首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activated double-stranded RNA (dsRNA-dependent protein kinase PKR is a potent growth inhibitory protein that is primarily activated in virally infected cells, inducing cell death. Here we investigate whether selective activation of PKR can be used to kill cancer cells that express mutated genes containing deletions or chromosomal translocations. We show that antisense (AS) RNA complementary to fragments flanking the deletion or translocation can produce a dsRNA molecule of sufficient length to activate PKR and induce cell death following hybridization with mutated but not wild-type mRNA. Using the U87MG Delta EGFR cell line, which expresses a truncated form of epidermal growth factor receptor (EGFR), Delta(2-7) EGFR, we found that expression of a 39-nucleotide (nt) AS RNA complementary to the unique exon 1 to 8 junction caused selective death of cells harboring the truncated EGFR both in vitro and in vivo but did not affect cells expressing wild-type EGFR. A lentiviral vector expressing the 39-nt AS sequence strongly inhibited glioblastoma growth in mouse brain when injected after tumor cell implantation. This PKR-mediated killing strategy may be useful in treating many cancers that express a unique RNA species.  相似文献   

2.
3.
4.
The double-stranded RNA (dsRNA)-activated protein kinase (PKR) provides a fundamental control step in the regulation of protein synthesis initiation through phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2α), a process that prevents polypeptide chain initiation. In such a manner, activated PKR inhibits cell growth and induces apoptosis, whereas disruption of normal PKR signaling results in unregulated cell growth. Therefore, tight control of PKR activity is essential for regulated cell growth. PKR is activated by dsRNA binding to two conserved dsRNA binding domains within its amino terminus. We isolated a ribosomal protein L18 by interaction with PKR. L18 is a 22-kDa protein that is overexpressed in colorectal cancer tissue. L18 competed with dsRNA for binding to PKR, reversed dsRNA binding to PKR, and did not directly bind dsRNA. Mutation of K64E within the first dsRNA binding domain of PKR destroyed both dsRNA binding and L18 interaction, suggesting that the two interactive sites overlap. L18 inhibited both PKR autophosphorylation and PKR-mediated phosphorylation of eIF-2α in vitro. Overexpression of L18 by transient DNA transfection reduced eIF-2α phosphorylation and stimulated translation of a reporter gene in vivo. These results demonstrate that L18 is a novel regulator of PKR activity, and we propose that L18 prevents PKR activation by dsRNA while PKR is associated with the ribosome. Overexpression of L18 may promote protein synthesis and cell growth in certain cancerous tissue through inhibition of PKR activity.  相似文献   

5.
The human RNA-activated protein kinase PKR is an interferon-induced protein that is part of the innate immune response and inhibits viral replication. The action of PKR involves RNA-dependent autophosphorylation leading to inhibition of translation. PKR has an N-terminal dsRNA-binding domain that can interact non-sequence specifically with long (>33 bp) stretches of dsRNA leading to activation. In addition, certain viral and cellular RNAs containing non-Watson-Crick structures and multiple, shorter dsRNA sections can regulate PKR. In an effort to identify novel binders and possible activators of PKR, we carried out selections on a partially structured dsRNA library using truncated and full-length versions of PKR. A library with 10(11) sequences was constructed and aptamers that bound to His6-tagged proteins were isolated. Characterization revealed a novel minimal RNA motif for activation of PKR with the following unified structural characteristics: a hairpin with a nonconserved imperfect 16-bp dsRNA stem flanked by 10-15-nt single-stranded tails, herein termed a "ss-dsRNA motif." Boundary experiments revealed that the single-stranded tails flanking the dsRNA core provide the critical determinant for activation. The ss-dsRNA motif occurs in a variety of cellular and viral RNAs, suggesting possible novel functions for PKR in nature.  相似文献   

6.
7.
Wu S  Kaufman RJ 《Biochemistry》2004,43(34):11027-11034
The double-stranded (ds) RNA-activated protein kinase PKR phosphorylates the alpha-subunit of the eukaryotic initiation factor 2 (eIF2alpha) and inhibits translation initiation. PKR contains two dsRNA binding domains in its amino terminus and a kinase domain in its carboxy terminus. dsRNA binding activates PKR from a latent state by inducing dimerization and trans-autophosphorylation. Recent studies show that PKR is also activated by caspase cleavage to remove the inhibitory dsRNA binding domains. In this report, we show that the isolated kinase domain of PKR is a constitutively active monomeric kinase that has an activity similar to that of wild-type PKR. We used a solid-phase kinase assay system to show that PKR does not transfer its own phosphate to either PKR or eIF2alpha but rather uses the gamma-phosphate from ATP. In addition, the isolated autophosphorylated kinase domain of PKR phosphorylated intact monomeric PKR in trans in a reaction that did not require dsRNA binding. However, this trans-phosphorylation did not occur at the critical Thr446/451 sites and was not sufficient to induce dimerization and/or activation of PKR. The results show that dsRNA binding domains of PKR are not only required for dimerization of PKR but also required for phosphorylation of Thr446/451 sites of PKR. The results imply that even though the isolated kinase domain of PKR phosphorylates intact PKR and eIF2alpha, it is unable to activate PKR.  相似文献   

