共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytoplasmic C-terminal fragment of polycystin-1 regulates a Ca2+-permeable cation channel 总被引:2,自引:0,他引:2
Vandorpe DH Chernova MN Jiang L Sellin LK Wilhelm S Stuart-Tilley AK Walz G Alper SL 《The Journal of biological chemistry》2001,276(6):4093-4101
The cytoplasmic C-terminal portion of the polycystin-1 polypeptide (PKD1(1-226)) regulates several important cell signaling pathways, and its deletion suffices to cause autosomal dominant polycystic kidney disease. However, a functional link between PKD1 and the ion transport processes required to drive renal cyst enlargement has remained elusive. We report here that expression at the Xenopus oocyte surface of a transmembrane fusion protein encoding the C-terminal portion of the PKD1 cytoplasmic tail, PKD1(115-226), but not the N-terminal portion, induced a large, Ca(2+)-permeable cation current, which shifted oocyte reversal potential (E(rev)) by +33 mV. Whole cell currents were sensitive to inhibition by La(3+), Gd(3+), and Zn(2+), and partially inhibited by SKF96365 and amiloride. Currents were not activated by bath hypertonicity, but were inhibited by acid pH. Outside-out patches pulled from PKD1(115-226)-expressing oocytes exhibited a 5.1-fold increased NP(o) of endogenous 20-picosiemens cation channels of linear conductance. PKD1(115-226)-injected oocytes also exhibited elevated NP(o) of unitary calcium currents in outside-out and cell-attached patches, and elevated calcium permeability documented by fluorescence ratio and (45)Ca(2+) flux experiments. Both Ca(2+) conductance and influx were inhibited by La(3+). Mutation of candidate phosphorylation sites within PKD1(115-226) abolished the cation current. We conclude that the C-terminal cytoplasmic tail of PKD1 up-regulates inward current that includes a major contribution from Ca(2+)-permeable nonspecific cation channels. Dysregulation of these or similar channels in autosomal dominant polycystic kidney disease may contribute to cyst formation or expansion. 相似文献
2.
The Ca2+ ion and membrane binding structure of the Gla domain of Ca-prothrombin fragment 1. 总被引:8,自引:0,他引:8
The structure of Ca-prothrombin fragment 1 (residues 1-156 prothrombin) has been solved and refined at 2.2-A resolution by X-ray crystallographic methods. The first two-thirds of the Gla domain (residues 1-48) and two carbohydrate chains (approximately 5 kDa) are disordered in crystals of apo-fragment 1. When crystals are grown in the presence of Ca2+ ions, the Gla domain exhibits a well-defined structure binding seven Ca2+ ions, but the carbohydrate is still disordered. Even so, the crystallographic R factor reduced to 0.171. The folding of the Gla domain is dominated by 9-10 turns of three different alpha-helices. These turns produce two internal carboxylate surfaces composed of Gla side chains. A polymeric array of five Ca2+ ions separated by about 4.0 A intercalates between the carboxylate surfaces. The coordination of the Ca2+ ions with Gla carboxylate oxygen atoms and water molecules leads to distorted polyhedral arrangements with mu-oxo bridges in a highly complex array that most likely orchestrates the folding of the domain. The overall mode of interaction of the Ca2+ ions is new and different from any Ca2+ ion-protein interactions heretofore observed or described. The fluorescence quenching event observed upon Ca2+ ion binding is due to a disulfide-pi-electron interaction that causes a 100 degrees reorientation of Trp42 of the Gla domain. The Ca2+ ion interaction also affords the N-terminus protection from acetylation because the latter is buried in the folded structure and makes hydrogen-bonding salt bridges with Gla17, Gla21, and Gla27. The Gla domain and its trailing disulfide unit associate intimately and together give rise to a domain-like structure. Electrostatic potential calculations indicate that the Gla domain is very electronegative. Since most of the carboxylate oxygen atoms of Gla residues are involved in Ca2+ ion binding, leaving only a few for bridging Ca2+ ion-phospholipid interactions, the role of bridging Ca2+ ions might be generally unspecific, with Ca2+ ions simply intervening between the negative Gla domain and negative head groups of the membrane surface. The folding of the kringle structure in apo- and Ca-fragment 1 is essentially the same. However, the Ser36-Ala47 helix of the Gla domain pivots around Cys48, shifting by approximately 30 degrees, and the helix encroaches on the kringle producing some concomitant changes. These might be related to the protection of carbohydrate carrying Asn101 from acetylation in the Ca-fragment 1 structure. 相似文献
3.
