首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this study was to determine whether the observed phenotypic stability in static strength during adolescence, as measured by interage correlations in arm pull, is mainly caused by genetic and/or environmental factors. Subjects were from the Leuven Longitudinal Twin Study (n = 105 pairs, equally divided over 5 zygosity groups). Arm-pull data were aligned on age at peak height velocity to attenuate the temporal fluctuations in interage correlations caused by differences in timing of the adolescent growth spurt. Developmental genetic models were fitted using structural equation modeling. After the data were aligned on age at peak height velocity, the annual interage correlations conformed to a quasi-simplex structure over a 4-yr interval. The best-fitting models included additive genetic and unique environmental sources of variation. Additive genetic factors that already explained a significant amount of variation at previous measurement occasions explained 44.3 and 22.5% of the total variation at the last measurement occasion in boys and girls, respectively. Corresponding values for unique environmental sources of variance are 31.2 and 44.5%, respectively. In conclusion, the observed stability of static strength during adolescence is caused by both stable genetic influences and stable unique environmental influences in boys and girls. Additive genetic factors seem to be the most important source of stability in boys, whereas unique environmental factors appear to be more predominant in girls.  相似文献   

2.
We set out to determine whether glucocorticoid receptor activity is affected mainly by genetic or environmental factors. The affinity and capacity of the glucocorticoid receptor was measured using dexamethasone binding in whole leukocytes from 53 monozygotic and 48 dizygotic twin pairs. Receptor binding characteristics assayed from twin pairs on the same day were highly correlated within twin pairs irrespective of zygosity. Apparent Kd was negatively correlated with environmental temperature (R2=0.13, P<0.0001) but this did not confound the intra-pair correlation, suggesting a strong familial component independent of zygosity. Receptor binding parameters were not more closely correlated in monozygotic twins than dizygotic twin pairs indicating that there is no major genetic contribution to receptor binding and that environmental influences predominate. The close similarity in binding between twin pairs in adulthood raises the possibility that familial, non-genetic, factors such as shared early life environment may programme the glucocorticoid receptor.  相似文献   

3.
The aim of this study was to explore, in a large and non-censored twin cohort, the nature (i.e., additive versus non-additive) and magnitude (i.e., heritability) of genetic influences on inter-individual differences in human longevity. The sample comprised all identified and traced non-emigrant like-sex twin pairs born in Denmark during the period 1870–1900 with a zygosity diagnosis and both members of the pairs surviving the age of 15 years. A total of 2872 pairs were included. Age at death was obtained from the Danish Central Person Register, the Danish Cause-of-Death Register and various other registers. The sample was almost non-censored on the date of the last follow-up (May 1, 1994), all but 0.6% had died, leaving a total of 2872 pairs for analysis. Proportions of variance attributable to genetic and environmental factors were assessed from variance-covariance matrices using the structural equation model approach. The most parsimonious explanation of the data was provided by a model that included genetic dominance (non-additive genetic effects caused by interaction within gene loci) and non-shared environmental factors (environmental factors that are individual-specific and not shared in a family). The heritability of longevity was estimated to be 0.26 for males and 0.23 for females. The small sex-difference was caused by a greater impact of non-shared environmental factors in the females. Heritability was found to be constant over the three 10-year birth cohorts included. Thus, longevity seems to be only moderately heritable. The nature of genetic influences on longevity is probably non-additive and environmental influences non-shared. There is no evidence for an impact of shared (family) environment.  相似文献   