8.
9.
White SD  Jacobs BL 《Journal of virology》2012,86(10):5895-5904
Vaccinia virus (VACV) encodes a multifunctional protein, E3L, that is necessary for interferon (IFN) resistance in cells in culture. Interferon resistance has been mapped to the well-characterized carboxy terminus of E3L, which contains a conserved double-stranded RNA binding domain. The amino terminus of E3L has a Z-form nucleic acid binding domain, which has been shown to be dispensable for replication and IFN resistance in HeLa and RK13 cells; however, a virus expressing E3L deleted of the amino terminus has reduced pathogenicity in an animal model. In this study, we demonstrate that the pathogenicity of a virus expressing E3L deleted of the amino terminus was fully rescued in type I IFN receptor knockout (IFN-α/βR(-/-)) mice. Furthermore, this virus was IFN sensitive in primary mouse embryo fibroblasts (MEFs). This virus induced the phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α) in MEFs in an IFN-dependent manner. The depletion of double-stranded RNA-dependent protein kinase (PKR) from these MEFs restored the IFN resistance of this virus. Furthermore, the virus expressing E3L deleted of the amino terminus was also IFN resistant in PKR(-/-) MEFs. Thus, our data demonstrate that the amino terminus of E3L is necessary to inhibit the type I IFN response both in mice and in MEFs and that in MEFs, the amino terminus of E3L functions to inhibit the PKR pathway.  相似文献   

10.
Ethanol exposure inhibits protein synthesis and causes cell death in the developing central nervous system. The double-stranded RNA (dsRNA)-activated protein kinase (PKR), a serine/threonine protein kinase, plays an important role in translational regulation and cell survival. PKR has been well known for its anti-viral response. Upon activation by viral infection or dsRNA, PKR phosphorylates its substrate, the alpha-subunit of eukaryotic translation initiation factor-2 (eIF2alpha) leading to inhibition of translation initiation. It has recently been shown that, in the absence of a virus or dsRNA, PKR can be activated by direct interactions with its protein activators, PACT, or its mouse homologue, RAX. We have demonstrated that exposure to ethanol increased the phosphorylation of PKR and eIF2alpha in the developing cerebellum. The effect of ethanol on PKR/eIF2alpha phosphorylation positively correlated to the expression of PACT/RAX in cultured neuronal cells. Using PKR inhibitors and PKR null mouse fibroblasts, we verified that ethanol-induced eIF2alpha phosphorylation was mediated by PKR. Overexpression of a wild-type RAX dramatically enhanced sensitivity to ethanol-induced PKR/eIF2alpha phosphorylation, as well as translational inhibition and cell death. In contrast, overexpression of a mutant (S18A) RAX inhibited ethanol-mediated PKR/eIF2alpha activation. Ethanol promoted PKR and RAX association in cells expressing wild-type RAX but not in cells expressing S18A RAX. S18A RAX functioned as a dominant negative protein and blocked ethanol-induced inhibition of protein synthesis and cell death. Our results suggest that the interactions between PKR and PACT/RAX modulate the effect of ethanol on protein synthesis and cell survival in the central nervous system.  相似文献   

11.
12.
13.
In humans, the double-stranded RNA (dsRNA)-activated protein kinase (PKR) is expressed in late stages of the innate immune response to viral infection by the interferon pathway. PKR consists of tandem dsRNA binding motifs (dsRBMs) connected via a flexible linker to a Ser/Thr kinase domain. Upon interaction with viral dsRNA, PKR is converted into a catalytically active enzyme capable of phosphorylating a number of target proteins that often results in host cell translational repression. A number of high-resolution structural studies involving individual dsRBMs from proteins other than PKR have highlighted the key features required for interaction with perfectly duplexed RNA substrates. However, viral dsRNA molecules are highly structured and often contain deviations from perfect A-form RNA helices. By use of small-angle X-ray scattering (SAXS), we present solution conformations of the tandem dsRBMs of PKR in complex with two imperfectly base-paired viral dsRNA stem–loops; HIV-1 TAR and adenovirus VAI-AS. Both individual components and complexes were purified by size exclusion chromatography and characterized by dynamic light scattering at multiple concentrations to ensure monodispersity. SAXS ab initio solution conformations of the individual components and RNA–protein complexes were determined and highlight the potential of PKR to interact with both stem and loop regions of the RNA. Excellent agreement between experimental and model-based hydrodynamic parameter determination heightens our confidence in the obtained models. Taken together, these data support and provide a framework for the existing biochemical data regarding the tolerance of imperfectly base-paired viral dsRNA by PKR.  相似文献   

