首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flavan-3-ols (-)-epicatechin (epicatechin) and (+)-catechin (catechin) and their related oligomers (procyanidins) isolated from cocoa were assayed for their capacity to inhibit the UVC-mediated formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (oxo(8)dG) in calf thymus DNA. The above-mentioned compounds inhibited oxo(8)dG production in a concentration- and time-dependent manner. After 30 min of irradiation (30 kJ/m(2)), 0.1, 1.0, 10, and 100 microM epicatechin inhibited oxo(8)dG formation by 20, 36, 64, and 74%, respectively. For the same dose of UVC, 0.1, 1.0, 10, and 100 microM catechin inhibited oxo(8)dG formation by 1, 23, 50, and 70%, respectively. Epicatechin was more efficient than catechin with respect to inhibiting oxo(8)dG formation (IC(50) 1.7 +/- 0.7 vs 4.0 +/- 0.7 microM). Monomer, tetramer, and hexamer fractions were equally effective in inhibiting oxo(8)dG formation when assayed at 10 microM monomer equivalent concentration. At similar concentrations (1-50 microM), the inhibition of the UVC-mediated oxo(8)dG formation by flavan-3-ols and procyanidins was in the range of that of alpha-tocopherol, Trolox, ascorbate, and glutathione. These results support the concept that flavan-3-ols and their related procyanidins can protect DNA from oxidation at concentrations that can be physiologically relevant. Both epimerism and degree of oligomerization are important determinants of the antioxidant activity of flavan-3-ols and procyanidins.  相似文献   

2.
A major controversy in the area of DNA biochemistry concerns the actual in vivo levels of oxidative damage in DNA. We show here that 8-oxo-2-deoxyguanosine (oxo8dG) generation during DNA isolation is eliminated using the sodium iodide (NaI) isolation method and that the level of oxo8dG in nuclear DNA (nDNA) is almost one-hundredth of the level obtained using the classical phenol method. We found using NaI that the ratio of oxo8dG/10(5 )deoxyguanosine (dG) in nDNA isolated from mouse tissues ranged from 0.032 +/- 0.002 for liver to 0.015 +/- 0.003 for brain. We observed a significant increase (10-fold) in oxo8dG in nDNA isolated from liver tissue after 2 Gy of gamma-irradiation when NaI was used to isolate DNA. The turnover of oxo8dG in nDNA was rapid, e.g. disappearance of oxo8dG in the mouse liver in vivo after gamma-irradiation had a half-life of 11 min. The levels of oxo8dG in mitochondrial DNA isolated from liver, heart and brain were 6-, 16- and 23-fold higher than nDNA from these tissues. Thus, our results showed that the steady-state levels of oxo8dG in mouse tissues range from 180 to 360 lesions in the nuclear genome and from one to two lesions in 100 mitochondrial genomes.  相似文献   

3.
Oxidative modification of human low-density lipoprotein (LDL) renders it atherogenic. Previous studies demonstrated that plasma thiols promote oxidation of LDL by free ferric iron (Fe3+). The current study investigated effects of plasma thiols on oxidation of LDL by hemin, a physiological Fe3+-protoporphyrin IX complex thought to be capable of initiating LDL oxidation in vivo. In contrast to free Fe3+ which is incapable of oxidizing LDL in the absence of an exogenous reductant, hemin readily promoted LDL oxidation. During incubation of LDL (0.2 mg of protein/ml) with hemin (10 microM) at 37 degrees C for 6 h, thiobarbituric acid-reactive substances (TBARS), a marker of lipid oxidation, increased from 0.3 (+/-0.1) nmol/mg of LDL protein to a maximal concentration of 45.8 (+/-5.2) nmol/mg of LDL protein. Under the same experimental conditions, lipid-conjugated dienes, another marker of lipid oxidation, increased from non-detectable to near-maximal levels of 78-187 nmol/mg of LDL protein, and lipoprotein polyunsaturated fatty acyl-containing cholesteryl ester content decreased to 15-36% of that present in native (i.e. unoxidized) LDL. Continued incubation of LDL with hemin for up to 24 h resulted in no further significant alterations in lipoprotein levels of TBARS, lipid-conjugated dienes, and cholesteryl esters. In addition to these chemical modifications indicative of lipoprotein oxidation, agarose gel electrophoretic analysis indicated that exposure of LDL to hemin resulted in conversion of the lipoprotein to an atherogenic form as evidenced by its increased anodic electrophoretic mobility. Addition of physiological concentrations of plasma thiols (either cysteine, homocysteine or reduced glutathione; 1-100 microM, each) inhibited hemin-mediated oxidation of LDL. Thus, whereas the maximal TBARS concentration was achieved following 6 h of incubation of LDL with hemin alone, addition of thiol extended the time required to attain maximal TBARS concentration to > or = 12 h. Similar antioxidant effects of thiols on formation of lipid-conjugated dienes, loss of cholesteryl esters, and lipoprotein anodic electrophoretic mobility were also observed. However, all thiols were not equally effective at inhibiting hemin-dependent LDL oxidation. Thus, whereas reduced glutathione was most effective at inhibiting hemin-dependent LDL oxidation, an intermediate effect was observed for homocysteine, and cysteine was least effective. The inhibition of hemin-mediated LDL oxidation by plasma thiols reported here confirms a previous observation that, under certain conditions, thiols can function as antioxidants, but contrasts with the previously documented pro-oxidant effect of the same thiols on oxidation of LDL by free Fe3+. These contrasting effects of plasma thiols on hemin- and free Fe3+-mediated LDL oxidation indicate that, in vivo, the ability of thiols to function as either anti- or pro-oxidants during LDL oxidation may, at least in part, be determined by the type of oxidant stress to which the lipoprotein is exposed.  相似文献   