4.
Part of the association between physical activity and low blood pressure (BP) may be a consequence of genetic selection. We investigated the association of genetic factors and physical activity in adolescence and adulthood with BP. BP was measured with a Finapres device in 71 monozygotic and 104 dizygotic male twin pairs using no antihypertensive medication. Subjects' mean age was 50.4 yr (range 40-72 yr). Subjects were interviewed about their lifetime exercise and other health habits. Exercise was classified as aerobic, power, or other, and these were further divided into adolescence (12-20 yr of age), the previous year, and lifetime. Genetic modeling was conducted to estimate genetic and environmental components of variance of systolic and diastolic BP. Aerobic exercise in adolescence and high-intensity aerobic exercise throughout the lifetime were associated with low diastolic BP in adulthood. Of the variance in diastolic BP, genetic factors accounted for 35% and aerobic exercise in adolescence for 5%. For systolic BP, genetic factors accounted for 39% of the variance. In turn, genetic factors accounted for 44% of the variance in aerobic exercise in adolescence. The genetic factors in part accounting for the variance in diastolic BP and those in part accounting for variance in aerobic exercise in adolescence were correlated. The association between aerobic exercise in adolescence and low diastolic BP in adulthood is a new finding, as is the observation that the factors partly share the same genes.  相似文献   

5.
In older adults, mobility limitations often coexist with overweight or obesity, suggesting that similar factors may underlie both traits. This study examined the extent to which genetic and environmental influences explain the association between adiposity and mobility in older women. Body fat percentage (bioimpedance test), walking speed over 10 m, and distance walked in a 6-min test were evaluated in 92 monozygotic (MZ) and 104 dizygotic (DZ) pairs of twin sisters reared together, aged 63-76 years. Genetic and environmental influences on each trait were estimated using age-adjusted multivariate genetic modeling. The analyses showed that the means (and s.d.) for body fat percentage, walking speed, and walking endurance were 33.2+/-7.3%, 1.7+/-0.3 m/s and 529.7+/-75.4 m, respectively. The phenotypic correlation between adiposity and walking speed was -0.32 and between adiposity and endurance it was -0.33. Genetic influences explained 80% of the association between adiposity and speed, and 65% of adiposity and walking endurance. Cross-trait genetic influences accounted for 12% of the variability in adiposity, 56% in walking speed, and 34% in endurance. Trait-specific genetic influences were also detected for adiposity (54%) and walking endurance (13%), but not speed. In conclusion, among community-living older women, an inverse association was found between adiposity and mobility that was mostly due to the effect of shared genes. This result suggests that the identification of genetic variants for body fat metabolism may also provide understanding of the development of mobility limitations in older women.  相似文献   

6.
Objective: This study identified genetic and environmental influences on the tracking of body size from birth to 16 to 18.5 years of age. Research Methods and Procedures: Longitudinal information was collected from a nationally representative sample of Finnish twin adolescents (birth cohorts 1975 to 1979) and their parents through questionnaires mailed when the twins were ages 16 and 18.5 years old. The sample included 702 monozygotic, 724 same‐sex dizygotic, and 762 opposite‐sex dizygotic sets of twins. The measures used were length, weight, ponderal index (kilograms per cubic meters), and gestational age at birth, and height, weight, and body mass index (kilograms per square meters) at 16 to 18.5 years of age. The changes in genetic and environmental influences on body size from birth to early adulthood were analyzed by quantitative genetic modeling. Results: The twins who had a higher weight or ponderal index at birth were taller and heavier in early adulthood, whereas those who were longer at birth were taller, but not heavier, later in life. Adult height was affected more by the birth size than body mass index. In the genetic modeling analyses, the genetic factors accounting for the variation of body size became more apparent with age, and both genetic and environmental influences on stature had a sizable carry‐over effect from birth to late adolescence, whereas for relative weight, the influences were more age‐specific. Discussion: The genetic and environmental architecture of body size changes from birth to adulthood. Even in monozygotic twins who share their genetic background, the initially larger twin tended to remain larger, demonstrating the long‐lasting effects of fetal environment on final body size.  相似文献   