14.
The human double-stranded RNA (dsRNA)-dependent protein kinase PKR inhibits protein synthesis by phosphorylating translation initiation factor 2α (eIF2α). Vaccinia virus E3L encodes a dsRNA binding protein that inhibits PKR in virus-infected cells, presumably by sequestering dsRNA activators. Expression of PKR in Saccharomyces cerevisiae inhibits protein synthesis by phosphorylation of eIF2α, dependent on its two dsRNA binding motifs (DRBMs). We found that expression of E3 in yeast overcomes the lethal effect of PKR in a manner requiring key residues (Lys-167 and Arg-168) needed for dsRNA binding by E3 in vitro. Unexpectedly, the N-terminal half of E3, and residue Trp-66 in particular, also is required for anti-PKR function. Because the E3 N-terminal region does not contribute to dsRNA binding in vitro, it appears that sequestering dsRNA is not the sole function of E3 needed for inhibition of PKR. This conclusion was supported by the fact that E3 activity was antagonized, not augmented, by overexpressing the catalytically defective PKR-K296R protein containing functional DRBMs. Coimmunoprecipitation experiments showed that a majority of PKR in yeast extracts was in a complex with E3, whose formation was completely dependent on the dsRNA binding activity of E3 and enhanced by the N-terminal half of E3. In yeast two-hybrid assays and in vitro protein binding experiments, segments of E3 and PKR containing their respective DRBMs interacted in a manner requiring E3 residues Lys-167 and Arg-168. We also detected interactions between PKR and the N-terminal half of E3 in the yeast two-hybrid and λ repressor dimerization assays. In the latter case, the N-terminal half of E3 interacted with the kinase domain of PKR, dependent on E3 residue Trp-66. We propose that effective inhibition of PKR in yeast requires formation of an E3-PKR-dsRNA complex, in which the N-terminal half of E3 physically interacts with the protein kinase domain of PKR.  相似文献   

15.
16.
The double-stranded (ds) RNA-dependent protein kinase (PKR) is a primary regulator of antiviral responses; however, the ability of dsRNA to activate nuclear factor-kappa B (NF-kappa B) and dsRNA + interferon gamma (IFN-gamma) to stimulate inducible nitric-oxide synthase (iNOS) expression by macrophages isolated from PKR(-/-) mice suggests that signaling pathways in addition to PKR participate in antiviral activities. We have identified a novel phospholipid-signaling cascade that mediates macrophage activation by dsRNA and viral infection. Bromoenol lactone (BEL), a selective inhibitor of the calcium-independent phospholipase A(2) (iPLA(2)), prevents dsRNA- and virus-induced iNOS expression by RAW 264.7 cells and mouse macrophages. BEL does not modulate dsRNA-induced interleukin 1 expression, nor does it affect dsRNA-induced NF-kappa B activation. Protein kinase A (PKA) and the cAMP response element binding protein (CREB) are downstream targets of iPLA(2), because selective PKA inhibition prevents dsRNA-induced iNOS expression, and the inhibitory actions of BEL on dsRNA-induced iNOS expression are overcome by the direct activation of PKA. In addition, BEL inhibits dsRNA-induced CREB phosphorylation and CRE reporter activation. PKR does not participate in iPLA(2) activation or iNOS expression, because dsRNA stimulates iPLA(2) activity and dsRNA + IFN-gamma induces iNOS expression and nitric oxide production to similar levels by macrophages isolated from PKR(+/+) and PKR(-/-) mice. These findings support a PKR-independent signaling role for iPLA(2) in the antiviral response of macrophages.  相似文献   

