首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The eukaryotic translation initiation factor eIF-4D is the only protein known to contain the unusual amino acid hypusine, a posttranslationally modified lysine. For the production of monoclonal antibodies the hypusine-containing protein (HP) was isolated from Dictyostelium discoideum. Using these monoclonal antibodies, a full-length cDNA clone was isolated from a lambda gt11 library. The D. discoideum HP consists of 169 amino acids and has a molecular mass of 18.3 kDa. It is encoded by a single gene. Tryptic and cyanogen bromide peptides were prepared from the purified protein and sequenced. The hypusine residue is located at amino acid position 65 of the HP. The corresponding mRNA of approx. 0.6 kb is present throughout the life cycle of D. discoideum.  相似文献   

2.
Using anther-derived rice (Oryza sativa L.) cell-suspension cultures, we have identified an 18-kD protein that is posttranslationally modified by spermidine and is influenced by endogenous polyamine levels. The posttranslationally modified residue has been identified as the unusual amino acid hypusine [N[epsilon]-(4-amino-2-hydroxybutyl)lysine] by reverse-phase high-performance liquid chromatography and gas chromatography-mass-spectrometry analyses. Differential labeling of the protein with labeled amines provided evidence that the butylamine moiety of spermidine is the immediate precursor of the hypusine residue in the protein. The eukaryotic translation initiation factor 5A (eIF-5A) is the only known mammalian protein that undergoes a similar posttranslational modification with hypusine. The purified 18-kD protein co-electrophoreses with human translational initiation factor eIF-5A in both isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gels. The purified protein from rice stimulated methionyl-puromycin synthesis in vitro, indicating its functional similarity to mammalian eIF-5A. The results presented provide evidence that the posttranslationally modified 18-kD protein from rice containing hypusine is eIF-5A and suggest the conservation of hypusine-containing translation initiation factor eIF-5A in eukaryotes.  相似文献   

3.
A single cellular protein of Mr approximately 18,000 and pI near 5.1, recently identified as eukaryotic translation initiation factor eIF-4D, contains the unusual amino acid hypusine [N epsilon-(4-amino--2-hydroxybutyl)lysine] formed post-translationally from lysine with a structural contribution from the polyamine spermidine. When the 3H-labeled hypusine-containing protein isolated from Chinese hamster ovary (CHO) cells that were grown with radioactive polyamine is digested with trypsin and the digest is subjected to two-dimensional separation, a single radioactive peptide is seen. A labeled peptide that occupies this same position is found in a digest of the [3H]hypusine protein from human lymphocytes and the single hypusine-containing tryptic peptide from purified rabbit reticulocyte eIF-4D also moves to this identical position. Stepwise Edman degradation of the tryptic digest of CHO cell hypusine-protein releases the radioactivity as a single peak in accordance with our earlier evidence for a single hypusine residue per molecule of eIF-4D. The similar patterns of radioactive peptides obtained from tryptic digests of radioiodinated eIF-4D from CHO cells, human lymphocytes, and rabbit reticulocytes suggest a highly conserved primary structure for this protein.  相似文献   

4.
The complete amino acid sequence of glutamate dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus has been determined. The sequence was reconstructed by automated sequence analysis of peptides obtained after cleavage by trypsin, cyanogen bromide, Staphylococcus aureus V8 protease and pepsin. The enzyme subunit is composed of 421 amino acid residues yielding a molecular mass of 46.078 kDa. The presence of N-epsilon-methyllysine in six positions of the sequence was observed. Comparison of the sequence of glutamate dehydrogenase from S. solfataricus with the other known primary structures of the corresponding enzyme from different sources, gives an overall identity of 9.2% and shows a symmetrical evolutionary distance of this archaebacterial protein from the two groups of vertebrate on one side and eubacterial and low eucaryote enzymes on the other side. The occurrence of specific substitutions and a possible role for N-epsilon-methylation of lysine residues are discussed in view of current hypotheses on the molecular basis of thermal adaptation of proteins.  相似文献   

