首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to characterize the form of the phosphorylated Ca2+-ATPase of sarcoplasmic reticulum which occludes the calcium bound in the enzyme (Takisawa, H., and Makinose, M. (1981) Nature (Lond.) 290, 271-273), a kinetic method was developed allowing quantitation of the amount of ADP-sensitive and ADP-insensitive phosphoenzyme. The relationships between occluded Ca2+ in the enzyme and the two forms of phosphoenzyme were studied at various concentrations of CaCl2 and MgCl2. The amount of tightly bound Ca2+ in the phosphoenzyme increases concordantly with the increase in the amount of ADP-sensitive phosphoenzyme, suggesting that occlusion of Ca2+ occurs in the ADP-sensitive phosphoenzyme. These results suggest that 1 mol of ADP-sensitive phosphoenzyme occludes 2 mol of Ca2+. Ca2+ is released from the enzyme under conditions which favor the formation of the ADP-insensitive phosphoenzyme (e.g. 5 mM MgCl2 and 50 microM CaCl2). Ca2+ release correlates approximately with the formation of the ADP-insensitive phosphoenzyme. The simulated time course of Ca2+ release, based on the Ca2+-binding properties of the two forms of phosphoenzyme, shows a good fit with the Ca2+ release curves observed, indicating that the ADP-insensitive phosphoenzyme binds no Ca2+ under these conditions.  相似文献   

2.
A general method to study the phosphate group of phosphoenzymes with infrared difference spectroscopy by helper enzyme-induced isotope exchange was developed. This allows the selective monitoring of the phosphate P-O vibrations in large proteins, which provides detailed information on several band parameters. Here, isotopic exchange was achieved at the oxygen atoms of the catalytically important phosphate group that transiently binds to the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a). [gamma-(18)O(3)]ATP phosphorylated the ATPase, which produced phosphoenzyme that was initially isotopically labeled. The helper enzyme adenylate kinase regenerated the substrate ATP from ADP (added or generated upon ATP hydrolysis) with different isotopic composition than used initially. With time this produced the unlabeled phosphoenzyme. The method was tested on the ADP-insensitive phosphoenzyme state of the Ca(2+)-ATPase for which the vibrational frequencies of the phosphate group are known, and it was established that the helper enzyme is effective in mediating the isotope exchange process.  相似文献   

3.
Ca(2+) transport and UTP hydrolysis catalyzed by sarcoplasmic reticulum Ca(2+)-ATPase from skeletal muscle was studied. A passive Ca(2+) load inside microsomal vesicles clearly decreased the net uptake rate and the final accumulation of Ca(2+) but not the UTP hydrolysis rate, causing energy uncoupling. In the absence of passive leak, the Ca(2+)/P(i) coupling ratio was 0.7-0.8. UTP hydrolysis did not maintain a rapid component of Ca(2+) exchange between the cytoplasmic and lumenal compartments as occurs with ATP. The uncoupling process in the presence of UTP is associated with: (i) the absence of a steady state accumulation of ADP-insensitive phosphoenzyme; (ii) the cytoplasmic dissociation of Ca(2+) bound to the ADP-sensitive phosphoenzyme; and (iii) the absence of enzyme inhibition by cyclopiazonic acid. All these characteristics confirm the lack of enzyme conformations with low Ca(2+) affinity and point to the existence of an uncoupling mechanism mediated by a phosphorylated form of the enzyme. Suboptimal coupling values can be explained in molecular terms by the proposed functional model.  相似文献   