4.
Formation of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG) in solutions of free 2'-deoxyguanosine (dG) and calf thymus DNA (DNA) was compared for the diffusion-dependent and localised production of oxygen radicals from phosphate-mediated oxidation of ferrous iron (Fe2+) to ferric iron (Fe3+). The oxidation of Fe2+ to Fe3+ was followed at 304 nm at pH 7.2 under aerobic conditions. Given that the concentration of Fe2+ >or=phosphate concentration, the rate of Fe2+ oxidation was significantly higher in DNA-phosphate as compared for the same concentration of inorganic phosphate. Phosphate catalysed oxidation of ferrous ions in solutions of dG or DNA led through the production of reactive oxygen species to the formation of 8-oxo-dG. The yield of 8-oxo-dG in solutions of dG or DNA correlated positively with the inorganic-/DNA-phosphate concentrations as well as with the concentrations of ferrous ions added. The yield of 8-oxo-dG per unit oxidised Fe2+ were similar for dG and DNA; thus, it differed markedly from radiation-induced 8-oxo-dG, where the yield in DNA was several fold higher.For DNA in solution, the localisation of the phosphate ferrous iron complex relative to the target is an important factor for the yield of 8-oxo-dG. This was supported from the observation that the yield of 8-oxo-dG in solutions of dG was significantly increased over that in DNA only when Fe2+ was oxidised in a high excess of inorganic phosphate (50 mM) and from the lower protection of DNA damage by the radical scavenger (hydroxymethyl)aminomethane (Tris)-HCl.  相似文献   

5.
DNA damage by reactive oxygen species is of special interest in the development of cancer and in aging. The renally excreted amount of 8-oxo-7,8-dihydro-2'-deoxyguanosine (oxo(8)dG) is a potential noninvasive marker of oxidative DNA damage. The respiratory chain of mitochondria is one source for the formation of reactive oxygen species. In the present study we investigated in Wistar rats (n = 7; mean body weight at start, 307.4 +/- 11 g) the effect of an increased O(2) consumption, i.e., energy expenditure, due to cold stress on the renally excreted amount of oxo(8)dG. First, the rats were housed for 4 days at 23.5 degrees C (basic period, BP), and then for 6 days at 10 degrees C (cold stress period, CSP), and finally for 3 days at 23.5 degrees C (recovery period, RP). The O(2) consumption (L O(2)/day/kg weight) was significantly (P < 0.0001) on average 50% higher in CSP (69.0 +/- 3.9) than in BP (45.8 +/- 4.8), and similar in BP and RP (44.3 +/- 5.4). The average renal excretion of oxo(8)dG (pmol/day/kg weight) was significantly (P < 0.025) on average 13% higher in CSP (375.5 +/- 27.7) than in BP (333.2 +/- 47. 4) and similar in BP and RP (331.8 +/- 34.3). Maximum increase in oxo(8)dG excretion of on average 17% was on the third to fifth day of the CSP. This study reveals that an increase in O(2) consumption of 50% resulted in a much lower increase in the renal excretion of oxo(8)dG.  相似文献   

