首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Efficient splicing of the 5′-most intron of pre-mRNA requires a 5′ m7G(5′)ppp(5′)N cap, which has been implicated in U1 snRNP binding to 5′ splice sites. We demonstrate that the cap alters the kinetic profile of U1 snRNP binding, but its major effect is on U6 snRNA binding. With two alternative wild-type splice sites in an adenovirus pre-mRNA, the cap selectively alters U1 snRNA binding at the site to which cap-independent U1 snRNP binding is stronger and that is used predominantly in splicing; with two consensus sites, the cap acts on both, even though one is substantially preferred for splicing. However, the most striking quantitative effect of the 5′ cap is neither on U1 snRNP binding nor on the assembly of large complexes but on the replacement of U1 snRNP by U6 snRNA at the 5′ splice site. Inhibition of splicing by a cap analogue is correlated with the loss of U6 interactions at the 5′ splice site and not with any loss of U1 snRNP binding.  相似文献   

5.
A major question in nuclear import concerns the identity of the nucleoporin(s) that interact with the nuclear localization sequences (NLS) receptor and its cargo as they traverse the nuclear pore. Ligand blotting and solution binding studies of isolated proteins have attempted to gain clues to the identities of these nucleoporins, but the studies have from necessity probed binding events far from an in vivo context. Here we have asked what binding events occur in the more physiological context of a Xenopus egg extract, which contains nuclear pore subcomplexes in an assembly competent state. We have then assessed our conclusions in the context of assembled nuclear pores themselves. We have used immunoprecipitation to identify physiologically relevant complexes of nucleoporins and importin subunits. In parallel, we have demonstrated that it is possible to obtain immunofluorescence localization of nucleoporins to subregions of the nuclear pore and its associated structures. By immunoprecipitation, we find the nucleoporin Nup153 and the pore-associated filament protein Tpr, previously shown to reside at distinct sites on the intranuclear side of assembled pores, are each in stable subcomplexes with importin α and β in Xenopus egg extracts. Importin subunits are not in stable complexes with nucleoporins Nup62, Nup93, Nup98, or Nup214/CAN, either in egg extracts or in extracts of assembled nuclear pores. In characterizing the Nup153 complex, we find that Nup153 can bind to a complete import complex containing importin α, β, and an NLS substrate, consistent with an involvement of this nucleoporin in a terminal step of nuclear import. Importin β binds directly to Nup153 and in vitro can do so at multiple sites in the Nup153 FXFG repeat region. Tpr, which has no FXFG repeats, binds to importin β and to importin α/β heterodimers, but only to those that do not carry an NLS substrate. That the complex of Tpr with importin β is fundamentally different from that of Nup153 is additionally demonstrated by the finding that recombinant β or β45–462 fragment freely exchanges with the endogenous importin β/Nup153 complex, but cannot displace endogenous importin β from a Tpr complex. However, the GTP analogue GMP-PNP is able to disassemble both Nup153– and Tpr–importin β complexes. Importantly, analysis of extracts of isolated nuclei indicates that Nup153– and Tpr–importin β complexes exist in assembled nuclear pores. Thus, Nup153 and Tpr are major physiological binding sites for importin β. Models for the roles of these interactions are discussed.  相似文献   