5.
Protein synthesis initiation factor 4D (eIF-4D) from mammalian cells contains the post-translationally modified lysine derivative hypusine. A highly purified preparation of the protein from rabbit reticulocytes was subjected to chemical and enzymatic cleavage, and a large number of overlapping peptides were resolved by high performance liquid chromatography and sequenced. Two mixed 14-base DNA probes were synthesized based on suitable amino acid sequences and were used to screen a human cDNA library in lambda gt11. A cDNA insert containing eIF-4D encoding sequences was identified and a 558-base pair EcoRI-PstI fragment was sequenced. Northern blot hybridization of HeLa cell RNA shows a single size class (1.2 kilobase) of mRNA. The DNA encodes a protein comprising 154 residues with a mass of 16,703 daltons. Human eIF-4D matches all of the rabbit peptides sequenced, extending from residue 9 to 154 except for Cys-129 which is Ser in the rabbit protein. The residue modified to hypusine is identified as Lys-50 and the amino terminus is blocked. eIF-4D possesses rather little secondary structure in the amino-terminal two-thirds of the protein, but the carboxyl-terminal third is rich in alpha helices.  相似文献   

6.
Eukaryotic translation initiation factor 5A (eIF-5A) (older terminology, eIF-4D) is unique in that it contains the unusual amino acid hypusine (N epsilon-(4-amino-2-hydroxybutyl)lysine). Hypusine is formed by a post-translational event in which a specific lysine residue is modified by a structural contribution from spermidine. Metabolic labeling of chick embryo fibroblasts with [3H]spermidine or [3H]lysine gives rise to two distinct proteins, designated I (approximately 20 kDa and pI 5.6) and II (approximately 18 kDa and pI 5.35), that contain [3H]hypusine. Upon incubation with [3H]lysine the labeling of the two proteins followed a similar time course and showed approximately the same ratio over the 6-h incubation period. [3H]Hypusine-containing proteins from cells which had been cultured with [3H]spermidine were employed as tracers for isolation of hypusine-containing proteins from whole chick embryos. Four such proteins were obtained. Two of these proteins, I and II, correspond to the two native proteins synthesized in chick embryo fibroblasts; the other two forms, Ia and IIa, displayed properties suggesting that they were derived from the native proteins, I and II, respectively, during purification. The amino acid compositions and the tryptic peptide maps of the 20-kDa protein (I) and the 18 kDa protein (II) suggest that they are closely related but distinct proteins. In fact, amino acid sequence analysis of the two major proteins revealed differences in the polypeptide backbone of the two proteins. In spite of structural differences, the two native forms (I and II), as well as the two altered forms (Ia and IIa), were effective in stimulating methionyl-puromycin synthesis, providing evidence that they are indeed functional isoforms of eIF-5A.  相似文献   

7.
When mammalian cells are grown in medium containing [3H]spermidine, a single major tritiated protein identical to eukaryotic initiation factor 4D becomes labeled. This protein contains 1 residue/molecule of tritiated hypusine (N epsilon-(4-amino-2-hydroxybutyl)lysine), a rare amino acid which has been found in no other protein. In order to investigate the conservation of this protein, we examined two nonmammalian eukaryotes, the yeast Saccharomyces cerevisiae and the insect Drosophila melanogaster, and the eubacterial prokaryote Escherichia coli for the presence of the hypusine-containing protein. When the eukaryotic cells were grown in the presence of [3H]spermidine, electrophoretic analysis revealed a single labeled protein. In each case, the apparent molecular weight was near 18,000 and the relative pI was approximately 5.2, similar to the hypusine-containing protein of mammals. Amino acid analysis confirmed the presence of tritiated hypusine in each case, and silver staining of two-dimensional polyacrylamide gels demonstrated that, in yeast and fruit flies as in mammals, the protein is relatively abundant. In the eubacterium E. coli, one tritiated protein was predominant, but its molecular weight was 24,000 and we found no evidence that it contained tritiated hypusine. We found no evidence for the existence of the hypusine-containing protein in the archaebacterium Methanococcus voltae. These data suggest that the hypusine-containing protein is conserved among eukaryotes.  相似文献   