Matei E Miron S Blouquit Y Duchambon P Durussel I Cox JA Craescu CT 《Biochemistry》2003,42(6):1439-1450
Human centrin 2 (HsCen2) is an EF-hand protein that plays a critical role in the centrosome duplication and separation during cell division. We studied the structural and Ca(2+)-binding properties of two C-terminal fragments of this protein: SC-HsCen2 (T94-Y172), covering two EF-hands, and LC-HsCen2 (M84-Y172), having 10 additional residues. Both fragments are highly disordered in the apo state but become better structured (although not conformationally homogeneous) in the presence of Ca(2+) and depending on the nature of the cations (K(+) or Na(+)) in the buffer. Only the longer C-terminal domain, in the Ca(2+)-saturated state and in the presence of Na(+) ions, was amenable to structure determination by nuclear magnetic resonance. The solution structure of LC-HsCen2 reveals an open two EF-hand structure, similar to the conformation of related Ca(2+)-saturated regulatory domains. Unexpectedly, the N-terminal helix segment (F86-T94) lies over the exposed hydrophobic cavity. This unusual intramolecular interaction increases considerably the Ca(2+) affinity and constitutes a useful model for the target binding. 相似文献
4.
Structure of Ca2+ prothrombin fragment 1 including the conformation of the Gla domain 总被引:3,自引:0,他引:3
M Soriano-Garcia C H Park A Tulinsky K G Ravichandran E Skrzypczak-Jankun 《Biochemistry》1989,28(17):6805-6810
The structure of Ca2+ prothrombin fragment 1 has been solved at 2.8-A resolution by X-ray crystallographic methods. Most of the Gla domain of fragment 1 (residues 1-48), which is high homologous with the N-terminal regions of six other blood proteins, cannot be identified in the electron density map of the apo structure. This is not the case when crystals are grown in the presence of Ca2+ ions where the Gla domain exhibits a well-defined folded structure. The folding of the Gla domain is dominated by secondary structure: (a) 3.0 turns of alpha-helix (25%) and (b) five short beta-strands arranged into two beta-structural units (40%). The Cys18-Cys23 disulfide of the small conserved loop of Gla domains is close to a cluster of conserved aromatic residues. The resulting interaction is probably responsible for the fluorescence quenching event accompanying Ca2+ ion binding. Since the Gla domain approximates a discoid, all the Gla residues are easily accessible to solvent. The arrangement of the paired Gla residues (7-8, 20-21, 26-27) is highly suggestive in that they essentially line one edge of the Gla domain creating a potentially intense electronegative environment. This region might well be that associated with phospholipid binding. The kringle structure of Ca2+ fragment 1 is essentially indistinguishable from that of the apoprotein at this stage. 相似文献
5.
Binding of human centrin 2 to the centrosomal protein hSfi1 总被引:1,自引:0,他引:1
Martinez-Sanz J Yang A Blouquit Y Duchambon P Assairi L Craescu CT 《The FEBS journal》2006,273(19):4504-4515
hSfi1, a human centrosomal protein with homologs in other eukaryotic organisms, includes 23 repeats, each of 23 amino acids, separated by 10 residue linkers. The main molecular partner in the centrosome is a small, calcium-binding EF-hand protein, the human centrin 2. Using isothermal titration calorimetry experiments, we characterized the centrin-binding capacity of three isolated hSfi1 repeats, two exhibiting the general consensus motif and the third being the unique Pro-containing human repeat. The two standard peptides bind human centrin 2 and its isolated C-terminal domain with high affinity (approximately 10(7) M(-1)) by an enthalpy-driven mechanism, with a moderate Ca2+ dependence. The Pro-containing repeat shows a binding affinity that is two orders of magnitude lower. The target binding site is localized within the C-terminal domain of human centrin 2. Fluorescence titration and NMR spectroscopy show that the well-conserved Trp residue situated in the C-terminus of each repeat is deeply embedded in a protein hydrophobic cavity, indicating that the peptide direction is reversed relative to previously studied centrin targets. The present results suggest that almost all of the repeats of the Sfi1 protein may independently bind centrin molecules. On the basis of this hypothesis and previous studies on centrin self-assembly, we propose a working model for the role of centrin-Sfi1 interactions in the dynamic structure of centrosome-associated contractile fibers. 相似文献
6.