4.
Kinetic studies of the phosphoenzyme intermediates of site-specific mutants were used to examine the role of Gly233 in the reaction mechanism of the sarcoplasmic reticulum Ca2(+)-ATPase. When this glycine residue, which is highly conserved among cation-transporting ATPases, was replaced by valine, arginine, or glutamic acid, a complete loss of the ability to pump Ca2+ was observed. The mutant enzymes were able to form an ADP-sensitive phosphoenzyme intermediate (E1P) by reaction with ATP in the presence of Ca2+, but this intermediate decayed to the ADP-insensitive form (E2P) very slowly, relative to the wild-type enzyme. The mutant phosphoenzyme intermediate remained ADP-sensitive, even when phosphorylation from ATP was performed under conditions which permitted accumulation of the ADP-insensitive phosphoenzyme intermediate in the wild type. The mutants were also defective in their ability to form the ADP-insensitive phosphoenzyme intermediate by phosphorylation from inorganic phosphate. In addition, they displayed a higher affinity for Ca2+ and a lower cooperativity in Ca2+ binding than did the wild-type enzyme, as measured through the phosphorylation reaction with ATP. These findings can be rationalized either in terms of a parallel shift of E1 to E2 and E1P to E2P conformational equilibria toward the E1 and E1P forms, respectively, or in terms of destabilization of the phosphoryl-protein interaction in the E2P form. The roles of 7 other residues located in the vicinity of Gly233 were also examined by mutation. Although the side chains of these residues are potential Ca2+ ligands, their replacement did not affect the Ca2+ affinity of the enzyme, suggesting the lack of a role of this region of the peptide in formation of Ca2(+)-binding sites.  相似文献   

5.
The kinetics of formation of the ADP-sensitive (EP) and ADP-insensitive (E*P) phosphoenzyme intermediates of the CaATPase in sarcoplasmic reticulum (SR) were investigated by means of the quenched-flow technique. At 21 degrees C, addition of saturating ADP to SR vesicles phosphorylated for 116 ms with 10 microM ATP gave a triphasic pattern of dephosphorylation in which EP and E*P accounted for 33% and 60% of the total phosphoenzyme, respectively. Inorganic phosphate (Pi) release was less than stoichiometric with respect to E*P decay and was not increased by preincubation with Ca2+ ionophore. The fraction of E*P present after only 6 ms of phosphoenzyme formation was similar to that at 116 ms, indicating that isomerization of EP to E*P occurs very rapidly. Comparison of the time course of E*P formation with intravesicular Ca2+ accumulation measured by quenching with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid + ADP revealed that Ca2+ release on the inside of the vesicle was delayed with respect to E*P formation. Since Ca2+ should dissociate rapidly dissociation from the low-affinity transport sites, these results suggest that Ca2+ remains "occluded" after phosphoenzyme isomerization and that a subsequent slow transition controls the rate of Ca2+ release at the intravesicular membrane surface. Analysis of the forward and reverse rate constants for the EP to E*P transition gave an expected steady-state distribution of phosphoenzymes strongly favoring the ADP-insensitive form. In contrast, the observed ratio of EP to E*P was about 1:2. To account for this discrepancy, a mechanism is proposed in which stabilization of the ADP-sensitive phosphoenzyme is brought about by a conformational interaction between adjacent subunits in a dimer.  相似文献   

6.
The effect of a carboxylic ionophore (lasalocid) on the sarcoplasmic reticulum Ca2(+)-ATPase was investigated. The purified enzyme was preincubated with lasalocid in the presence of Ca2+ and the absence of K+ at pH 7.0 and 0 degrees C for 2 h. The Ca2(+)-dependent ATPase activity was strongly inhibited by this preincubation, whereas the activity of the contaminant Mg2(+)-ATPase was unaffected. The steady-state level of the phosphoenzyme (EP) intermediate remained constant over the wide range of lasalocid concentrations. The Ca2(+)-induced enzyme activation was unaffected. The kinetics of phosphorylation of the Ca2(+)-activated enzyme by ATP as well as the rate of conversion of ADP-sensitive EP to ADP-insensitive EP were also unaffected. Accumulation of ADP-insensitive EP was greatly enhanced, and almost all of the EP accumulating at steady state was ADP-insensitive. Hydrolysis of ADP-insensitive EP was strongly inhibited. A similar strong inhibition of the Ca2(+)-dependent ATPase activity by lasalocid was found with sarcoplasmic reticulum vesicles. To examine the effect of lasalocid on the conformational change in each reaction step, the Ca2(+)-ATPase of sarcoplasmic reticulum vesicles was labeled with a fluorescent probe (N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine) without a loss of catalytic activity and then preincubated with lasalocid as described above. The conformational changes involved in hydrolysis of ADP-insensitive EP and in the reversal of this hydrolysis were appreciably retarded by lasalocid. The conformational changes involved in other reaction steps were unaffected. These results demonstrate that hydrolysis of ADP-insensitive EP in the catalytic cycle of this enzyme is selectively inhibited by lasalocid.  相似文献   