6.
Homocysteine, an atherogenic amino acid, promotes iron-dependent oxidation of low-density lipoprotein (LDL). We investigated whether vitamin C, a physiological antioxidant, could protect LDL from homocysteine-mediated oxidation. LDL (0.2 mg of protein/ml) was incubated at 37 degrees C with homocysteine (1000 microM) and ferric iron (10-100 microM) in either the absence (control) or presence of vitamin C (5-250 microM). Under these conditions, vitamin C protected LDL from oxidation as evidenced by an increased lag time preceding lipid diene formation (> or = 5 vs. 2.5 h for control), decreased thiobarbituric acid-reactive substances accumulation (< or = 19 +/- 1 nmol/mg when vitamin C > or = 10 microM vs. 32 +/- 3 nmol/mg for control, p <.01), and decreased lipoprotein anodic electrophoretic mobility. Near-maximal protection was observed at vitamin C concentrations similar to those in human blood (50-100 microM); also, some protection was observed even at low concentrations (5-10 microM). This effect resulted neither from altered iron redox chemistry nor enhanced recycling of vitamin E in LDL. Instead, similar to previous reports for copper-dependent LDL oxidation, we found that vitamin C protected LDL from homocysteine-mediated oxidation through covalent lipoprotein modification involving dehydroascorbic acid. Protection of LDL from homocysteine-mediated oxidation by vitamin C may have implications for the prevention of cardiovascular disease.  相似文献   

7.
The content of glutathione and other thiols in rat eggs was examined during sperm penetration and pronuclear formation by high-performance liquid chromatography with fluorescence detection. Reduced glutathione (GSH) content was higher in unfertilized oocytes (8.50 +/- 0.29 pmol/egg) and penetrated eggs with a decondensed sperm nucleus (DSH eggs; 7.72 +/- 0.56 pmol/egg) than eggs at the pronuclear stage (PN eggs; 5.93 +/- 0.10 pmol/egg). The content of oxidised glutathione (GSSG) was not different among experimental groups (152.6 +/- 74.1 nmol/egg in unfertilized eggs, 146.0 +/- 50.0 nmol/egg in DSH eggs and 39.7 +/- 17.3 nmol/egg in PN eggs). The GSSG/GSH ratio did not change during fertilization. Although the reduced cysteinylglycine content of eggs did not change among experimental groups, the oxidised form of cysteinylglycine increased (p < 0.025) between sperm decondensation (6.9 +/- 1.5 nmol/egg in unfertilized oocytes and 10.1 +/- 2.1 nmol/egg in DSH eggs) and pronuclear formation (40.5 +/- 11.5 nmol/egg in PN eggs). Low contents of cystine were detected during fertilization but cysteine and gamma-glutamylcysteine were not detected in any treatment groups. These results demonstrate that GSH content in rat eggs decreases between sperm decondensation and pronuclear formation, probably due to the increased activity of gamma-glutamyl transpeptidase.  相似文献   

8.
Role of phosphate in initial iron deposition in apoferritin   总被引:1,自引:0,他引:1  
Y G Cheng  N D Chasteen 《Biochemistry》1991,30(11):2947-2953
Ferritins from microorganisms to man are known to contain varying amounts of phosphate which has a pronounced effect on the structural and magnetic properties of their iron mineral cores. The present study was undertaken to gain insight into the role of phosphate in the early stages of iron accumulation by ferritin. The influence of phosphate on the initial deposition of iron in apoferritin (12 Fe/protein) was investigated by EPR, 57Fe M?ssbauer spectroscopy, and equilibrium dialysis. The results indicate that phosphate has a significant influence on iron deposition. The presence of 1 mM phosphate during reconstitution of ferritin from apoferritin, Fe(II), and O2 accelerates the rate of oxidation of the iron 2-fold at pH 7.5. In the presence or absence of phosphate, the rate of oxidation at 0 degrees C follows simple first-order kinetics with respect to Fe(II) with half-lives of 1.5 +/- 0.3 or 2.8 +/- 0.2 min, respectively, consistent with a single pathway for iron oxidation when low levels of iron are added to the apoprotein. This pathway may involve a protein ferroxidase site where phosphate may bind iron(II), shifting its redox potential to a more negative value and thus facilitating its oxidation. Following oxidation, an intermediate mononuclear Fe(III)-protein complex is formed which exhibits a transient EPR signal at g' = 4.3. Phosphate accelerates the rate of decay of the signal by a factor of 3-4, producing EPR-silent oligonuclear or polynuclear Fe(III) clusters. In 0.5 mM Pi, the signal decays according to a single phase first-order process with a half-life near 1 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Sodium nitroprusside (SNP) and diethylenetriamine NONOate (DETA NONOate), were used as the source of exogenous NO to study the effect of NO upon germination of sorghum (Sorghum bicolor (L.) Moench) seeds through its possible interaction with iron. Modulation of cellular Fe status could be an important factor for the establishment of oxidative stress and the regulation of plant physiology. Fresh and dry weights of the embryonic axes were significantly increased in the presence of 0.1 mM SNP, as compared to control. Spin trapping EPR was used to assess the NO content in axes from control seeds after 24 h of imbibition (2.4+/-0.2 nmol NO g(-1) FW) and seeds exposed to 0.01, 0.1, and 1 mM SNP (3.1+/-0.3, 4.6+/-0.2, and 6.0+/-0.9 nmol NO g(-1) FW, respectively) and 1 mM DETA NONOate (6.2+/-0.6 nmol NO g(-1) FW). Incubation of seeds with 1 mM SNP protected against oxidative damage to lipids and maintained membrane integrity. The content of the deferoxamine-Fe (III) complex significantly increased in homogenates of axes excised from seeds incubated in the presence of 1 mM SNP or 1 mM DETA NONOate as compared to the control (19+/-2 nmol Fe g(-1) FW, 15.2+/-0.5 nmol Fe g(-1) FW, and 8+/-1 nmol Fe g(-1) FW, respectively), whereas total Fe content in the axes was not affected by the NO donor exposure. Data presented here provide experimental evidence to support the hypothesis that increased availability of NO drives not only protective effects to biomacromolecules, but to increasing the Fe availability for promoting cellular development as well.  相似文献   

