首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Botha AM  Botha FC 《Plant physiology》1991,96(4):1185-1192
During germination and seedling establishment, the total pyrophosphate-dependent phosphofructokinase (PFP) activity in the cotyledons increases. Two types of subunits with molecular weights of 68 (α-subunit) and 65 (β-subunit) kilodaltons are present. The increase in activity coincides with an approximately 10-fold increase in β-subunit and twofold increase in α-subunit content. Different isoforms of PFP are present at all stages of incubation, but the ratio between the isoforms significantly changes. A linear relationship exists between the ratio of the two PFP subunits and the ratio of the two isoforms of the enzyme. The more anionic (peak 2) isoform of the enzyme apparently is favored by a high ratio of total β-subunit to α-subunit content. The β- to α-subunit ratio of the peak 2 isoform is also approximately fivefold higher than that of the peak 1 (less anionic) isoform. It is evident that the two subunits are not coordinately expressed and the level of expression of each subunit appears to be the primary factor determining the molecular form in which the enzyme is present. In some tissues, only the 65 kilodalton polypeptide is expressed in large amounts. The peak 1 isoform has a higher affinity for pyrophosphate than the peak 2 isoform, while the affinity for fructose-6-phosphate is similar. Both molecular forms are activated by fructose-2,6-bisphosphate.  相似文献   

2.
Transmitter molecules bind to synaptic acetylcholine receptor channels (AChRs) to promote a global channel-opening conformational change. Although the detailed mechanism that links ligand binding and channel gating is uncertain, the energy changes caused by mutations appear to be more symmetrical between subunits in the transmembrane domain compared with the extracellular domain. The only covalent connection between these domains is the pre-M1 linker, a stretch of five amino acids that joins strand β10 with the M1 helix. In each subunit, this linker has a central Arg (Arg3′), which only in the non-α-subunits is flanked by positively charged residues. Previous studies showed that mutations of Arg3′ in the α-subunit alter the gating equilibrium constant and reduce channel expression. We recorded single-channel currents and estimated the gating rate and equilibrium constants of adult mouse AChRs with mutations at the pre-M1 linker and the nearby residue Glu45 in non-α-subunits. In all subunits, mutations of Arg3′ had similar effects as in the α-subunit. In the ϵ-subunit, mutations of the flanking residues and Glu45 had only small effects, and there was no energy coupling between ϵGlu45 and ϵArg3′. The non-α-subunit Arg3′ residues had Φ-values that were similar to those for the α-subunit. The results suggest that there is a general symmetry between the AChR subunits during gating isomerization in this linker and that the central Arg is involved in expression more so than gating. The energy transfer through the AChR during gating appears to mainly involve Glu45, but only in the α-subunits.  相似文献   

3.
1. The molecular weights of the subunits of purified pig heart pyruvate dehydrogenase complex were determined by sodium dodecyl sulphate/polyacrylamide-disc-gel electrophoresis and were: pyruvate decarboxylase, α-subunit 40600, β-subunit 35100; dihydrolipoyl acetyltransferase 76100; dihydrolipoyl dehydrogenase 58200. 2. Inactivation of the pyruvate dehydrogenase complex by its integral kinase corresponded to the incorporation of 0.46nmol of P/unit of complex activity inactivated. 3. Further incorporation of phosphate into the complex occurred to a limit of 1.27nmol of P/unit of complex inactivated (approx. 3 times that required for inactivation). 4. Phosphate was incorporated only into the α-subunit of the decarboxylase. 5. The molar ratio of phosphate to α-subunits of the decarboxylase was estimated by radioamidination of amino groups of pyruvate dehydrogenase [32P]phosphate complex by using methyl [1-14C]acetimidate, followed by separation of α-subunits by sodium dodecyl sulphate/polyacrylamide-disc-gel electrophoresis. Inactivation of the complex (0.46nmol of P/unit of complex inactivated) corresponded to a molar ratio of one phosphate group per two α-chains (i.e. one phosphate group/α2β2 tetramer). Complete phosphorylation corresponded to three phosphate groups per α2β2 tetramer. 6. Subunit molar ratios in the complex were also estimated by the radioamidination technique. Results corresponded most closely to molar ratios of 4 α-subunits:4 β-subunits:2 dihydrolipoyl acetyltransferase subunits:1 dihydrolipoyl dehydrogenase subunit.  相似文献   