Definition of an N-terminal actin-binding domain and a C-terminal Ca2+ regulatory domain in human brevin 总被引:2,自引:9,他引:2 下载免费PDF全文
Brevin is a Ca2+-modulated actin-associated protein that will sever F-actin and cap barbed filament ends. Limited proteolysis with chymotrypsin or subtilisin cleaves the molecule approximately in half. Cleavage is approximately 10-fold more rapid in Ca2+ than in EGTA. The two fragments are readily separated from each other and from undigested brevin by high pressure liquid chromatography on a DEAE resin. A 40,000-mol-wt fragment from the N-terminal is not retained by DEAE, while a 45,000-mol-wt C-terminal fragment binds more tightly than brevin. The N-terminal fragment retains approximately 10% of the nucleation activity, caps barbed ends, and retains 50% of the total severing activity defined by dilution induced depolymerization of pyrenyl actin, but, in contrast to brevin, none of these functions are affected by Ca2+. Fluorescent actin binding studies and gel-filtration demonstrate that the 40,000-mol-wt fragment binds two actin monomers. The 45,000-mol-wt C-terminal fragment has no severing, nucleating, or capping activity. Cross-reaction with two monoclonal antibodies against two specific Ca2+-induced conformations of human platelet gelsolin suggest that both Ca2+ binding sites are located on the carboxyl half of the brevin molecule. One epitope, defined as the rapidly exchanging Ca2+ binding site in the gelsolin-actin complex, is lost when a 20,000-mol-wt fragment is cleaved from the carboxyl terminal. The second epitope, related to the poorly exchanging Ca2+ binding site in the complex, is nearer the middle of the brevin molecule. 相似文献
7.
Aguiari G Campanella M Manzati E Pinton P Banzi M Moretti S Piva R Rizzuto R del Senno L 《Biochemical and biophysical research communications》2003,301(3):657-664
Polycystin-1 (PC1) is a membrane protein expressed in tubular epithelia of developing kidneys and in other ductal structures. Recent studies indicate this protein to be putatively important in regulating intracellular Ca(2+) levels in various cell types, but little evidence exists for kidney epithelial cells. Here we examined the role of the PC1 cytoplasmic tail on the activity of store operated Ca(2+) channels in human kidney epithelial HEK-293 cell line. Cells were transiently transfected with chimeric proteins containing 1-226 or 26-226 aa of the PC1 cytoplasmic tail fused to the transmembrane domain of the human Trk-A receptor: TrkPC1 wild-type and control Trk truncated peptides were expressed at comparable levels and localized at the plasma membrane. Ca(2+) measurements were performed in cells co-transfected with PC1 chimeras and the cytoplasmic Ca(2+)-sensitive photoprotein aequorin, upon activation of the phosphoinositide pathway by ATP, that, via purinoceptors, is coupled to the release of Ca(2+) from intracellular stores. The expression of TrkPC1 peptide, but not of its truncated form, enhanced the ATP-evoked cytosolic Ca(2+) concentrations. When Ca(2+) assays were performed in HeLa cells characterized by Ca(2+) stores greater than those of HEK-293 cells, the histamine-evoked cytosolic Ca(2+) increase was enhanced by TrkPC1 expression, even in absence of external Ca(2+). These observations indicate that the C-terminal tail of PC1 in kidney and other epithelial cells upregulates a Ca(2+) channel activity also involved in the release of intracellular stores. 相似文献
8.