8.
The unusual basic amino acid, hypusine [Nε-(4-amino-2-hydroxybutyl)-lysine], is a modified lysine with the addition of the 4-aminobutyl moiety from the polyamine spermidine. This naturally occurring amino acid is a product of a unique posttranslational modification that occurs in only one cellular protein, eukaryotic translation initiation factor 5A (eIF5A, eIF-5A). Hypusine is synthesized exclusively in this protein by two sequential enzymatic steps involving deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). The deoxyhypusine/hypusine synthetic pathway has evolved in archaea and eukaryotes, and eIF5A, DHS and DOHH are highly conserved suggesting a vital cellular function of eIF5A. Gene disruption and mutation studies in yeast and higher eukaryotes have provided valuable information on the essential nature of eIF5A and the deoxyhypusine/hypusine modification in cell growth and in protein synthesis. In view of the extraordinary specificity and functional significance of hypusine-containing eIF5A in mammalian cell proliferation, eIF5A and the hypusine biosynthetic enzymes are novel potential targets for intervention in aberrant cell proliferation.  相似文献   

9.
Eukaryotic translation initiation factor 4D (eIF-4D) is the only protein known to contain the amino acid, hypusine [N epsilon-(4-amino-2-hydroxybutyl)lysine]. This unusual amino acid is formed post-translationally by modification of a single specific lysine residue in an eIF-4D precursor protein. Two separate eIF-4D precursors, each of which contains a lysine residue in place of the hypusine residue and each of which thereby serves as a protein substrate for the hypusine modification, were purified from DL-2-difluoromethylornithine-treated Chinese hamster ovary cells by means of a five-step procedure. These two precursors termed PI and PII both have apparent molecular masses of approximately 17 kDa, indistinguishable from that of eIF-4D, but exhibit more acidic isoelectric points (5.1 and 5.25 for PI and PII, respectively, compared with 5.37 for eIF-4D). These physical characteristics, together with other properties, indicate that eIF-4D differs from PII only in possessing the hypusine residue in place of a lysine residue, whereas an additional structural difference exists between PI and eIF-4D. eIF-4D from CHO cells provides a significant enhancement of methionyl-puromycin synthesis, a model assay for translation initiation. Neither PI nor PII stimulates this in vitro system. These findings are the first direct evidence that hypusine is essential for the biological activity of eIF-4D.  相似文献   

10.
An 18 kDa protein can be metabolically labeled by [3H]putrescine or [3H]spermidine in various mammalian cells. The labeling is due to a post-translational modification of one lysine residue to hypusine using the aminobutyl moiety derived from spermidine. In view of the lack of knowledge of the function of this spermidine-modified protein, we decided to use the radioactivity associated with the [3H]spermidine-labeled 18 kDa protein as a tracer to develop a simple procedure for purifying this protein from cultured cells. We first screened more than 15 different affinity adsorbents for their ability to bind the labeled 18 kDa protein. This approach enabled us to develop a four-step procedure to purify the labeled 18 kDa protein from NB-15 mouse neuroblastoma cells. The procedure, including a Cibacron Blue column, an omega-aminooctyl-agarose, a Sepharose G-50, and a Mono Q column, resulted in an 800-fold purification of the labeled 18 kDa protein. Two-dimensional gel analysis of fractions enriched in the labeled 18 kDa protein revealed (i) the presence of isoforms of hypusine-containing 18 kDa protein, with pI values ranging from 4.7 to 5.2, and (ii) the presence of an additional labeled protein with an apparent molecular mass of 22 kDa and a pI value of 5.0. The labeling intensity of the 22 kDa protein, however, was less than 5% of that of the 18 kDa protein. Peptide map analysis, using the V-8 proteinase digestion method, indicated that the 18 kDa hypusine-containing protein obtained from NB-15 cells was similar to eukaryotic initiation factor 4D isolated from rabbit reticulocytes.  相似文献   

11.
A modified procedure for the purification of soluble ATPase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius is described. In addition to (alpha) 65 and (beta) 51 kDa polypeptides, further subunits gamma * (20 kDa) and delta * (12 kDa) are demonstrated to be components of the enzyme, exhibiting a total molecular mass of 380 kDa. Molecular electron microscopic images of the native enzyme indicate a quaternary structure probably formed by the gamma *, delta *-complex as a central mass surrounded by a pseudohexagon of the peripherally arranged larger alpha and beta subunits. As can be derived from both molecular mass and electron microscopy data, the archaebacterial Sulfolobus-ATPase emerges to exist as an alpha 3 beta 3-quaternary structure with respect to the larger subunits. This is normally found in typical F1-ATPases of eubacterial and eukaryotic organisms. Therefore it is postulated that F1- and F0F1-ATPases, respectively, can occur ubiquitously in all urkingdoms of organisms as functional units of energy-transducing membranes.  相似文献   