7.
Fisher (1930) presented both theoretical and empirical results concerning genetic influences on fertility. Since then, only sparse research has been done on the genetics of fertility, although more sophisticated methodogy and data now exist than were available to Fisher. This paper presents a behavioural genetic analysis of age at first intercourse, accounting for genetic, shared environmental, and selected non-shared environmental influences. The data came from the nationally representative National Longitudinal Survey of Youth (NLSY). A newly developed kinship linking procedure was used that identifies links for cousins, half-siblings, full-siblings and twins in the NLSY. The results suggest a genetic influence in the overall dataset, and also among whites and in male-male and opposite-sex pairs. Genetic influences were extremely small or non-existent for blacks and for female-female pairs. Shared environmental influences were small for most subsets of the data, but moderate for female-female pairs. Two specific non-shared environmental influences--self-esteem and locus of control--were ruled out as accounting for any meaningful variance, although other general sources of non-shared environmental influence appear potentially important. Analysis of selected samples from upper and lower tails suggested that genetic influences are important in accounting for both early and late non-virginity. These findings are consistent with work reported by Miller et al. (1999), who used molecular genetic methods. Generally, these findings support the existence of genetic influences and implicate non-shared environmental influences as being important determinants of the timing of loss of virginity among US adolescents and young adults.  相似文献   

8.
In order to investigate the genetic and environmental antecedents of osteoarthritis (OA), self-report measures of joint pain, stiffness and swelling were obtained from a population-based sample of 1242 twin pairs over 50 years of age. In order to provide validation for these self-report measures, a subsample of 118 twin pairs were examined according to the American College of Rheumatology clinical and radiographic criteria for the classification of osteoarthritis. A variety of statistical methods were employed to identify the model derived from self-report variables which would provide optimal prediction of these standardised assessments, and structural equation modelling was used to determine the relative influences of genetic and environmental influences on the development of osteoarthritis. Significant genetic effects were found to contribute to osteoarthritis of the hands, hips and knees in women, with heritability estimates ranging from 30-46% depending on the site. In addition, the additive genetic effects contributing to osteoarthritis in various parts of the body were confirmed to be the same. Statistically significant familial aggregation of osteoarthritis in men was also observed, but it was not possible to determine whether this was due to genetic or shared environmental effects.  相似文献   

9.
The aim of the present study was to determine the relative roles of genetic and environmental influences on postural balance in older women. The participants were 97 monozygotic (MZ) and 102 dizygotic (DZ) female twins, aged 64-76 yr. Postural sway was measured during side-by-side stance with eyes open and eyes closed, and during semitandem stance with eyes open on a force platform. Sway data were condensed into four first-order and one second-order latent factors. The second-order factor, named balance, incorporates sway data from multiple tests and thus best describes the phenotype of postural balance. The contribution of genetic and environmental influences on the variability of the latent factors was assessed by using structural equation modeling. Additive genetic influences accounted for 35% and shared environmental influences accounted for 24% of the total variance in the balance factor. In the present study, postural balance in older women had a moderate genetic component. Genetic influences on postural balance may be mediated through gene variation in the systems that control posture. The finding that individual environmental influences accounted for almost one-half of the variance in postural balance points to the potential of targeted interventions to maintain and improve balance control in older persons.  相似文献   

10.
Diurnal preference changes across the lifespan. However, the mechanisms underlying this age-related shift are poorly understood. The aim of this twin study was to determine the extent to which genetic and environmental influences on diurnal preference are moderated by age. Seven hundred and sixty-eight monozygotic and 674 dizygotic adult twin pairs participating in the University of Washington Twin Registry completed the reduced Morningness–Eveningness Questionnaire as a measure of diurnal preference. Participants ranged in age from 19 to 93 years (mean?=?36.23, SD?=?15.54) and were categorized on the basis of age into three groups: younger adulthood (19–35 years, n?=?1715 individuals), middle adulthood (36–64 years, n?=?1003 individuals) and older adulthood (65+ years, n?=?168 individuals). Increasing age was associated with an increasing tendency towards morningness (r?=?0.42, p?<?0.001). Structural equation modeling techniques parsed the variance in diurnal preference into genetic and environmental influences for the total sample as well as for each age group separately. Additive genetic influences accounted for 52%[46–57%], and non-shared environmental influences 48%[43–54%], of the total variance in diurnal preference. In comparing univariate genetic models between age groups, the best-fitting model was one in which the parameter estimates for younger adults and older adults were equated, in comparison with middle adulthood. For younger and older adulthood, additive genetic influences accounted for 44%[31–49%] and non-shared environmental influences 56%[49–64%] of variance in diurnal preference, whereas for middle adulthood these estimates were 34%[21–45%] and 66%[55–79%], respectively. Therefore, genetic influences on diurnal preference are attenuated in middle adulthood. Attenuation is likely driven by the increased importance of work and family responsibilities during this life stage, in comparison with younger and older adulthood when these factors may be less influential in determining sleep–wake timing. These findings have implications for studies aimed at identifying specific non-shared environmental influences, as well as molecular genetic studies aimed at identifying specific polymorphisms associated with diurnal preference.  相似文献   

11.