Delostrinos CF Hudson AE Feng WC Kosman J Bassuk JA 《Journal of cellular physiology》2006,206(1):211-220
The anti-spreading activity of secreted protein acidic and rich in cysteine (SPARC) has been assigned to the C-terminal third domain, a region rich in alpha-helices. This "extracellular calcium-binding" (EC) domain contains two EF-hands that each coordinates one Ca2+ ion, forming a helix-loop-helix structure that not only drives the conformation of the protein but is also necessary for biological activity. Recombinant (r) EC, expressed in E. coli, was fused at the C-terminus to a His hexamer and isolated under denaturing conditions by nickel-chelate affinity chromatography. rEC-His was renatured by procedures that simultaneously (i) removed denaturing conditions, (ii) catalyzed disulfide bond isomerization, and (iii) initiated Ca2+-dependent refolding. Intrinsic tryptophan fluorescence and circular dichroism spectroscopies demonstrated that rEC-His exhibited a Ca2+-dependent conformation that was consistent with the known crystal structure. Spreading assays confirmed that rEC-His was biologically active through its ability to inhibit the spreading of freshly plated human urothelial cells propagated from transitional epithelium. rEC-His and rSPARC-His exhibited highly similar anti-spreading activities when measured as a function of concentration or time. In contrast to the wild-type and EC recombinant proteins, rSPARC(E268F)-His, a point substitution mutant at the Z position of EF-hand 2, failed to exhibit both Ca2+-dependent changes in alpha-helical secondary structure and anti-spreading activity. The collective data provide evidence that the motif of SPARC responsible for anti-spreading activity was dependent on the coordination of Ca2+ by a Glu residue at the Z position of EF-hand 2 and provide insights into how adhesive forces are balanced within the extracellular matrix of urothelial cells. . 相似文献
9.
F Kessler R Falchetto R Heim R Meili T Vorherr E E Strehler E Carafoli 《Biochemistry》1992,31(47):11785-11792
The C-terminal regions of the four human plasma membrane Ca2+ pump isoforms 1a-d generated from alternatively spliced RNA have been expressed in Escherichia coli, and the recombinant proteins have been purified to a very high degree. The C-termini of isoforms 1a, 1c, and 1d contain an insert encoded by an alternatively spliced exon which is homologous to the calmodulin binding domain of isoform 1b. In isoforms 1c and 1d (29 and 38 amino acid insertions, respectively), subdomain A of the original calmodulin binding site of isoform 1b is followed by the spliced-in domain, which is then followed by subdomain B of the original calmodulin binding site. The positive charges of histidine residues at positions 27, 28, and 38 of the alternatively spliced sequence are likely to be responsible for the observed pH-dependent calmodulin binding to the novel "duplicated" binding site. The affinity of calmodulin for the C-terminal domains of isoforms 1a, 1c, and 1d, which contain the histidine-rich inserts, is much higher at pH 5.9 than at pH 7.2. A synthetic peptide (I31) containing 31 amino acids of the alternatively spliced sequence (from residue 9 to 40) also binds calmodulin with strong pH dependency. Alternative splicing in the C-terminal domain is proposed to confer pH dependence to the regulation of the activity of Ca2+ pump isoforms. 相似文献
10.
Structural changes in the C-terminus of Ca2+-bound rat S100B (beta beta) upon binding to a peptide derived from the C-terminal regulatory domain of p53. 下载免费PDF全文
R. R. Rustandi D. M. Baldisseri A. C. Drohat D. J. Weber 《Protein science : a publication of the Protein Society》1999,8(9):1743-1751
S100B(beta beta) is a dimeric Ca2+-binding protein that interacts with p53, inhibits its phosphorylation by protein kinase C (PKC) and promotes disassembly of the p53 tetramer. Likewise, a 22 residue peptide derived from the C-terminal regulatory domain of p53 has been shown to interact with S100B(beta beta) in a Ca2+-dependent manner and inhibits its phosphorylation by PKC. Hence, structural studies of Ca2+-loaded S100B(beta beta) bound to the p53 peptide were initiated to characterize this interaction. Analysis of nuclear Overhauser effect (NOE) correlations, amide proton exchange rates, 3J(NH-H alpha) coupling constants, and chemical shift index data show that, like apo- and Ca2+-bound S100B(beta beta), S100B remains a dimer in the p53 peptide complex, and each subunit has four helices (helix 1, Glu2-Arg20; helix 2, Lys29-Asn38; helix 3, Gln50-Asp61; helix 4, Phe70-Phe87), four loops (loop 1, Glu21-His25; loop 2, Glu39-Glu49; loop 3, Glu62-Gly66; loop 4, Phe88-Glu91), and two beta-strands (beta-strand 1, Lys26-Lys28; beta-strand 2, Glu67-Asp69), which forms a short antiparallel beta-sheet. However, in the presence of the p53 peptide helix 4 is longer by five residues than in apo- or Ca2+-bound S100B(beta beta). Furthermore, the amide proton exchange rates in helix 3 (K55, V56, E58, T59, L60, D61) are significantly slower than those of Ca2+-bound S100B(beta beta). Together, these observations plus intermolecular NOE correlations between the p53 peptide and S100B(beta beta) support the notion that the p53 peptide binds in a region of S100B(beta beta), which includes residues in helix 2, helix 3, loop 2, and the C-terminal loop, and that binding of the p53 peptide interacts with and induces the extension of helix 4. 相似文献
11.
