodium pump by proteolysis   总被引:1,自引:0,他引:1  
In situ proteolysis of Na,K-ATPase was studied using inside-out red cell membrane vesicles. Proteolysis of the enzyme in its "E1" conformation with either trypsin or chymotrypsin inactivated cation translocation more than ATP hydrolysis. This was evident both in the absence of intravesicular alkali cations when Na-ATPase was compared to ATP-dependent 22Na+ influx, and in the presence of K+ when Na+/K+ exchange was compared to (Na+ + K+)-activated ATPase. This differential loss in pump versus hydrolysis was observed also when the activities of only intact, non-leaky vesicles were compared and therefore reflects intramolecular uncoupling rather than nonspecific leakage. Although oligomycin and thimerosal, like trypsin and chymotrypsin, inhibit the enzyme's conformational step(s), neither effect uncoupling. It is concluded that specific cleavage(s) of Na,K-ATPase, at least as it exists in situ, alters the reaction sequence with respect to the normal ordered mechanism. Accordingly, cytoplasmic Na+ and extracellular K+ bind to the enzyme, stimulate phosphorylation (ATP + E1----E1P + ADP) and dephosphorylation (E2P----E2 + Pi), respectively, but each is then released to the same side from which it had bound; presumably release occurs prior to the conformational transitions of E1P to E2P and E2 to E1. This conclusion is supported by experiments showing that, ar micromolar ATP concentration, the hydrolytic activity (Na-ATPase) of the trypsinized but not the unmodified enzyme is stimulated by K+, consistent with earlier experiments (Hegyvary, C., and Post, R. L. (1971) J. Biol. Chem. 246, 5234-5240) showing that the K X E2 to K X E1 transition is slower than the E2 to E1 transition.  相似文献   

19.
The solubilization and delipidation of sarcoplasmic reticulum Ca2+-ATPase by different nonionic detergents were measured from changes in turbidity and recovery of intrinsic fluorescence of reconstituted ATPase in which tryptophan residues had been quenched by replacement of endogenous phospholipids with brominated phospholipids. It was found that incorporation of C12E8 or dodecyl maltoside (DM) at low concentrations in the membrane, resulting in membrane "perturbation" without solubilization, displaced a few of the phospholipids in contact with the protein; perturbation was evidenced by a parallel drop in ATPase activity. As a result of further detergent addition leading to solubilization, the tendency toward delipidation of the immediate environment of the protein was stopped, and recovery of enzyme activity was observed, suggesting reorganization of phospholipid and detergent molecules in the solubilized ternary complex, as compared to the perturbed membrane. After further additions of C12E8 or DM to the already solubilized membrane, the protein again experienced progressive delipidation which was only completed at a detergent concentration about 100-fold higher than that necessary for solubilization. Delipidation was correlated with a decrease in enzyme activity toward a level similar to that observed during perturbation. On the other hand, Tween 80, Tween 20, and Lubrol WX failed to solubilize SR membranes and to induce further ATPase delipidation when added after preliminary SR solubilization by C12E8 or dodecyl maltoside. For Tween 80, this can be related to an inability to solubilize pure lipid membrane; in contrast, Tween 20 and Lubrol WX were able to solubilize liposomes but not efficiently to solubilize SR membranes. In all three cases, insertion of the detergent in SR membranes is, however, demonstrated by perturbation of enzyme activity. Correlation between detergent structure and ability to solubilize and delipidate the ATPase suggests that one parameter impeding ATPase solubilization might be the presence of a bulky detergent polar headgroup, which could not fit close to the protein surface. We also conclude that in the active protein/detergent/lipid ternary complexes, solubilized by C12E8 or dodecyl maltoside, most phospholipids remain closely associated with the ATPase hydrophobic surface as in the membranous form. Binding of only a few detergent molecules on this hydrophobic surface may be sufficient for inhibition of ATPase activity observed at high ATP concentration, both during perturbation and in the completely delipidated, solubilized protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The (Ca2+ + Mg2+) ATPase of dog heart sarcolemma (Caroni, P., and Carafoli, E. (1980) Nature 283, 765-767) has been characterized. The enzyme possesses an apparent Km (Ca2+) of 0.3 +/- 02 microM, a Vmax of Ca2+ transport of 31 nmol of Ca2+/mg of protein/min, and an apparent Km (ATP) of 30 microM. It is only slightly influenced by monovalent cations and is highly sensitive to orthovanadate (Ki = 0.5 +/- 0.1 microM). The high vanadate sensitivity has been used to distinguish the sarcolemmal and the contaminating sarcoplasmic reticulum Ca2+-dependent ATPase in heart microsomal fractions. Calmodulin has been shown to be present in heart sarcolemma. Its depletion results in the transition of the Ca2+-pumping ATPase to a low Ca2+ affinity; readdition of calmodulin reverses this effect. The Na+/Ca2+ exchange system was not affected by calmodulin. The results of calmodulin extraction can be duplicated by using the calmodulin antagonist trifluoperazine. The calmodulin-depleted Ca2+-ATPase has been solubilized from the sarcolemmal membrane and "purified" on a calmodulin affinity chromatography column. One major (Mr = 150,000) and 3 minor protein bands could be eluted from the column with ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA). The major protein band (72%) has Ca2+-dependent ATPase activity and can be phosphorylated by [gamma]32P]ATP in a Ca2+-dependent reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号