7.
The role of Mg2+ in the activation of phosphoenzyme hydrolysis has been investigated with the (Ca2+, Mg2+)-ATPase of sarcoplasmic reticulum vesicles. The enzyme of the native and solubilized vesicles was phosphorylated with ATP at 0 degrees C, pH 7.0, in the presence of Ca2+ and Mg2+. When Ca2+ and Mg2+ in the medium were chelated, phosphoenzyme hydrolysis continued for about 15 s and then ceased. The extent of this hydrolysis increased with increasing concentrations of Mg2+ added before the start of phosphorylation. This shows that the hydrolysis was activated by the Mg2+ added. The Mg2+ which activated phosphoenzyme hydrolysis was distinct from Mg2+ derived from MgATP bound to the substrate site. The Mg2+ site at which Mg2+ combined to activate phosphoenzyme hydrolysis was located on the outer surface of the vesicular membranes. During the catalytic cycle, Mg2+ combined with the Mg2+ site before Ca2+ dissociated from the Ca2+ transport site of the ADP-sensitive phosphoenzyme with bound Ca2+. This Mg2+ did not activate hydrolysis of the ADP-sensitive phosphoenzyme with bound Ca2+, but markedly activated hydrolysis of the ADP-insensitive phosphoenzyme without bound Ca2+. It is concluded that during the catalytic cycle, Mg2+ activates phosphoenzyme hydrolysis only after Ca2+ has dissociated from the Ca2+ transport site of phosphoenzyme.  相似文献   

8.
A rapid Ca2+ release from Ca2+-loaded sarcoplasmic reticulum vesicles from fast skeletal muscle can be induced under conditions which permit the formation of a stable phosphorylated intermediate of the (Ca2+-Mg2+)-ATPase. Such a state can be achieved experimentally by phosphorylating the ATPase in the absence of Mg2+ ions, which otherwise would stimulate the dephosphorylation step(s). Also, quercetine stimulates the rapid release of Ca2+ if used in the concentration range which does not produce inhibition of phosphoenzyme formation, but which inhibits phosphoenzyme dephosphorylation. The rapid efflux of Ca2+ ions proceeds as long as the low affinity Ca2+-binding sites facing the lumen of the vesicles are saturated and as long as Ca2+ is removed from the catalytic sites facing the cytosol. A molecular mechanism of the phosphoenzyme-mediated Ca2+ release is proposed. This mechanism is based on a rapid shuttling of the ATPase molecules between an ADP-sensitive and an ADP-insensitive phosphorylated state.  相似文献   

9.
Y Dupont  R Pougeois 《FEBS letters》1983,156(1):93-98
The sarcoplasmic reticulum Ca2+-ATPase catalyses a reversible calcium transport coupled to phosphate transfer between ATP and water. It has been proposed [Biochemistry (1980) 19, 4252-4261] that the reactivity of the acyl-phosphate bond is dependent on the water activity within the catalytic site. We have tested this hypothesis and found that the polarity in the free catalytic site is lower than that of water, a further and large decrease is observed when the enzyme is phosphorylated by Pi. Phosphorylation by ATP indicates that this polarity change is specifically associated with the formation of the ADP-insensitive phosphoenzyme.  相似文献   

10.
Site-specific mutagenesis was used to replace Glu309, Glu771, and Asp800 in the Ca(2+)-ATPase of rabbit fast twitch muscle sarcoplasmic reticulum with their corresponding amides. These residues are predicted to lie in the transmembrane domain and have been suggested as oxygen ligands for Ca2+ binding at high affinity sites (Clarke, D. M., Loo, T. W., Inesi, G., and MacLennan, D. H. (1989) Nature 339, 476-478). The Glu309----Gln and Asp800----Asn mutants were unable to form a phosphoenzyme from ATP at the Ca2+ concentrations examined (up to 12.5 mM), whereas the Glu771----Gln mutant phosphorylated from ATP at 2.5 mM Ca2+. In all three mutants, Ca2+ at concentrations well below 12.5 mM prevented or inhibited phosphorylation with Pi, suggesting that at least one calcium-binding site was functioning in each mutant. In the mutants Glu309----Gln and Glu771----Gln, the ADP-insensitive phosphoenzyme intermediate was unusually stable, as indicated by a very low rate of dephosphorylation observed in kinetic experiments and by an increased apparent affinity for Pi determined in equilibrium phosphorylation experiments. These data indicate a central role of Glu309 and Glu771 in the energy-transducing conformational changes and/or in the activation of phosphoenzyme hydrolysis.  相似文献   