A C Gerlach C A Syme L Giltinan J P Adelman D C Devors 《The Journal of biological chemistry》2001,276(24):10963-10970
We previously demonstrated that hIK1 is activated directly by ATP in excised, inside-out patches in a protein kinase A inhibitor 5-24 dependent manner, suggesting a role for phosphorylation in the regulation of this Ca(2+)-dependent channel. However, mutation of the single consensus cAMP-dependent protein kinase phosphorylation site (S334A) failed to modify the response of hIK1 to ATP (Gerlach, A. C., Gangopadhyay, N. N., and Devor, D. C. (2000) J. Biol. Chem. 275, 585-598). Here we demonstrate that ATP does not similarly activate the highly homologous Ca(2+)-dependent K(+) channels, hSK1, rSK2, and rSK3. To define the region of hIK1 responsible for the ATP-dependent regulation, we generated a series of hIK1 truncations and hIK1/rSK2 chimeras. ATP did not activate a chimera containing the N terminus plus S1-S4 from hIK1. In contrast, ATP activated a chimera containing the hIK1 C-terminal amino acids His(299)-Lys(427). Furthermore, truncation of hIK1 at Leu(414) resulted in an ATP-dependent channel, whereas larger truncations of hIK1 failed to express. Additional hIK1/rSK2 chimeras defined the minimal region of hIK1 required to confer complete ATP sensitivity as including amino acids Arg(355)-Ala(413). An alanine scan of all non-conserved serines and threonines within this region failed to alter the response of hIK1 to ATP, suggesting that hIK1 itself is not directly phosphorylated. Additionally, substitution of amino acids Arg(355)-Met(368) of hIK1 into the corresponding region of rSK2 resulted in an ATP-dependent activation, which was approximately 50% of that of hIK1. These results demonstrate that amino acids Arg(355)-Ala(413) within the C terminus of hIK1 confer sensitivity to ATP. Finally, we demonstrate that the ATP-dependent phosphorylation of hIK1 or an associated protein is independent of Ca(2+). 相似文献
12.
Lissete Sánchez-Magraner Itziar M. D. Posada Nagore Andraka F. Xabier Contreras Ana R. Viguera Diego M. A. Guérin José L. R. Arrondo Hugo L. Monaco Félix M. Goñi 《The Journal of membrane biology》2014,247(2):155-165
Human phospholipid scramblase 1 (SCR) is a 318 amino acid protein that was originally described as catalyzing phospholipid transbilayer (flip-flop) motion in plasma membranes in a Ca2+-dependent, ATP-independent way. Further studies have suggested an intranuclear role for this protein in addition. A putative transmembrane domain located at the C terminus (aa 291–309) has been related to the flip-flop catalysis. In order to clarify the role of the C-terminal region of SCR, a mutant was produced (SCRΔ) in which the last 28 amino acid residues were lacking, including the α-helix. SCRΔ had lost the scramblase activity and its affinity for Ca2+ was decreased by one order of magnitude. Fluorescence and IR spectroscopic studies revealed that the C-terminal region of SCR was essential for the proper folding of the protein. Moreover, it was found that Ca2+ exerted an overall destabilizing effect on SCR, which might facilitate its binding to membranes. 相似文献
13.