17.
Hakki M  Geballe AP 《Journal of virology》2005,79(12):7311-7318
The human cytomegalovirus (HCMV) TRS1 and IRS1 genes rescue replication of vaccinia virus (VV) that has a deletion of the double-stranded RNA binding protein gene E3L (VVDeltaE3L). Like E3L, these HCMV genes block the activation of key interferon-induced, double-stranded RNA (dsRNA)-activated antiviral pathways. We investigated the hypothesis that the products of these HCMV genes act by binding to dsRNA. pTRS1 expressed by cell-free translation or by infection of mammalian cells with HCMV or recombinant VV bound to dsRNA. Competition experiments revealed that pTRS1 preferentially bound to dsRNA compared to double-stranded DNA or single-stranded RNA. 5'- and 3'-end deletion analyses mapped the TRS1 dsRNA-binding domain to amino acids 74 through 248, a region of identity to pIRS1 that contains no homology to known dsRNA-binding proteins. Deletion of the majority of this region (Delta86-246) completely abrogated dsRNA binding. To determine the role of the dsRNA-binding domain in the rescue of VVDeltaE3L replication, wild-type or deletion mutants of TRS1 were transfected into HeLa cells, which were then infected with VVDeltaE3L. While full-length TRS1 rescued VVDeltaE3L replication, deletion mutants affecting a carboxy-terminal region of TRS1 that is not required for dsRNA binding failed to rescue VVDeltaE3L. Analyses of stable cell lines revealed that the carboxy-terminal domain is necessary to prevent the shutoff of protein synthesis and the phosphorylation of eIF2alpha after VVDeltaE3L infection. Thus, pTRS1 contains an unconventional dsRNA-binding domain at its amino terminus, but a second function involving the carboxy terminus is also required for countering host cell antiviral responses.  相似文献   

18.
The RNA-editing enzyme ADAR1 is a double-stranded RNA (dsRNA) binding protein that modifies cellular and viral RNA sequences by adenosine deamination. ADAR1 has been demonstrated to play important roles in embryonic erythropoiesis, viral response, and RNA interference. In human hepatitis virus infection, ADAR1 has been shown to target viral RNA and to suppress viral replication through dsRNA editing. It is not clear whether this antiviral effect of ADAR1 is a common mechanism in response to viral infection. Here, we report a proviral effect of ADAR1 that enhances replication of vesicular stomatitis virus (VSV) through a mechanism independent of dsRNA editing. We demonstrate that ADAR1 interacts with dsRNA-activated protein kinase PKR, inhibits its kinase activity, and suppresses the alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha) phosphorylation. Consistent with the inhibitory effect on PKR activation, ADAR1 increases VSV infection in PKR+/+ mouse embryonic fibroblasts; however, no significant effect was found in PKR-/- cells. This proviral effect of ADAR1 requires the N-terminal domains but does not require the deaminase domain. These findings reveal a novel mechanism of ADAR1 that increases host susceptibility to viral infection by inhibiting PKR activation.  相似文献   

19.
Molecular recognition of RNA structure is key to innate immunity. The protein kinase PKR differentiates self from non-self by recognition of molecular patterns in RNA. Certain biological RNAs induce autophosphorylation of PKR, activating it to phosphorylate eukaryotic initiation factor 2α (eIF2α), which leads to inhibition of translation. Additional biological RNAs inhibit PKR, while still others have no effect. The aim of this article is to develop a cohesive framework for understanding and predicting PKR function in the context of diverse RNA structure. We present effects of recently characterized viral and cellular RNAs on regulation of PKR, as well as siRNAs. A central conclusion is that assembly of accessible long double-stranded RNA (dsRNA) elements within biological RNAs plays a key role in regulation of PKR kinase. Strategies for forming such elements include RNA dimerization, formation of symmetrical helical defects, A-form dsRNA mimicry, and coaxial stacking of helices.  相似文献   

20.
During viral infection, phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) by the interferon-induced RNA-dependent protein kinase, PKR, leads to inhibition of translation initiation and viral proliferation. Activation of PKR is mediated by association of virally encoded double-stranded RNAs (dsRNAs) with two dsRNA binding domains (dsRBDs) located in the N-terminus of PKR. To better understand the molecular mechanisms regulating PKR, we characterized the activities of wild-type and mutant versions of human PKR expressed and purified from yeast. The catalytic rate of eIF2alpha phosphorylation by our purified PKR was increased in response to dsRNA, but not single-stranded RNA or DNA, consistent with the properties previously described for PKR purified from mammalian sources. While both dsRBD1 and dsRBD2 were required for activation of PKR by dsRNA, only deletion of dsRBD1 severely reduced the basal eIF2alpha kinase activity. Removal of as few as 25 residues at the C-terminal junction of dsRBD2 dramatically increased eIF2alpha kinase activity and characterization of larger deletions that included dsRBD1 demonstrated that removal of these negative-acting sequences could bypass the dsRBD1 requirement for in vitro phosphorylation of eIF2alpha. Heparin, a known in vitro activator of PKR, enhanced eIF2alpha phosphorylation by PKR mutants lacking their entire N-terminal sequences, including the dsRBDs. The results indicate that induction of PKR activity is mediated by multiple mechanisms, one of which involves release of inhibition by negative-acting sequences in PKR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号