11.
The steady state kinetics of ATP hydrolysis by partially purified adenosine triphosphatase preparations of sarcoplasmic reticulum was investigated at 0 degrees C and pH 7.0 in 2.0 mM MgCl2, 20 microM [gamma-32P]ATP, 20 microM CaCl2, and various concentrations of KCl in the presence and absence of 12% dimethyl sulfoxide. The steady state phosphoenzyme formed under these conditions could be resolved kinetically into ADP-sensitive and ADP-insensitive forms. These steady state kinetic data were analyzed according to a scheme in which the ADP-sensitive and ADP-insensitive phosphoenzymes occur sequentially, and Pi is derived from the latter. The KCl-dependent turnover rate of the ADP-insensitive phosphoenzyme that was estimated according to this scheme was in good agreement with the directly measured hydrolysis rate constant of the ADP-insensitive phosphoenzyme. In addition, the time course of the decomposition of the total amount of phosphoenzyme, measured after a steady state level was reached in 20 mM KCl and further phosphorylation was prevented by addition of excess ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid, was also in agreement with that calculated according to this scheme using values of the rate constants estimated from the amounts of the ADP-sensitive and ADP-insensitive phosphoenzymes and the rate of ATP hydrolysis. These results, together with our previous findings, support the view that this scheme describes the mechanism of ATP hydrolysis in the presence of KCl.  相似文献   

12.
H+ and Ca2+ concentration changes in the reaction medium following MgATP addition at pH 6.0 were determined with the partially purified Ca-ATPase from sarcoplasmic reticulum vesicles in the presence of 25-50 microM CaCl2 and 5 mM MgCl2 at 4 degrees C. Previously, we showed a sequential occurrence of H+ binding and H+ dissociation in the Ca-ATPase during ATP hydrolysis and further suggested that the H+ binding takes place inside the vesicles (Yamaguchi, M., and Kanazawa, T. (1984) J. Biol. Chem. 259, 9526-9531). The present results demonstrate that the H+ binding occurred coincidently with Ca2+ dissociation from the enzyme upon conversion of the phosphoenzyme (EP) intermediate from the ADP-sensitive form to the ADP-insensitive form in the catalytic cycle of ATP hydrolysis. As KCl decreased in the medium, the extent of the H+ binding increased almost proportionately with the extent of either the Ca2+ dissociation or the accumulation of ADP-insensitive EP. Both the H+ binding and the Ca2+ dissociation were prevented by a modification of the specific SH group of the enzyme essential for the conversion of ADP-sensitive EP to ADP-insensitive EP. In the late stage of the reaction, H+ dissociation from the enzyme occurred coincidently with Ca2+ binding to the dephosphoenzyme which was formed by EP decomposition. These results are consistent with the possibility that the H+ ejection during the Ca2+ uptake with the intact vesicles previously shown by several investigators takes place through a Ca2+/H+ exchange directly mediated by the membrane-bound Ca-ATPase.  相似文献   

13.
Arg198 of sarcoplasmic reticulum Ca2+-ATPase was substituted with lysine, glutamine, glutamic acid, alanine, and isoleucine by site-directed mutagenesis. Kinetic analysis was performed with microsomal membranes isolated from COS-1 cells which were transfected with the mutated cDNAs. The rate of dephosphorylation of the ADP-insensitive phosphoenzyme was determined by first phosphorylating the Ca2+-ATPase with 32Pi and then diluting the sample with non-radioactive Pi. This rate was reduced substantially in the mutant R198Q, more strongly in the mutants R198A and R1981, and most strongly in the mutant R198E, but to a much lesser extent in R198K. The reduction in the rate of dephosphorylation was consistent with the observed decrease in the turnover rate of the Ca2+-ATPase accompanied by the steady-state accumulation of the ADP-insensitive phosphoenzyme formed from ATP. These results indicate that the positive charge and high hydrophilicity of Arg198 are critical for rapid hydrolysis of the ADP-insensitive phosphoenzyme.  相似文献   