Background

The Child and Adolescent Twin Study in Sweden (CATSS) is an on-going, large population-based longitudinal twin study. We aimed (1) to investigate the reliability of two different versions (125-items and 238-items) of Cloninger''s Temperament and Character Inventory (TCI) used in the CATSS and the validity of extracting the short version from the long version, (2) to compare these personality dimensions between twins and adolescents from the general population, and (3) to investigate the genetic structure of Cloninger''s model.

Method

Reliability and correlation analyses were conducted for both TCI versions, 2,714 CATSS-twins were compared to 631 adolescents from the general population, and the genetic structure was investigated through univariate genetic analyses, using a model-fitting approach with structural equation-modeling techniques based on same-sex twin pairs from the CATSS (423 monozygotic and 408 dizygotic pairs).

Results

The TCI scores from the short and long versions showed comparable reliability coefficients and were strongly correlated. Twins scored about half a standard deviation higher in the character scales. Three of the four temperament dimensions (Novelty Seeking, Harm Avoidance, and Persistence) had strong genetic and non-shared environmental effects, while Reward Dependence and the three character dimensions had moderate genetic effects, and both shared and non-shared environmental effects.

Conclusions

Twins showed higher scores in character dimensions compared to adolescents from the general population. At least among adolescents there is a shared environmental influence for all of the character dimensions, but only for one of the temperament dimensions (i.e., Reward Dependence). This specific finding regarding the existence of shared environmental factors behind the character dimensions in adolescence, together with earlier findings showing a small shared environmental effects on character among young adults and no shared environmental effects on character among adults, suggest that there is a shift in type of environmental influence from adolescence to adulthood regarding character.  相似文献   

12.
The purpose of the present study was to examine genetic and environmental effects on maximal isometric handgrip, knee extension, and ankle plantar flexion strength. In addition, we wanted to investigate whether the strength of these three muscle groups shares a genetic component or whether the genetic effect is specific for each muscle group. Muscle strength was measured as part of the Finnish Twin Study on Aging in 97 monozygotic (MZ) and 102 dizygotic (DZ) female twin pairs, aged 63-76 yr. The MZ and DZ individuals did not differ from each other in age, body height, weight, or self-related health. The age-adjusted pairwise (intraclass) correlations of the MZ and DZ twins were, respectively, 0.462 and 0.242 in knee extension, 0.435 and 0.345 in handgrip, and 0.512 and 0.435 in ankle plantar flexion strength. The multivariate genetic analysis showed that handgrip and knee extension strength shared a genetic component, which accounted for 14% (95% confidence interval: 4-28%) of the variance in handgrip strength and 31% (95% confidence interval: 18-45%) in knee extension strength. The influence of genetic effects on ankle plantar flexion strength was minor and not significant. Furthermore, these three muscle groups had a nongenetic familial effect in common and nonshared environmental effects in common. The results suggested that muscle strength is under a genetic regulation, but also environmental effects have a significant role in explaining the variability in the muscle strength.  相似文献   