6.
The identification of vaccine immunogens able to elicit broadly neutralizing antibodies (bNAbs) is a major goal in HIV vaccine research. Although it has been possible to produce recombinant envelope glycoproteins able to adsorb bNAbs from HIV-positive sera, immunization with these proteins has failed to elicit antibody responses effective against clinical isolates of HIV-1. Thus, the epitopes recognized by bNAbs are present on recombinant proteins, but they are not immunogenic. These results led us to consider the possibility that changes in the pattern of antigen processing might alter the immune response to the envelope glycoprotein to better elicit protective immunity. In these studies, we have defined protease cleavage sites on HIV gp120 recognized by three major human proteases (cathepsins L, S, and D) important for antigen processing and presentation. Remarkably, six of the eight sites identified in gp120 were highly conserved and clustered in regions of the molecule associated with receptor binding and/or the binding of neutralizing antibodies. These results suggested that HIV may have evolved to take advantage of major histocompatibility complex (MHC) class II antigen processing enzymes in order to evade or direct the antiviral immune response.A major goal of HIV vaccine development is the development of immunogens that elicit protective antiviral antibody and cellular immune responses. However, after more than 25 years of research, vaccine immunogens able to elicit protective immunity in humans have yet to be described (11, 31). Although it has been possible to produce recombinant envelope proteins (gp120 and gp140) with many of the features of native virus proteins (e.g., complex glycosylation and the ability to bind CD4, chemokine receptors, and neutralizing antibodies), these antigens have not been able to elicit broadly neutralizing antibodies (bNAbs) or protective immune responses when used as immunogens (11, 32, 43, 50, 56, 74, 79). The fact that recombinant proteins can adsorb virus bNAbs from HIV-1-positive sera (59, 91) indicates that many recombinant envelope proteins are correctly folded but that the epitopes recognized by bNAbs are simply not immunogenic. Over the last decade, several different approaches have been employed to create immunogens able to elicit broadly neutralizing antibodies. These strategies have included efforts to duplicate and/or stabilize the oligomeric structure of HIV envelope proteins (5, 26, 87), the creation of minimal antigenic structures lacking epitopes that conceal important neutralizing sites (27, 46, 70, 89), and prime/boost strategies combining protein immunization with DNA immunization or infection with recombinant viruses in order to stimulate the endogenous synthesis and presentation of HIV immunogens (15, 29, 30, 83). However, none of these approaches has resulted in a clinically significant improvement in antiviral immunity or HIV vaccine efficacy. Efforts to elicit protective cellular immune responses (e.g., cytotoxic lymphocytes) by use of recombinant virus vaccines have likewise been disappointing (10, 61). In fact, such vaccines may have promoted HIV infection rather than inhibiting it (22, 23).In the present study, we describe the first steps in a new approach to reengineering the immunogenicity of HIV envelope proteins in order to improve the potency and specificity of humoral and cellular immune responses. The approach is based on defining the determinants of antigen processing and presentation of HIV envelope glycoproteins. Both humoral and cellular immune responses depend on proteolytic degradation of protein antigens prior to antigen presentation, mediated by professional antigen-presenting cells (APCs) such as macrophages, dendritic cells, and B cells (97). Normally, proteins of intracellular origin are processed by the proteasome, a 14- to 17-subunit protein complex located in the cytosol. Proteins of extracellular origin are processed in lysosomes or late endosomes of APCs. The resulting peptide epitopes are then loaded into major histocompatibility complex (MHC) class I or class II molecules and presented on the surfaces of APCs to CD8 or CD4 T cells. Within the endosomes and lysosomes of APCs, there are cathepsins, acid thiol reductase, and aspartyl endopeptidase. The enzymes perform two activities: degrading endocytosed protein antigens to liberate peptides for MHC class II binding (99) and removing the invariant chain chaperone (6, 94). Although all cathepsins can liberate epitopes from a diverse range of antigens (16), only cathepsins S and L have nonredundant roles in antigen processing in vivo (reviewed by Hsing and Rudensky [45]). Cathepsin L is expressed in thymic cortical epithelial cells but not in B cells or dendritic cells, while cathepsin S is found in all three types of APCs. Unlike cathepsins L and S, which are cysteine proteases and active at neutral pH, cathepsin D is an aspartic protease, is active at acidic pH, and participates in proteolysis and antigen presentation in connection with MHC class I and class II antigen presentation pathways established for CD4 and CD8 T cells. In considering the use of envelope proteins as potential vaccines, the route of immunization, formulation (e.g., adjuvants), protein folding, disulfide bonding, and glycosylation pattern all determine which peptides are available for MHC-restricted presentation.Previous studies provided evidence that gp120 was sensitive to digestion by cathepsins B, D, and L, but the specific cleavage sites were not defined (18). In the present study, we (i) describe the locations of eight protease cleavage sites on HIV-1 gp120 recognized by cathepsins L, S, and D, involved in antigen processing; (ii) determine the extent to which they are conserved; and (iii) evaluate the effect of cathepsin cleavage on the binding of gp120 to CD4-IgG and neutralizing antibodies. The results obtained provide new insights into the basis of envelope immunogenicity that may prove to be useful in the development of HIV vaccine antigens.  相似文献   

7.
P小体的研究进展   总被引:2,自引:0,他引:2  
P小体(processing bodies)即mRNA处理小体,它是一种富含了多种功能相关蛋白以及RNA的胞浆集合体(cytoplasmic foci)。研究表明这种胞浆结构与mRNA的降解过程以及RNA干扰介导的转录后基因沉默效应有关,另外,它还参与了细胞增殖和细胞周期以及宿主的抗病毒感染能力的调控。  相似文献   