Kateb F Abergel D Blouquit Y Duchambon P Craescu CT Bodenhausen G 《Biochemistry》2006,45(50):15011-15019
The C-terminal domain of human centrin 2 (C-HsCen2) strongly binds to P1-XPC, a peptide comprising 17 amino acids with a NWKLLAKGLLIRERLKR sequence. This peptide corresponds to residues N847-R863 of XPC, a protein involved in the recognition of damaged DNA during the initial step of the nucleotide excision repair pathway. The slow internal dynamics of the protein backbone in the C-HsCen-P1-XPC complex was studied by measuring the relaxation rates of zero- and double-quantum coherences involving neighboring pairs of carbonyl 13C and amide 15N nuclei. These relaxation rates, which reflect dynamics on time scales in the range of micro- to milliseconds, vary significantly along the protein backbone. Analysis of the relaxation rates at different CaCl2 concentrations and ionic strengths shows that these slow motions are mainly affected by the binding of a Ca2+ ion to the lower-affinity EF-hand III. Moreover, we discuss the possible functional role of residues that undergo differential exchange in the formation of HsCen homodimers. 相似文献
14.
Mousheng Wu Hoa Dinh Le Meitian Wang Vladimir Yurkov Alexander Omelchenko Mark Hnatowich Jay Nix Larry V. Hryshko Lei Zheng 《The Journal of biological chemistry》2010,285(4):2554-2561
Na+/Ca2+ exchangers (NCX) constitute a major Ca2+ export system that facilitates the re-establishment of cytosolic Ca2+ levels in many tissues. Ca2+ interactions at its Ca2+ binding domains (CBD1 and CBD2) are essential for the allosteric regulation of Na+/Ca2+ exchange activity. The structure of the Ca2+-bound form of CBD1, the primary Ca2+ sensor from canine NCX1, but not the Ca2+-free form, has been reported, although the molecular mechanism of Ca2+ regulation remains unclear. Here, we report crystal structures for three distinct Ca2+ binding states of CBD1 from CALX, a Na+/Ca2+ exchanger found in Drosophila sensory neurons. The fully Ca2+-bound CALX-CBD1 structure shows that four Ca2+ atoms bind at identical Ca2+ binding sites as those found in NCX1 and that the partial Ca2+ occupancy and apoform structures exhibit progressive conformational transitions, indicating incremental regulation of CALX exchange by successive Ca2+ binding at CBD1. The structures also predict that the primary Ca2+ pair plays the main role in triggering functional conformational changes. Confirming this prediction, mutagenesis of Glu455, which coordinates the primary Ca2+ pair, produces dramatic reductions of the regulatory Ca2+ affinity for exchange current, whereas mutagenesis of Glu520, which coordinates the secondary Ca2+ pair, has much smaller effects. Furthermore, our structures indicate that Ca2+ binding only enhances the stability of the Ca2+ binding site of CBD1 near the hinge region while the overall structure of CBD1 remains largely unaffected, implying that the Ca2+ regulatory function of CBD1, and possibly that for the entire NCX family, is mediated through domain interactions between CBD1 and the adjacent CBD2 at this hinge. 相似文献
15.
It is well established that the vacuole plays an important role in the cellular adaptation to growth in the presence of elevated extracellular Ca2+ concentrations in Saccharomyces cerevisiae. The Ca2+ ATPase Pmc1p and the Ca2+/H+ exchanger Vcx1p/Hum1p have been shown to facilitate Ca2+ sequestration into the vacuole. However, the distinct physiological roles of these two vacuolar Ca2+ transporters remain uncertain. Here we show that Vcx1p can rapidly sequester a sudden pulse of cytosolic Ca2+ into the vacuole, while Pmc1p carries out this function much less efficiently. This finding is consistent with the postulated role of Vcx1p as a high capacity, low affinity Ca2+ transporter and suggests that Vcx1p may act to attenuate the propagation of Ca2+ signals in this organism. 相似文献
16.
Mammalian Na+/Ca2+ (NCX) and Na+/Ca2+-K+ exchangers (NCKX) are polytopic membrane proteins that play critical roles in calcium homeostasis in many cells. Although hydropathy plots for NCX and NCKX are very similar, reported topological models for NCX1 and NCKX2 differ in the orientation of the three C-terminal transmembrane segments (TMS). NCX1 is thought to have 9 TMS and a re-entrant loop, whereas NCKX2 is thought to have 10 TMS. The current topological model of NCKX2 is very similar to the 10 membrane spanning helices seen in the recently reported crystal structure of NCX_MJ, a distantly related archaebacterial Na+/Ca2+ exchanger. Here we reinvestigate the orientation of the three C-terminal TMS of NCX1 and NCKX2 using mass-tagging experiments of substituted cysteine residues. Our results suggest that NCX1, NCKX2 and NCX_MJ all share the same 10 TMS topology. 相似文献
17.