14.
Sarcoplasmic reticulum vesicles were phosphorylated with [gamma-32P]ATP in the presence of external Ca2+ without added Mg2+. The phosphoenzyme (EP) formed had tightly bound Ca2+ and was dephosphorylated by ADP. When the external Ca2+ was chelated after phosphorylation, Ca2+ dissociated from the EP and ADP addition no longer induced dephosphorylation. Subsequent addition of CaCl2 caused rapid recombination of Ca2+ and restoration of the ADP sensitivity. These findings show that the dissociation and recombination of Ca2+ took place on the outer surface of the membranes, indicating the existence of EP with bound Ca2+ which was exposed to the external medium (Caout.EP). The Ca2+ affinity of the Ca2+ binding site in Caout.EP was comparable to that of the high affinity Ca2+ binding site in the dephosphoenzyme (E). This shows that phosphorylation is not accompanied by an appreciable reduction in the Ca2+ affinity of the Ca2+ binding site, provided this site is exposed to the external medium. The transition from ADP-sensitive EP to ADP-insensitive induced by Ca2+ chelation was unaffected by Mg2+ in the medium. Mg2+ did not activate hydrolysis of the ADP-sensitive EP with bound Ca2+, whereas it markedly accelerated hydrolysis of the ADP-insensitive EP without bound Ca2+.  相似文献   

15.
A preparation of purified erythrocyte membrane ATPase whose activation by Ca2+ is or is not dependent on calmodulin depending on the enzyme dilution was used in the low dilution state for these studies. In appropriate conditions, the purified ATPase in the absence of calmodulin exhibited a Ca2+ concentration dependence identical to that of the native enzyme in the erythrocyte membrane ghost in the presence of calmodulin. Accordingly, an apparent Kd approximately equal to 1 X 10(-7) M was derived for cooperative calcium binding to the activating and transport sites of the nonphosphorylated enzyme. The kinetics of enzyme phosphorylation in the transient state following addition of ATP to enzyme activated with calcium were then resolved by rapid kinetic methods, demonstrating directly that phosphoenzyme formation precedes Pi production, consistent with the phosphoenzyme role as an intermediate in the catalytic cycle. Titration of a low affinity site (Kd approximately equal to 2 X 10(-3) M) with calcium produced inhibition of phosphoenzyme cleavage and favored reversal of the catalytic cycle, indicating that calcium dissociation from the transport sites precedes hydrolytic cleavage of the phosphoenzyme. The two different calcium dissociation constants of the nonphosphorylated and phosphorylated enzyme demonstrate that a phosphorylation-induced reduction of calcium affinity is the basic coupling mechanism of catalysis and active transport, with an energy expenditure of approximately 6 kcal/mol of calcium in standard conditions. From the kinetic point of view, a rate-limiting step is identified with the slow dissociation of calcium from the phosphoenzyme; another relatively slow step following hydrolytic cleavage and preceding recycling of the enzyme is suggested by the occurrence of a presteady state phosphoenzyme overshoot.  相似文献   