4.
Plasma membrane expression of the Na,K-ATPase requires assembly of its α- and β-subunits. Using a novel labeling technique to identify Na,K-ATPase partner proteins, we detected an interaction between the Na,K-ATPase α-subunit and the coat protein, β-COP, a component of the COP-I complex. When expressed in the absence of the Na,K-ATPase β-subunit, the Na,K-ATPase α-subunit interacts with β-COP, is retained in the endoplasmic reticulum, and is targeted for degradation. In the presence of the Na,K-ATPase β-subunit, the α-subunit does not interact with β-COP and traffics to the plasma membrane. Pulse-chase experiments demonstrate that in cells expressing both the Na,K-ATPase α- and β-subunits, newly synthesized α-subunit associates with β-COP immediately after its synthesis but that this interaction does not constitute an obligate intermediate in the assembly of the α- and β-subunits to form the pump holoenzyme. The interaction with β-COP was reduced by mutating a dibasic motif at Lys54 in the Na,K-ATPase α-subunit. This mutant α-subunit is not retained in the endoplasmic reticulum and reaches the plasma membrane, even in the absence of Na,K-ATPase β-subunit expression. Although the Lys54 α-subunit reaches the cell surface without need for β-subunit assembly, it is only functional as an ion-transporting ATPase in the presence of the β-subunit.  相似文献   

5.
The regulation of cotyledon-specific gene expression by exogenously applied abscisic acid (ABA) was studied in developing cultured cotyledons of soybean (Glycine max L. Merr. cv Provar). When immature cotyledons were cultured in modified Thompson's medium, the addition of ABA resulted in an increased concentration of the β-subunit of β-conglycinin, one of the major storage proteins of soybean seeds. The amount of the α′-and α-subunits of β-conglycinin was relatively unaffected by the ABA treatment. When fluridone, an inhibitor of carotenoid biosynthesis that has been shown to decrease ABA levels in plant tissues, was added to the medium the level of ABA and the β-subunit decreased in the cotyledons. Increasing the concentration of sucrose in the culture medium caused an increase in the concentration of ABA and β-subunit in the cotyledons. When in vitro translation products from RNA isolated from cotyledons cultured with ABA were immunoprecipitated with antiserum against β-conglycinin, there was an increased amount of pre-β-subunit polypetide compared to the translation products from RNA isolated from control cotyledons. The pre-β-subunit polypeptide was not detected in translation products from RNA isolated from fluridone-treated cotyledons. Nucleic acid hybridization reactions showed that the level of β-subunit mRNA was higher in ABA-treated cotyledons compared to the control, and was lower in the fluridone-treated cotyledons. We have shown that exogenous ABA is able to modulate the accumulation of the β-subunit of β-conglycinin in developing cultured soybean cotyledons.  相似文献   

6.
Chromatographic and electrophoretic studies have shown that the subunits of the crystalloid protein, isolated from mature castor bean (Ricinus communis L. cv Hale) seed endosperm protein bodies, are heterogeneous with molecular weights in the range 49 to 53.5 kilodaltons (kD), and are quantitatively in unequal amounts. Each subunit comprises an αβ polypeptide pair which are reduced by 2-mercaptoethanol in two subgroups with molecular weights in the 29 to 34 kD and 20.5 to 23.5 kD ranges. Subunits and corresponding polypeptide pairs are also seen to be heterogeneous in pI following isoelectric focusing. In general, large polypeptides are acidic (pI 4.8-6.2) and small polypeptides basic (pI 7.4-9.4), although overlap of some isoelectric isomers does occur, notably in polypeptides derived from subunits which are quantitatively present in smaller amounts.  相似文献   