12.
The hypusine-containing protein (Hypp) is highly conserved in evolution, from man to archaebacteria, but is not found in eubacteria. Hypp is essential for the viability for yeast cells, where two forms are encoded by the genes HYP1 and HYP2. The hypusine-containing protein Hyp2p, encoded by the HYP2 gene in yeast, is present under both aerobic and anaerobic conditions, whereas Hyp1p synthesis is restricted to anaerobiosis. hyp1 disruption mutants grown under anaerobic conditions reveal no detectable alteration in phenotype relative to wild-type strains. We demonstrate that either Hyp1p or Hyp2p alone is sufficient for normal growth under both metabolic conditions. Moreover, Hypp from various eukaryotic species (slime mold, alfalfa and man) carries the lysine to hypusine modification when expressed in yeast and can substitute functionally for Hyp2p in strains disrupted for HYP2, indicating a highly conserved function of this protein. In contrast, the archaebacterial Hypp expressed in yeast is neither modified by hypusine, nor does it allow growth of cells deficient for yeast Hypp.  相似文献   

13.
A highly active inorganic pyrophosphatase was purified to electrophoretical homogeneity from the cytosol of Sulfolobus acidocaldarius strain 7, an extremely thermoacidophilic archaebacterium. The enzyme has an apparent molecular mass of 80 kDa as estimated by gel permeation chromatography, and showed a 21-kDa polypeptide on SDS-PAGE, suggesting that the archaebacterial enzyme is similar to most of the eubacterial pyrophosphatases rather than eukaryotic ones. The pI = 5.1. The enzyme showed relatively high content of Pro and low content of Ser plus Thr. The optimal pH was 6.5 (at 56 degrees C). From the Arrhenius plot an activation energy of 11.2 kcal/mol was obtained between 37-95 degrees C. The specific activity was 617 mumol Pi release min-1 mg-1 at 56 degrees C. The S. acidocaldarius pyrophosphatase was extremely stable. Complete activity remained after incubation at 100 degrees C for 10 min. No dissociation into subunit or unfolding of polypeptide chain occurred in the presence of 8 M urea. Experiments using guanidine-HCl suggested that the transition between a native tetrameric state and an unfolded state is completely reversible, and essentially independent of any additional factors such as divalent metal cation or dithiothreitol.  相似文献   

14.
Studies on DNA polymerases and topoisomerases in archaebacteria   总被引:1,自引:0,他引:1  
We have isolated DNA polymerases and topoisomerases from two thermoacidophilic archaebacteria: Sulfolobus acidocaldarius and Thermoplasma acidophilum. The DNA polymerases are composed of a single polypeptide with molecular masses of 100 and 85 kDa, respectively. Antibodies against Sulfolobus DNA polymerase did not cross react with Thermoplasma DNA polymerase. Whereas the major DNA topoisomerase activity in S. acidocaldarius is an ATP-dependent type I DNA topoisomerase with a reverse gyrase activity, the major DNA topoisomerase activity in T. acidophilum is a ATP-independent relaxing activity. Both enzymes resemble more the eubacterial than the eukaryotic type I DNA topoisomerase. We have found that small plasmids from halobacteria are negatively supercoiled and that DNA topoisomerase II inhibitors modify their topology. This suggests the existence of an archaebacterial type II DNA topoisomerase related to its eubacterial and eukaryotic counterparts. As in eubacteria, novobiocin induces positive supercoiling of halobacterial plasmids, indicating the absence of a eukaryotic-like type I DNA topoisomerase that relaxes positive superturns.  相似文献   