13.
14.
Obesity, insulin resistance and disturbed glucose metabolism cluster within the Insulin Resistance Syndrome (IRS). Whether this reflects shared genetic or environmental factors detectable in 'normal' populations (not selected for IRS features) is unknown. This study estimated (i) genetic influences on IRS traits and (ii) shared and specific genetic and environmental factors on the relationships between these traits in healthy female twins. Fasting insulin, glucose, total and central fat were measured in 59 monozygotic (MZ) and 51 dizygotic (DZ) female twin pairs aged (+/- SD) 52 +/- 13 years. Body fat was measured by dual-energy X-ray absorptiometry, insulin resistance and secretion by a modified homeostasis model assessment. Using intraclass correlation coefficients and univariate model-fitting analyses, genetic influences were found in total fat, central fat, insulin resistance, fasting glucose and insulin secretion, with genetic factors explaining 64, 57, 59, 75 and 68% of their variance, respectively, using the latter technique. In matched analysis intra-pair differences in total and central fat related to intra-pair differences in insulin resistance (r2 = 0.19, P < 0.001). Multivariate model-fitting showed a close genetic relationship between total and central fat (r = 0.88). The genetic correlation between IR and central fat (0.41) was significantly greater than that for total fat (0.24), suggesting that central fat is not only a predictor of, but shares considerable genetic influence with, insulin resistance. In Cholesky analysis, these genetic influences were separate from those shared between central and total fat. In conclusion, both shared and specific genetic factors regulate components of the IRS in healthy females. However, there were discrete genetic influences on beta-cell insulin secretion, not shared with other IRS components, suggesting that a separate genetic propensity exists for Type 2 diabetes. These findings suggest we may understand the genetic and environmental influences on IRS from the study of the normal population.  相似文献   

15.
Serum thyrotropin (TSH), free thyroxine (T4), and free triiodothyronine (T3) levels illustrate the thyroid function set point, but the interrelations between these have never been characterized in detail. The aim of this study was to examine the associations between TSH and thyroid hormone levels in healthy euthyroid twins and to determine the extent to which the same genes influence more than one of these biochemical traits; 1,380 healthy euthyroid Danish twins (284 monozygotic, 286 dizygotic, 120 opposite-sex twin pairs) were recruited. Genetic and environmental associations between thyroid function measurements were examined using quantitative genetic modeling. In bivariate genetic models, the phenotypic relation between two measurements was divided into genetic and environmental correlations. Free T4 and free T3 levels were positively correlated (r=0.32, P<0.0001). The genetic correlation between serum free T4 and free T3 levels was rg=0.25 (95% CI 0.14-0.35), suggesting that a set of common genes affect both phenotypes (pleiotropy). The correlation between the environmental effects was re=0.41 (0.32-0.50). From this we calculated that the proportion of the correlation between free T4 and free T3 levels mediated by common genetic factors was 48%. Only 7% of the genetic component of serum free T3 levels is shared with serum free T4. Serum TSH and thyroid hormone levels did not share any genetic influences. In conclusion, thyroid hormone levels are partly genetically correlated genes that affect free T4 levels and exert pleiotropic effects on free T3 levels, although most of the genetic variance for these measurements is trait specific.  相似文献   

16.
Obesity is more common among the less educated, suggesting education-related environmental triggers. Such triggers may act differently dependent on genetic and environmental predisposition to obesity. In a Danish Twin Registry survey, 21,522 twins of same-sex pairs provided zygosity, height, weight, and education data. Body mass index (BMI = kg weight/ m height(2)) was used to measure degree of obesity. We used quantitative genetic modeling to examine how genetic and shared and nonshared environmental variance in BMI differed by level of education and to estimate how genetic and shared and nonshared environmental correlations between education and BMI differed by level of education, analyzing women and men separately. Correlations between education and BMI were -.13 in women, -.15 in men. High BMI's were less frequent among well-educated participants, generating less variance. In women, this was due to restriction of all forms of variance, overall by a factor of about 2. In men, genetic variance did not vary with education, but results for shared and nonshared environmental variance were similar to those for women. The contributions of the shared environment to the correlations between education and BMI were substantial among the well-educated, suggesting importance of familial environmental influences common to high education and lower BMI. Family influence was particularly important in linking high education and lower levels of obesity.  相似文献   