7.
The 7S seed storage protein (β-conglycinin) of soybean (Glycine max [L]. Merr.) has three major subunits; α, α′, and β. Accumulation of the β-subunit, but not the α- and α′-subunits, has been shown to be repressed by exogenously applied methionine to the immature cotyledon culture system (LP Holowach, JF Thompson, JT Madison [1984] Plant Physiol 74: 576-583) and to be enhanced under sulfate deficiency in soybean plants (KR Gayler, GE Sykes [1985] Plant Physiol 78: 582-585). Transgenic petunia (Petunia hybrida) harboring either the α′- or β-subunit gene were constructed to test whether the patterns of differential expression were retained in petunia. Petunia regulates these genes in a similar way as soybean in response to sulfur nutritional stimuli, i.e. (a) expression of the β-subunit gene is repressed by exogenous methionine in in vitro cultured seeds, whereas the α′-subunit gene expression is not affected; and (b) accumulation of the β-subunit is enhanced by sulfur deficiency. The pattern of accumulation of major seed storage protein of petunia was not affected by these treatments. These results indicate that this mechanism of gene regulation in response to sulfur nutrition is conserved in petunia even though it is not used to regulate its own major seed storage proteins.  相似文献   

8.
Zhang X  Ma J  Berkowitz GA 《Plant physiology》1999,121(3):995-1002
Animal K+ channel α- (pore-forming) subunits form native proteins by association with β-subunits, which are thought to affect channel function by modifying electrophysiological parameters of currents (often by inducing fast inactivation) or by stabilizing the protein complex. We evaluated the functional association of KAT1, a plant K+ channel α-subunit, and KAB1 (a putative homolog of animal K+ channel β-subunits) by co-expression in Xenopus laevis oocytes. Oocytes expressing KAT1 displayed inward-rectifying, non-inactivating K+ currents that were similar in magnitude to those reported in prior studies. K+ currents recorded from oocytes expressing both KAT1 and KAB1 had similar gating kinetics. However, co-expression resulted in greater total current, consistent with the possibility that KAB1 is a β-subunit that stabilizes and therefore enhances surface expression of K+ channel protein complexes formed by α-subunits such as KAT1. K+ channel protein complexes formed by α-subunits such as KAT1 that undergo (voltage-dependent) inactivation do so by means of a “ball and chain” mechanism; the ball portion of the protein complex (which can be formed by the N terminus of either an α- or β-subunit) occludes the channel pore. KAT1 was co-expressed in oocytes with an animal K+ channel α-subunit (hKv1.4) known to contain the N-terminal ball and chain. Inward currents through heteromeric hKv1.4:KAT1 channels did undergo typical voltage-dependent inactivation. These results suggest that inward currents through K+ channel proteins formed at least in part by KAT1 polypeptides are capable of inactivation, but the structural component facilitating inactivation is not present when channel complexes are formed by either KAT1 or KAB1 in the absence of additional subunits.  相似文献   

9.
The temporal sequence of development of the major proteins of seeds of soybean (Merr.) has been studied during development of cotyledons from flowering to maturity. A well-defined difference occurred in the times of appearance and the periods of maximum accumulation of α, α′-, and β-subunits of betaconglycinin. Whereas α- and α′-subunits appeared 15 to 17 days after flowering, accumulation of β-subunit did not commence until 22 days after flowering. Such alterations in subunit composition infer that changes also occurred in the amino acid composition of betaconglycinin during maturation, particularly in the content of methionine which is low in the β-subunit.  相似文献   

10.
Analysis of the expression of genes encoding the β-conglycinin seed storage proteins in soybean has been used to extend our understanding of developmental gene expression in plants. The α, α′, and β subunits of β-conglycinin are encoded by a multigene family which is organ-specific in its expression. In this study we report the differentially programmed accumulation of the α, α′, and β subunits of β-conglycinin. Multiple isomeric forms of each subunit are present in the dry seed, but the timing of their accumulation is unique for each subunit. The previously reported variation in amount of α′ and α subunits in axis and cotyledons is also reflected in the amount of subunit specific mRNA which is present in each tissue. The β subunit, previously undetected in soybean axes, is found to be synthesized but rapidly degraded. These differences in β-conglycinin protein accumulation may be reflected by the morphological differences observed in protein bodies between these two tissues.  相似文献   