16.
Site-specific mutagenesis was used to investigate whether Pro160, Pro195, Pro308, Pro312, Pro803, and Pro812 play essential roles in the function of the sarcoplasmic reticulum Ca2(+)-ATPase. All six prolines were substituted with alanine; and in addition, Pro308 was replaced by glycine and Pro312 by glycine as well as by leucine. Mutant cDNAs were expressed in COS-1 cells, and mutant Ca2(+)-ATPases located in the isolated microsomal fraction were examined with respect to Ca2+ uptake activity, Ca2+ dependence of phosphorylation from ATP, and the kinetic properties of the phosphoenzyme intermediates formed from both ATP and Pi. The enzymatic cycle was little affected by substitution of Pro160, Pro195, and Pro812, which are located in the cytoplasmic domain; but replacement of Pro308, Pro312, and Pro803, in the putative transmembrane helices, had a profound impact on the function of the enzyme. All mutations of Pro308 and Pro803 led to ATPases which were characterized by a reduced affinity for Ca2+. These prolines may therefore be involved in the structure of the high affinity Ca2(+)-binding sites in the enzyme. Substitution of Pro312 with alanine or glycine gave rise to mutants unable to transport Ca2+ even though their apparent affinities for Ca2+ in the phosphorylation reaction with ATP were increased. In these enzymes, the ADP-sensitive phosphoenzyme intermediate was stable for at least 5 min at 0 degrees C, whereas the ADP-insensitive phosphoenzyme intermediate decay at a rate similar to that of the wild type. Thus, the inability to transport Ca2+ could be accounted for by a block of ADP-sensitive to ADP-insensitive phosphoenzyme intermediate conformational transition. In contrast, substitution of Pro312 with leucine gave rise to a mutant enzyme that retained about 7% of the normal Ca2+ transport rate. Phosphoenzyme turnover in this mutant also occurred at a low but significant rate, suggesting that the leucine side chain can substitute to some extent for proline.  相似文献   

17.
Amino acids in three highly conserved segments of the Ca2(+)-ATPase. Asp-Pro-Pro-Arg604, Thr-Gly-Asp627, Thr-Gly-Asp703 as well as Asp707, have been proposed to participate in formation of the nucleotide binding site. We have tested this hypothesis by investigating the properties of mutants with alterations to amino acids within these segments. Most of the mutants were found to be defective in Ca2+ transport function. The inactive mutants could be separated into two classes on the basis of the kinetics of phosphoenzyme intermediate formation and decomposition. One group, Asp601----Asn, Pro603----Leu, Asp627----Glu, and Asp703----Asn, formed phosphoenzyme intermediates with ATP in the presence of Ca2+ and with inorganic phosphate only in the absence of Ca2+, indicating that both the high affinity Ca2+ binding sites and the nucleotide binding sites were intact. In each of these mutants, however, the ADP-sensitive phosphoenzyme intermediate (E1P) decayed to the ADP-insensitive phosphoenzyme intermediate very slowly, relative to the wild-type enzyme. Thus the inability of these mutants to transport Ca2+ was accounted for by an apparent block of the transport reaction at the E1P to E2P conformational transition. Another group, Asp601----Glu, Pro603----Gly, Asp707----Glu, and Asp707----Asn, did not form detectable phosphoenzyme intermediates from either ATP or Pi. Although we have demonstrated an effect on Ca2+ transport of mutations in each of the highly conserved regions predicted to be involved in ATP binding, we cannot yet define their roles in ATP-dependent Ca2+ transport.  相似文献   

18.
Inhibition of sarcoplasmic reticulum Ca2+-ATPase by Mg2+ at high pH   总被引:1,自引:0,他引:1  
Steady state turnover of Ca2+-ATPase of sarcoplasmic reticulum has generally been reported to have a bell-shaped pH profile, with an optimum near pH 7.0. While a free [Mg2+] of 2 mM is optimal for activity at pH 7.0, it was found that this level was markedly inhibitory (K1/2 = 2 mM) at pH 8.0, thus accounting for the generally observed low activity at high pH. High activity was restored at pH 8.0 using an optimum free [Mg2+] of 0.2 mM. The mechanism of the Mg2+-dependent inhibition at pH 8.0 was probed. Inhibition was not due to Mg2+ competition with Ca2+ for cytoplasmic transport sites nor to inhibition of formation of steady state phosphoenzyme from ATP. Mg2+ inhibited (K1/2 = 1.8 mM) decay of steady state phosphoenzyme; thus, the locus of inhibition was one of the phosphoenzyme interconversion steps. Transient kinetic experiments showed that Mg2+ competitively inhibited (Ki = 0.7 mM) binding of Ca2+ to lumenal transport sites, blocking the ability of Ca2+ to reverse the catalytic cycle to form ADP-sensitive, from ADP-insensitive, phosphoenzyme. The data were consistent with a hypothesis in which Mg2+ binds lumenal Ca2+ transport sites with progressively higher affinity at higher pH to form a dead-end complex; its dissociation would then be rate-limiting during steady state turnover.  相似文献   