8.
9.
Tumor cells of classical Hodgkin lymphoma (cHL) are characterized by a general loss of B cell phenotype, whereas antigen presenting properties are commonly retained. HLA class I is expressed in most EBV+ cHL cases, with an even enhanced expression in a proportion of the cases. Promyelocytic leukemia protein (PML) and special AT-rich region binding protein 1 (SATB1) are two global chromatin organizing proteins that have been shown to regulate HLA class I expression in Jurkat cells. We analyzed HLA class I, number of PML nuclear bodies (NBs) and SATB1 expression in tumor cells of 54 EBV+ cHL cases and used 27 EBV− cHL cases as controls. There was a significant difference in presence of HLA class I staining between EBV+ and EBV− cases (p<0.0001). We observed normal HLA class I expression in 35% of the EBV+ and in 19% of the EBV− cases. A stronger than normal HLA class I expression was observed in approximately 40% of EBV+ cHL and not in EBV− cHL cases. 36 EBV+ cHL cases contained less than 10 PML-NBs per tumor cell, whereas 16 cases contained more than 10 PML-NBs. The number of PML-NBs was positively correlated to the level of HLA class I expression (p<0.01). The percentage of SATB1 positive cells varied between 0% to 100% in tumor cells and was inversely correlated with the level of HLA class I expression, but only between normal and strong expression (p<0.05). Multivariable analysis indicated that the number of PML-NBs and the percentage of SATB1+ tumor cells are independent factors affecting HLA class I expression in EBV+ cHL. In conclusion, both PML and SATB1 are correlated to HLA class I expression levels in EBV+ cHL.  相似文献   

10.
11.
The majority of eukaryotic pre-mRNAs are processed by 3′-end cleavage and polyadenylation, although in metazoa the replication-dependent histone mRNAs are processed by 3′-end cleavage but not polyadenylation. The macromolecular complex responsible for processing both canonical and histone pre-mRNAs contains the ∼ 1160-residue protein Symplekin. Secondary-structural prediction algorithms identified putative HEAT domains in the 300 N-terminal residues of all Symplekins of known sequence. The structure and dynamics of this domain were investigated to begin elucidating the role Symplekin plays in mRNA maturation. The crystal structure of the Drosophila melanogaster Symplekin HEAT domain was determined to 2.4 Å resolution with single-wavelength anomalous dispersion phasing methods. The structure exhibits five canonical HEAT repeats along with an extended 31-amino-acid loop (loop 8) between the fourth and fifth repeat that is conserved within closely related Symplekin sequences. Molecular dynamics simulations of this domain show that the presence of loop 8 dampens correlated and anticorrelated motion in the HEAT domain, therefore providing a neutral surface for potential protein-protein interactions. HEAT domains are often employed for such macromolecular contacts. The Symplekin HEAT region not only structurally aligns with several established scaffolding proteins, but also has been reported to contact proteins essential for regulating 3′-end processing. Together, these data support the conclusion that the Symplekin HEAT domain serves as a scaffold for protein-protein interactions essential to the mRNA maturation process.  相似文献   

12.
During infection, positive-strand RNA viruses subvert cellular machinery involved in RNA metabolism to translate viral proteins and replicate viral genomes to avoid or disable the host defense mechanisms. Cytoplasmic RNA granules modulate the stabilities of cellular and viral RNAs. Understanding how hepatitis C virus and other flaviviruses interact with the host machinery required for protein synthesis, localization, and degradation of mRNAs is important for elucidating how these processes occur in both virus-infected and uninfected cells.  相似文献   

13.
14.
UAP56/SUB2 is a DExD/H-box RNA helicase that is critically involved in pre-mRNA splicing and mRNA nuclear export. This helicase is broadly conserved and essential in many eukaryotic lineages, including protozoan and metazoan parasites. Previous research suggests that helicases from parasites could be promising drug targets for treating parasitic diseases. Accordingly, characterizing the structure and function of these proteins is of interest for structure-based, de novo design of new lead compounds. Here, we used homology modeling to construct a three-dimensional structure of PfU52 (PMDB ID: PM0079288), the Plasmodium falciparum ortholog of UAP56/SUB2, and explored the detailed architecture of its functional sites. Comparative in silico analysis revealed that although PfU52 shared many physicochemical, structural and dynamic similarities with its human homolog, it also displayed some unique features that could be exploited for drug design.  相似文献   