ATP-dependent activation of the intermediate conductance, Ca2+-activated K+ channel, hIK1, is conferred by a C-terminal domain 总被引:2,自引:0,他引:2
Gerlach AC Syme CA Giltinan L Adelman JP Devor DC 《The Journal of biological chemistry》2001,276(14):10963-10970
We previously demonstrated that hIK1 is activated directly by ATP in excised, inside-out patches in a protein kinase A inhibitor 5-24 dependent manner, suggesting a role for phosphorylation in the regulation of this Ca(2+)-dependent channel. However, mutation of the single consensus cAMP-dependent protein kinase phosphorylation site (S334A) failed to modify the response of hIK1 to ATP (Gerlach, A. C., Gangopadhyay, N. N., and Devor, D. C. (2000) J. Biol. Chem. 275, 585-598). Here we demonstrate that ATP does not similarly activate the highly homologous Ca(2+)-dependent K(+) channels, hSK1, rSK2, and rSK3. To define the region of hIK1 responsible for the ATP-dependent regulation, we generated a series of hIK1 truncations and hIK1/rSK2 chimeras. ATP did not activate a chimera containing the N terminus plus S1-S4 from hIK1. In contrast, ATP activated a chimera containing the hIK1 C-terminal amino acids His(299)-Lys(427). Furthermore, truncation of hIK1 at Leu(414) resulted in an ATP-dependent channel, whereas larger truncations of hIK1 failed to express. Additional hIK1/rSK2 chimeras defined the minimal region of hIK1 required to confer complete ATP sensitivity as including amino acids Arg(355)-Ala(413). An alanine scan of all non-conserved serines and threonines within this region failed to alter the response of hIK1 to ATP, suggesting that hIK1 itself is not directly phosphorylated. Additionally, substitution of amino acids Arg(355)-Met(368) of hIK1 into the corresponding region of rSK2 resulted in an ATP-dependent activation, which was approximately 50% of that of hIK1. These results demonstrate that amino acids Arg(355)-Ala(413) within the C terminus of hIK1 confer sensitivity to ATP. Finally, we demonstrate that the ATP-dependent phosphorylation of hIK1 or an associated protein is independent of Ca(2+). 相似文献
18.
Reactivation of mutant p53 through interaction of a C-terminal peptide with the core domain 下载免费PDF全文
Selivanova G Ryabchenko L Jansson E Iotsova V Wiman KG 《Molecular and cellular biology》1999,19(5):3395-3402
A synthetic 22-mer peptide (peptide 46) derived from the p53 C-terminal domain can restore the growth suppressor function of mutant p53 proteins in human tumor cells (G. Selivanova et al., Nat. Med. 3:632-638, 1997). Here we demonstrate that peptide 46 binds mutant p53. Peptide 46 binding sites were found within both the core and C-terminal domains of p53. Lys residues within the peptide were critical for both p53 activation and core domain binding. The sequence-specific DNA binding of isolated tumor-derived mutant p53 core domains was restored by a C-terminal polypeptide. Our results indicate that C-terminal peptide binding to the core domain activates p53 through displacement of the negative regulatory C-terminal domain. Furthermore, stabilization of the core domain structure and/or establishment of novel DNA contacts may contribute to the reactivation of mutant p53. These findings should facilitate the design of p53-reactivating drugs for cancer therapy. 相似文献
19.
In kidney the nickel ion exists primarily as soluble cytoplasmic complexes. We have recently identified a major component of these complexes in the human kidney as a Ni(II) complex of a low molecular weight anionic peptide (Templeton, D.M. and Sarkar, B. (1985) Biochem. J. 230, 35-42). We have now purified a small amount of this peptide to homogeneity and developed an HPLC technique to study its metal-binding properties on sub-nanomole quantities. We are able to demonstrate a binding stoichiometry of one Ni atom per molecule of peptide, with an apparent dissociation constant of 1.1 X 10(-5) M. A similar site exists for Cd. The site for Ni persists after trypsinization, and is localized in the 20-residue C-terminal tryptic fragment of the peptide. 相似文献