11.
Brugada syndrome (BrS) is an inherited autosomal dominant cardiac channelopathy. Several mutations on the cardiac sodium channel Nav1.5 which are responsible for BrS lead to misfolded proteins that do not traffic properly to the plasma membrane. In order to mimic patient heterozygosity, a trafficking defective mutant, R1432G was co-expressed with Wild Type (WT) Nav1.5 channels in HEK293T cells. This mutant significantly decreased the membrane Na current density when it was co-transfected with the WT channel. This dominant negative effect did not result in altered biophysical properties of Nav1.5 channels. Luminometric experiments revealed that the expression of mutant proteins induced a significant reduction in membrane expression of WT channels. Interestingly, we have found that the auxiliary Na channel β1-subunit was essential for this dominant negative effect. Indeed, the absence of the β1-subunit prevented the decrease in WT sodium current density and surface proteins associated with the dominant negative effect. Co-immunoprecipitation experiments demonstrated a physical interaction between Na channel α-subunits. This interaction occurred only when the β1-subunit was present. Our findings reveal a new role for β1-subunits in cardiac voltage-gated sodium channels by promoting α-α subunit interaction which can lead to a dominant negative effect when one of the α-subunits shows a trafficking defective mutation.  相似文献   

12.
The kinetics of accumulation (per milliliter of culture) of the α- and β- subunits, associated with chloroplast-localized ammonium inducible nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase (NADP-GDH) isoenzymes, were measured during a 3 hour induction of synchronized daughter cells of Chlorella sorokiniana in 29 millimolar ammonium medium under photoautotrophic conditions. The β-subunit holoenzyme(s) accumulated in a linear manner for 3 hours without an apparent induction lag. A 40 minute induction lag preceded the accumulation of the α-subunit holoenzyme(s). After 120 minutes, the α-subunit ceased accumulating and thereafter remained at a constant level (i.e. steady state between synthesis and degradation). From pulsechase experiments, using 35SO4 and immunochemical procedures, the rate of synthesis of the α-subunit was shown to be greater than the β-subunit during the first 80 minutes of induction. The α- and β-subunits had different rates of degradation during the induction period (t½ = 50 versus 150 minutes, respectively) and during the deinduction period (t½ = 5 versus 13.5 minutes) after removal of ammonium from the culture. During deinduction, total NADP-GDH activity decreased with a half-time of 9 minutes. Cycloheximide completely inhibited the synthesis and degradation of both subunits. A model for regulation of expression of the NADP-GDH gene was proposed.  相似文献   

13.
14.
Acetyl-CoA Carboxylase catalyzes the first committed step in fatty acid synthesis. Escherichia coli acetyl-CoA carboxylase is composed of biotin carboxylase, carboxyltransferase and biotin carboxyl carrier protein functions. The accA and accD genes that code for the α- and β-subunits, respectively, are not in an operon, yet yield an α2β2 carboxyltransferase. Here, we report that carboxyltransferase regulates its own translation by binding the mRNA encoding its subunits. This interaction is mediated by a zinc finger on the β-subunit; mutation of the four cysteines to alanine diminished nucleic acid binding and catalytic activity. Carboxyltransferase binds the coding regions of both subunit mRNAs and inhibits translation, an inhibition that is relieved by the substrate acetyl-CoA. mRNA binding reciprocally inhibits catalytic activity. Preferential binding of carboxyltransferase to RNA in situ was shown using fluorescence resonance energy transfer. We propose an unusual regulatory mechanism by which carboxyltransferase acts as a ‘dimmer switch’ to regulate protein production and catalytic activity, while sensing the metabolic state of the cell through acetyl-CoA concentration.  相似文献   