17.
Individuals differ widely in cortisol output over the day, but the etiology of these individual differences remains poorly understood. Twin studies are useful for quantifying genetic and environmental influences on the variation in cortisol output, lending insight into underlying influences on the components of Hypothalamic-Pituitary-Adrenal (HPA) axis functioning. Salivary cortisol was assayed on 446 twin pairs (157 monozygotic, 289 dizygotic; ages 7-8). Parents helped youth collect saliva 30 min after waking, mid-afternoon, and 30 min prior to bedtime across 3 consecutive days. We used hierarchical linear modeling to extract predicted cortisol levels and to distinguish cortisol's diurnal rhythm using a slopes-as-outcome piecewise growth curve model; two slopes captured the morning-to-afternoon and afternoon-to-evening rhythm, respectively. Separate genetic models were then fit to cortisol level at waking, mid-afternoon, and evening as well as the diurnal rhythm across morning-to-afternoon and afternoon-to-evening hours. Three results from these analyses are striking. First, morning-to-afternoon cortisol level showed the highest additive genetic variance (heritability), consistent with prior research. Second, cortisol's diurnal rhythm had an additive genetic component, particularly across the morning-to-afternoon hours. In contrast, additive genetic variation did not significantly contribute to variation in afternoon-to-evening slope. Third, the majority of variance in cortisol concentration was associated with shared family environments. In summary, both genetic and environmental factors influence cortisol's circadian rhythm, and they do so differentially across the day.  相似文献   

18.
Although over 50 twin and adoption studies have been performed on the genetic architecture of antisocial behaviour, far fewer studies have investigated prosocial behaviour, and none have done so on a non-western population. The present study examined mothers' ratings of prosocial behaviour in 514 pairs of 2- to 9-year-old South Korean monozygotic and dizygotic twins. Correlational analyses showed a tendency of increasing genetic effects and decreasing shared environmental effects with age although shared family environment effects and the moderating effects of age did not attain statistical significance in model-fitting analyses. The best-fitting model indicated that 55% (95% CI: 45-64%) of the variance in the 2- to 9-year-olds' prosocial behaviour was due to genetic factors and 45% (95% CI: 36-55%) was due to non-shared environmental factors. It is concluded that genetic and environmental influences on prosocial behaviour in young South Koreans are mostly similar to those in western samples.  相似文献   

19.
Objectives : A twin‐based comparative study on the genetic influences in metabolic endophenotypes in two populations of substantial ethnic, environmental, and cultural differences was performed. Design and Methods : Data on 11 metabolic phenotypes including anthropometric measures, blood glucose, and lipids levels as well as blood pressure were available from 756 pairs of Danish twins (309 monozygotic and 447 dizygotic twin pairs) with a mean age of 38 years (range: 18‐67) and from 325 pairs of Chinese twins (183 monozygotic and 142 dizygotic twin pairs) with a mean age of 40.5 years (range: 18‐69). Twin modeling was performed on full and nested models with the best fitting models selected. Results : Heritability estimates were compared between Danish and Chinese samples to identify differential genetic influences on each of the phenotypes. Except for hip circumference, all other body measures exhibited similar heritability patterns in the two samples with body weight showing only a slight difference. Higher genetic influences were estimated for fasting blood glucose level in Chinese twins, whereas the Danish twins showed more genetic regulation over most lipids phenotypes. Systolic blood pressure was more genetically controlled in Danish than in Chinese twins. Conclusions : Metabolic endophenotypes show disparity in their genetic determinants in populations under distinct environmental conditions.  相似文献   

20.
The purpose of the present study was to clarify genetic and environmental origins of psychological traits of eating disorders using a Japanese female twin sample. Participants were 162 pairs of female twins consisting of 116 pairs of monozygotic (MZ) twins and 46 pairs of dizygotic (DZ) twins in their adolescence. Psychological traits of eating disorders were assessed with five subscales of the Eating Disorder Inventory (EDI). As a result of using univariate twin analyses, among five subscales of EDI (maturity fears, ineffectiveness, interpersonal distrust, interoceptive awareness, and perfectionism), perfectionism showed significant additive genetic contributions and individual specific environmental effects. On the other hand, maturity fears, ineffectiveness, interoceptive awareness, and interpersonal distrust indicated significant shared environment contributions and individual specific environment effects. The results suggest the importance of both genetic and shared environmental influences on psychological traits of eating disorders in the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号