15.
When Chinese hamster ovary cells are incubated with [terminal methylenes-3H]spermidine, radioactivity is incorporated into a single cellular protein, eukaryotic initiation factor 4D (eIF-4D), through posttranslational synthesis of the amino acid hypusine (N epsilon-(4-amino-2-hydroxybuyly)lysine). The effect of spermidine depletion on this protein modification reaction was studied by high resolution two-dimensional gel electrophoresis. Factor eIF-4D containing both [3H]lysine and [3H]hypusine was detected as one of the major labeled cellular proteins on the fluorographic map of the proteins from Chinese hamster ovary cells that had been incubated with [3H]lysine. When these cells were depleted of spermidine by the use of DL-alpha-difluoromethylornithine before addition of [3H]lysine, no radiolabeling of this mature eIF-4D (hypusine form, Mr approximately 18,000; pI approximately 5.3) occurred. Instead, a new radiolabeled protein (Mr 18,000; pI 5.1) that contained [3H]lysine but no [3H]hypusine or [3H]deoxyhypusine was seen. This protein was identified as an eIF-4D precursor by comparison of the two-dimensional map of its tryptic peptides with that of the tryptic peptides from [3H]lysine-labeled eIF-4D. Further comparisons also suggest that additional post-translational modification processes are involved in the biogenesis of eIF-4D.  相似文献   

16.
We have determined the nucleotide sequences of the 5 S rRNAs of three thermophilic bacteria: the archaebacterium Sulfolobus solfataricus, also named Caldariella acidophila, and the eubacteria Bacillus acidocaldarius and Thermus aquaticus. A 5 S RNA sequence for the latter species had already been published, but it looked suspect on the basis of its alignment with other 5 S RNA sequences and its base-pairing pattern. The corrected sequence aligns much better and fits in the universal five helix secondary structure model, as do the sequences for the two other examined species. The sequence found for Sulfolobus solfataricus is identical to that determined by others for Sulfolobus acidocaldarius. The secondary structure of its 5 S RNA shows a number of exceptional features which distinguish it not only from eubacterial and eukaryotic 5 S RNAs, but also from the limited number of archaebacterial 5 S RNA structures hitherto published. The free energy change of secondary structure formation is large in the three examined 5 S RNAs.  相似文献   

17.
Hypusine is formed through a spermidine-dependent posttranslational modification of eukaryotic initiation factor 5A (eIF-5A) at a specific lysine residue. The reaction is catalyzed by deoxyhypusine synthase and deoxyhypusine hydroxylase. eIF-5A is the only protein in eukaryotes and archaebacteria known to contain hypusine. Although both eIF-5A and deoxyhypusine synthase are essential genes for cell survival and proliferation, the precise biological function of eIF-5A is unclear. We have previously proposed that eIF-5A may function as a bimodular protein, capable of interacting with protein and nucleic acid (Liu, Y. P., Nemeroff, M., Yan, Y. P., and Chen, K. Y. (1997) Biol. Signals 6, 166-174). Here we used the method of systematic evolution of ligands by exponential enrichment (SELEX) to identify the sequence specificity of the potential eIF-5A RNA targets. The post-SELEX RNA obtained after 16 rounds of selection exhibited a significant increase in binding affinity for eIF-5A with an apparent dissociation constant of 1 x 10(-7) m. The hypusine residue was found to be critical for this sequence-specific binding. The post-SELEX RNAs shared a high sequence homology characterized by two conserved motifs, UAACCA and AAUGUCACAC. The consensus sequence was determined as AAAUGUCACAC by sequence alignment and binding studies. BLAST analysis indicated that this sequence was present in > 400 human expressed sequence tag sequences. The C terminus of eIF-5A contains a cold shock domain-like structure, similar to that present in cold shock protein A (CspA). However, unlike CspA, the binding of eIF-5A to either the post-SELEX RNA or the 5'-untranslated region of CspA mRNA did not affect the sensitivity of these RNAs to ribonucleases. These data suggest that the physiological significance of eIF-5A-RNA interaction depends on hypusine and the core motif of the target RNA.  相似文献   