15.
Mycobacterium sp. strain PYR-1 degrades high-molecular-weight polycyclic hydrocarbons (PAHs) primarily through the introduction of both atoms of molecular oxygen by a dioxygenase. To clone the dioxygenase genes involved in PAH degradation, two-dimensional (2D) gel electrophoresis of PAH-induced proteins from cultures of Mycobacterium sp. strain PYR-1 was used to detect proteins that increased after phenanthrene, dibenzothiophene, and pyrene exposure. Comparison of proteins from induced and uninduced cultures on 2D gels indicated that at least six major proteins were expressed (105, 81, 52, 50, 43, and 13 kDa). The N-terminal sequence of the 50-kDa protein was similar to those of other dioxygenases. A digoxigenin-labeled oligonucleotide probe designed from this protein sequence was used to screen dioxygenase-positive clones from a genomic library of Mycobacterium sp. strain PYR-1. Three clones, each containing a 5,288-bp DNA insert with three genes of the dioxygenase system, were obtained. The genes in the DNA insert, from the 5′ to the 3′ direction, were a dehydrogenase, the dioxygenase small (β)-subunit, and the dioxygenase large (α)-subunit genes, arranged in a sequence different from those of genes encoding other bacterial dioxygenase systems. Phylogenetic analysis showed that the large α subunit did not cluster with most of the known α-subunit sequences but rather with three newly described α subunits of dioxygenases from Rhodococcus spp. and Nocardioides spp. The genes from Mycobacterium sp. strain PYR-1 were subcloned and overexpressed in Escherichia coli with the pBAD/ThioFusion system. The functionality of the genes for PAH degradation was confirmed in a phagemid clone containing all three genes, as well as in plasmid subclones containing the two genes encoding the dioxygenase subunits.  相似文献   

16.
The assembly of high voltage-activated Ca2+ channels with different β subunits influences channel properties and possibly subcellular targeting. We studied β subunit expression in the somata and axon terminals of the magnocellular neurosecretory cells, which are located in the supraoptic nucleus (SON) and neurohypophysis, respectively. Antibodies directed against the 4 CaVβ subunits (CaVβ1-CaVβ4) were used for immunoblots and for immunostaining of slices of these two tissues. We found that all 4 β subunits are expressed in both locations, but that CaVβ2 had the highest relative expression in the neurohypophysis. These data suggest that the CaVβ2 subunit is selectively targeted to axon terminals and may play a role in targeting and/or regulating the properties of Ca2+ channels.  相似文献   

17.
Because T cell differentiation leads to an expanded repertoire of chemokine receptors, a subgroup of G protein-coupled receptors, we hypothesized that the repertoire of G proteins might be altered in parallel. We analyzed the abundance of mRNA and/or protein of six G protein α-subunits in human CD4+ and CD8+ T cell subsets from blood. Although most G protein α-subunits were similarly expressed in all subsets, the abundance of Gαo, a protein not previously described in hematopoietic cells, was much higher in memory versus naive cells. Consistent with these data, activation of naive CD4+ T cells in vitro significantly increased the abundance of Gαo in cells stimulated under nonpolarizing or TH17 (but not TH1 or TH2)-polarizing conditions. In functional studies, the use of a chimeric G protein α-subunit, Gαqo5, demonstrated that chemokine receptors could couple to Gαo-containing G proteins. We also found that Gαi1, another α-subunit not described previously in leukocytes, was expressed in naive T cells but virtually absent from memory subsets. Corresponding to their patterns of expression, siRNA-mediated knockdown of Gαo in memory (but not naive) and Gαi1 in naive (but not memory) CD4+ T cells inhibited chemokine-dependent migration. Moreover, although even in Gαo- and Gαi1-expressing cells mRNAs of these α-subunits were much less abundant than Gαi2 or Gαi3, knockdown of any of these subunits impaired chemokine receptor-mediated migration similarly. Together, our data reveal a change in the repertoire of Gαi/o subunits during T cell differentiation and suggest functional equivalence among Gαi/o subunits irrespective of their relative abundance.  相似文献   