19.
The structural natures of stable analogues for the ADP-insensitive phosphoenzyme (E2P) of Ca(2+)-ATPase formed in sarcoplasmic reticulum vesicles, i.e. the enzymes with bound beryllium fluoride (BeF.E2), bound aluminum fluoride (AlF.E2), and bound magnesium fluoride (MgF.E2), were explored and compared with those of actual E2P formed from P(i) without Ca(2+). Changes in trinitrophenyl-AMP fluorescence revealed that the catalytic site is strongly hydrophobic in BeF.E2 as in E2P but hydrophilic in MgF.E2 and AlF.E2; yet, the three cytoplasmic domains are compactly organized in these states. Thapsigargin, which was shown in the crystal structure to fix the transmembrane helices and, thus, the postulated Ca(2+) release pathway to lumen in a closed state, largely reduced the tryptophan fluorescence in BeF.E2 as in E2P, but only very slightly (hence, the release pathway is likely closed without thapsigargin) in MgF.E2 and AlF.E2 as in dephosphorylated enzyme. Consistently, the completely suppressed Ca(2+)-ATPase activity in BeF-treated vesicles was rapidly restored in the presence of ionophore A23187 but not in its absence by incubation with Ca(2+) (over several millimolar concentrations) at pH 6, and, therefore, lumenal Ca(2+) is accessible to reactivate the enzyme. In contrast, no or only very slow restoration was observed with vesicles treated with MgF and AlF even with A23187. BeF.E2 thus has the features very similar to those characteristic of the E2P ground state, although AlF.E2 and MgF.E2 most likely mimic the transition or product state for the E2P hydrolysis, during which the hydrophobic nature around the phosphorylation site is lost and the Ca(2+) release pathway is closed. The change in hydrophobic nature is probably associated with the change in phosphate geometry from the covalently bound tetrahedral ground state (BeF(3)(-)) to trigonal bipyramidal transition state (AlF(3) or AlF(4)(-)) and further to tetrahedral product state (MgF(4)(2-)), and such change likely rearranges transmembrane helices to prevent access and leakage of lumenal Ca(2+).  相似文献   

20.
The decomposition of 32P phosphorylated enzyme intermediate formed by incubation of sarcoplasmic reticulum ATPase with [gamma-32P]ATP was studied following dilution of the reaction medium with a large excess of nonradioactive ATP. The phosphoenzyme decomposition includes two kinetic components. The fraction of intermediate undergoing slower decomposition is minimal in the presence of low (microM) Ca2+ and maximal in the presence of high (mM) Ca2+. A large fraction of phosphoenzyme undergoes slow decomposition when the Ca2+ concentration is high inside the vesicles, even if the Ca2+ concentration in the medium outside the vesicles is low. Parallel measurements of ATPase steady state velocity in the same experimental conditions indicate that the apparent rate constant for the slow component of phosphoenzyme decomposition is inadequate to account for the steady state ATPase velocity observed under the same conditions and cannot be the rate-limiting step in a single, obligatory pathway of the catalytic cycle. On the contrary, the steady state enzyme velocity at various Ca2+ concentrations is accounted for by the simultaneous contribution of both phosphoenzyme fractions undergoing fast and slow decomposition. Contrary to its slow rate of decomposition in the forward direction of the cycle, the phosphoenzyme pool formed in the presence of high Ca2+ reacts rapidly with ADP to form ATP in the reverse direction of the cycle. Detailed analysis of these experimental observations is consistent with a branched pathway following phosphoryl transfer from ATP to the enzyme, whereby the phosphoenzyme undergoes an isomeric transition followed by ADP dissociation, or ADP dissociation followed by the isomeric transition. The former path is much faster and is prevalent when the intravesicular Ca2+ concentration is low. When the intravesicular Ca2+ concentration rises, a pool of phosphoenzyme is formed by reverse equilibration through the alternate path. In the absence of ADP this intermediate decays slowly in the forward direction, and in the presence of ADP it decays rapidly in the reverse direction of the cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号