18.
DNA-binding proteins have been extracted from the thermoacidophilic archaebacterium Sulfolobus solfataricus strain P1, grown at 86 degrees C and pH 4.5. These proteins, which may have a histone-like function, were isolated and purified under standard, non-denaturing conditions, and can be grouped into three molecular mass classes of 7, 8 and 10 kDa. We have purified to homogenity the main 7 kDa protein and determined its DNA-binding affinity by filter binding assays and electron microscopy. The Stokes radius of gyration indicates that the protein occurs as a monomer. The complete amino-acid sequence of this protein contains 14 lysine residues out of 63 amino acids and the calculated Mr is 7149. Five of the lysine residues are partially monomethylated to varying extents and the methylated residues are located exclusively in the N-terminal (positions 4 and 6) and the C-terminal (positions 60, 62 and 63) regions only. The protein is strongly homologous to the 7 kDa proteins of Sulfolobus acidocaldarius with the highest homology to protein 7d. Accordingly, the name of this protein from S. solfataricus was assigned as DNA-binding protein Sso7d.  相似文献   

19.
The amino acid sequence of a ferredoxin from a thermoacidophilic archaebacterium, Sulfolobus acidocaldarius, was determined by a combination of various conventional methods to be as follows: Gly-Ile-Asp-Pro-Tyr-Arg-Thr-His-Lys-Pro-Val-Val-Gly-Asp-Ser-Ser-Gly-His- Lys-Ile -Tyr-Gly-Pro-Val-Glu-Ser-Pro-Lys(Me)-Val-Leu-Gly-Val-His-Gly-Thr-Ile-Val -Gly-Va l-Asp-Phe-Asp-Leu-Cys-Ile-Ala-Asp-Gly-Ser-Cys-Ile-Thr-Ala-Cys-Pro-Val-As n-Val-P he-Gln-Trp-Tyr-Glu-Thr-Pro-Gly-His-Pro-Ala-Ser-Glu-Lys-Lys-Ala-Asp-Pro-V al-Asn- Glu-Gln-Ala-Cys-Ile-Phe-Cys-Met-Ala-Cys-Val-Asn-Val-Cys-Pro-Val-Ala-Ala- Ile-Asp -Val-Lys-Pro-Pro. It was composed of 103 amino acid residues giving a molecular weight of 10,908 excluding Fe and S atoms. This ferredoxin contained an N6-monomethyllysine residue at position 29 which was determined by a comparison of the elution profile of the acid hydrolysates of the protein and peptides on an amino acid analyzer with three methyl derivatives of lysine and also by field desorption mass spectrometry of a purified peptide. The ferredoxin has only 7 cysteine residues, which probably participate in constructing the Fe-S clusters of this ferredoxin, indicating the presence of a unique chelate structure. Comparison of this ferredoxin with other archaebacterial ferredoxins indicated that the archaebacteria might have multiple origins in an evolutionary tree.  相似文献   

20.
Summary The unusual amino acid hypusine [N -(4-amino-2-hydroxybutyl)lysine] is a unique component of one cellular protein, eukaryotic translation initiation factor 5A (eIF-5A, old terminology, eIF-4D). It is formed posttranslationally and exclusively in this protein in two consecutive enzymatic reactions, (i) modification of a single lysine residue of the eIF-5A precursor protein by the transfer of the 4-aminobutyl moiety of the polyamine spermidine to its-amino group to form the intermediate, deoxyhypusine [N -(4-aminobutyl)lysine] and (ii) subsequent hydroxylation of this intermediate to form hypusine. The amino acid sequences surrounding the hypusine residue are strictly conserved in all eukaryotic species examined, suggesting the fundamental importance of this amino acid throughout evolution. Hypusine is required for the activity of eIF-5Ain vitro. There is strong evidence that hypusine and eIF-5A are vital for eukaryotic cell proliferation. Inactivation of both of the eIF-5A genes is lethal in yeast and the hypusine modification appears to be a requirement for yeast survival (Schnier et al., 1991 [Mol Cell Biol 11: 3105–3114]; Wöhl et al., 1993 [Mol Gen Genet 241: 305–311]). Furthermore, inhibitors of either of the hypusine biosynthetic enzymes, deoxyhypusine synthase or deoxyhypusine hydroxylase, exert strong anti-proliferative effects in mammalian cells, including many human cancer cell lines. These inhibitors hold potential as a new class of anticancer agents, targeting one specific eukaryotic cellular reaction, hypusine biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号