18.
Electrical excitability in neurons depends on the activity of membrane-bound voltage gated sodium channels (Nav) that are assembled from an ion conducting α-subunit and often auxiliary β-subunits. The α-subunit isoform Nav1.3 occurs in peripheral neurons together with the Nav β3-subunit, both of which are coordinately up-regulated in rat dorsal root ganglion neurons after nerve injury. Here we examine the effect of the β3-subunit on the gating behavior of Nav1.3 using whole cell patch clamp electrophysiology in HEK-293 cells. We show that β3 depolarizes the voltage sensitivity of Nav1.3 activation and inactivation and induces biphasic components of the inactivation curve. We detect both a fast and a novel slower component of inactivation, and we show that the β3-subunit increases the fraction of channels inactivating by the slower component. Using CD and NMR spectroscopy, we report the first structural analysis of the intracellular domain of any Nav β-subunit. We infer the presence of a region within the β3-subunit intracellular domain that has a propensity to form a short amphipathic α-helix followed by a structurally disordered sequence, and we demonstrate a role for both of these regions in the selective stabilization of fast inactivation. The complex gating behavior induced by β3 may contribute to the known hyperexcitability of peripheral neurons under those physiological conditions where expression of β3 and Nav1.3 are both enhanced.  相似文献   

19.
We showed previously that active PKC-α maintains F0F1-ATPase activity, whereas inactive PKC-α mutant (dnPKC-α) blocks recovery of F0F1-ATPase activity after injury in renal proximal tubules (RPTC). This study tested whether mitochondrial PKC-α interacts with and phosphorylates F0F1-ATPase. Wild-type PKC-α (wtPKC-α) and dnPKC-α were overexpressed in RPTC to increase their mitochondrial levels, and RPTC were exposed to oxidant or hypoxia. Mitochondrial levels of the γ-subunit, but not the α- and β-subunits, were decreased by injury, an event associated with 54% inhibition of F0F1-ATPase activity. Overexpressing wtPKC-α blocked decreases in γ-subunit levels, maintained F0F1-ATPase activity, and improved ATP levels after injury. Deletion of PKC-α decreased levels of α-, β-, and γ-subunits, decreased F0F1-ATPase activity, and hindered the recovery of ATP content after RPTC injury. Mitochondrial PKC-α co-immunoprecipitated with α-, β-, and γ-subunits of F0F1-ATPase. The association of PKC-α with these subunits decreased in injured RPTC overexpressing dnPKC-α. Immunocapture of F0F1-ATPase and immunoblotting with phospho(Ser) PKC substrate antibody identified phosphorylation of serine in the PKC consensus site on the α- or β- and γ-subunits. Overexpressing wtPKC-α increased phosphorylation and protein levels, whereas deletion of PKC-α decreased protein levels of α-, β-, and γ-subunits of F0F1-ATPase in RPTC. Phosphoproteomics revealed phosphorylation of Ser146 on the γ subunit in response to wtPKC-α overexpression. We concluded that active PKC-α 1) prevents injury-induced decreases in levels of γ subunit of F0F1-ATPase, 2) interacts with α-, β-, and γ-subunits leading to increases in their phosphorylation, and 3) promotes the recovery of F0F1-ATPase activity and ATP content after injury in RPTC.  相似文献   

20.
Hack E  Leaver CJ 《The EMBO journal》1983,2(10):1783-1789
The F1-ATPase complex has been purified from maize (Zea mays L.) mitochondria and shown to consist of five subunits with mol. wts. of 58 000 (α), 56 000 (β), 35 000 (γ), 22 000 (δ) and 8000 (ε). The α-subunit co-migrates on one- and two- dimensional isoelectric focussing-SDS polyacrylamide gels with the major polypeptide synthesised by isolated mitochondria. One-dimensional proteolytic peptide mapping and immunoprecipitation confirms that the α-subunit is a mitochondrial translation product and therefore presumably encoded in mitochondrial DNA. This contrasts with the situation in animal and fungal cells where all five subunits of the F1-ATPase are encoded by the nuclear genome and synthesised on cytosolic ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号