15.
Antisense oligonucleotides are powerful tools for the in vivo regulation of gene expression. We have characterized the intracellular distribution of fluorescently tagged phosphorothioate oligodeoxynucleotides (PS-ONs) at high resolution under conditions in which PS-ONs have the potential to display antisense activity. Under these conditions PS-ONs predominantly localized to the cell nucleus where they accumulated in 20–30 bright spherical foci designated phosphorothioate bodies (PS bodies), which were set against a diffuse nucleoplasmic population excluding nucleoli. PS bodies are nuclear structures that formed in cells after PS-ON delivery by transfection agents or microinjection but were observed irrespectively of antisense activity or sequence. Ultrastructurally, PS bodies corresponded to electron-dense structures of 150–300 nm diameter and resembled nuclear bodies that were found with lower frequency in cells lacking PS-ONs. The environment of a living cell was required for the de novo formation of PS bodies, which occurred within minutes after the introduction of PS-ONs. PS bodies were stable entities that underwent noticeable reorganization only during mitosis. Upon exit from mitosis, PS bodies were assembled de novo from diffuse PS-ON pools in the daughter nuclei. In situ fractionation demonstrated an association of PS-ONs with the nuclear matrix. Taken together, our data provide evidence for the formation of a nuclear body in cells after introduction of phosphorothioate oligodeoxynucleotides.  相似文献   

16.
17.
一氧化氮参与调节盐胁迫诱导的玉米幼苗脱落酸积累   总被引:11,自引:1,他引:11  
以三叶一心期的玉米幼苗为实验材料,研究了盐胁迫下玉米幼苗根尖和叶片中一氧化氮(NO)和脱落酸(ABA)积累之间的关系。结果表明,盐胁迫下玉米幼苗NO和ABA的含量均增加,用NO供体硝普钠(Sodium nitroprusside,SNP)处理时,ABA含量亦增加,且累积的时间较盐胁迫下早。用NO合成的抑制剂L-NAME (Nω-nitro-L-arginine methyl ester hydrochloride)和NaN,处理时,可减弱盐胁迫诱导的ABA含量的增加,用NO清除剂cPTIO处理时,这种盐胁迫诱导的ABA增加减少。推测盐胁迫下产生的NO参与调节ABA的积累及逆境下植物的防御反应。  相似文献   

18.
19.
The granules which appear in the nucleolar area in apoptotic HL-60 cells after camptothecin administration (Zweyeret al., Exp. Cell Res.221, 27–40, 1995) were detected also in several other cell lines induced to undergo apoptosis by different stimuli, such as MOLT-4 treated with staurosporine, K-562 incubated with actinomycin D, P-815 exposed to temperature causing heat shock, Jurkat cells treated with EGTA, U-937 growing in the presence of cycloheximide and tumor necrosis factor-α, and HeLa cells treated with etoposide. Using immunoelectron microscopy techniques, we demonstrate that, besides the already described nuclear matrix proteins p125 and p160, these granules contain other nucleoskeletal polypeptides such as proliferating cell nuclear antigen, a component of ribonucleoprotein particles, a 105-kDa constituent of nuclear spliceosomes, and the 240-kDa nuclear mitotic apparatus-associated protein referred to as NuMA. Moreover, we also found in the granules SAF-A/hn-RNP-U and SATB1 proteins, two polypeptides that have been reported to bind scaffold-associated regions DNA sequencesin vitro,thus mediating the formation of looped DNA structuresin vivo.Fibrillarin and coilin are not present in these granules or the PML protein. Thus, the granules seen during the apoptotic process apparently are different from coiled bodies or other types of nuclear bodies. Furthermore, these granules do not contain chromatin components such as histones and DNA. Last, Western blotting analysis revealed that nuclear matrix proteins present in the granules are not proteolytically degraded except for the NuMA polypeptide. We propose that these granules might represent aggregates of nuclear matrix proteins forming during the apoptotic process. Moreover, since the granules are present in several cell lines undergoing apoptosis, they could be considered a previously unrecognized morphological hallmark of the apoptotic process.  相似文献   

20.
To elucidate compositional changes of the pineal body with aging, the authors investigated age-related changes of elements in the pineal body. After the ordinary dissection by medical students was finished, the pineal bodies and seven arteries were resected from the subjects ranging in age from 58 to 94 years. The element contents were determined by inductively coupled plasma atomic emission spectrometry. It was found that a high accumulation of Ca and P occurred in the pineal bodies with aging. Regarding the relationships among the elements, it was found that there were significant direct correlations among the contents of Ca, P, and Mg. With regard to the relationships between the pineal body and the arteries, no significant correlations were found in the Ca content between the pineal body and the arteries, such as the thoracic and abdominal aortas and the coronary, common carotid, pulmonary, splenic, and common iliac arteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号