10.
Iron-induced oxidative DNA damage in rat sperm cells in vivo and in vitro   总被引:3,自引:0,他引:3  
We investigated whether acute iron intoxication causes oxidative DNA damage, measured in terms of 7-hydro-8-oxo-2'-deoxyguanosine, 8-oxodG, in nuclear DNA in testes and epididymal sperm cells in vivo and in vitro in rats. In addition, we investigated levels of the modified nucleoside in liver and kidney and measured its urinary excretion. Sperm cells were isolated from the epididymides and the testes cells were isolated after homogenisation. In vitro, the sperm and testes cells were incubated with increasing concentrations of FeCl2 ranging from 0 to 600 microM. The median (range) levels of 8-oxodG/10(5) dG in the epididymal sperm cells increased from 0.48 (0.42-0.90) to 15.1 (11.4-17.6) (p < 0.05), whereas the level rose from 0.63 (0.22-0.81) to 8.8 (4.5-11.6) (p < 0.05) at 0 and 600 microM, respectively, in the testicular cells. In vivo groups of 7-8 rats received 0, 200 or 400 mg iron/kg as dextran i.p. After 24 h, epididymal sperm cells, testes, kidneys and liver were collected for analysis. Kidney and sperm DNA showed a significant increase in 8-oxodG in the iron-treated animals. The median (range) values of the 8-oxodG/10(5) dG in the epididymal sperm cells rose from 0.66 (0.38-1.09) to 1.12 (0.84-5.88) (p < 0.05) at 0 and 400 mg iron/kg, respectively, whereas the values in the testes and liver showed no significant change. In the kidneys the 8-oxodG/10(5) dG median (range) values were 0.98 (0.73-1.24), 1.21 (1.13-1.69) and 1.34 (1.12-1.66) after 0, 200 and 400 mg iron/kg, respectively (p < 0.05). The 8-oxodG-excretion rate was measured in 24h urine before and after iron treatment. The rate of urinary 8-oxodG excretion increased from 129 (104-179) pmol/24 h before treatment to 147 (110-239) pmol/24 h after treatment in the group receiving 400 mg iron/kg (p < 0.05). The results indicate that acute iron intoxication may increase oxidative damage to sperm and kidney DNA.  相似文献   

11.
We recently reported that degradation of S-nitrosocysteine in homogenates of porcine aorta increased severalfold in the presence of Mg2+ ions [Kostka, P., Xu, B. & Skiles, E.H. (1999) J. Cardiovasc. Pharmacol. 33, 665-670]. The objective of the present study was to examine this in greater detail. The rate of S-nitrosocysteine degradation by aortic homogenates in the presence of Mg2+ ions exhibited differential sensitivity to chelators of iron ions. Terpyridine and diethylenetriamine penta-acetic acid (5-500 microM) caused a concentration-dependent inhibition of S-nitrosocysteine decay, whereas deferoxamine (100 microM) was ineffective. o-Phenanthroline (250 microM), a selective chelator of Fe2+ ions, potentiated the reaction at low initial concentrations of S-nitrosocysteine (< or = 15 microM) and inhibited the reaction at higher concentrations. The inhibitory effects of o-phenanthroline were related to suppression of S-nitrosocysteine decay by cysteine-mediated reduction of Fe3+. In the presence of o-phenanthroline, S-nitrosocysteine decomposition followed saturable kinetics with K0.5 = 3.8 +/- 0.3 microM and h = 1.8 +/- 0.1 (mean +/- SE, n = 4). Comparison of the rates of S-nitrosocysteine decay in different subcellular fractions showed selective association with the cytosolic fraction, as documented by copurification with lactate dehydrogenase activity. At non-limiting concentrations of S-nitrosocysteine, the rate of degradation in the cytosolic fraction was 4.1 +/- 0.3 nmol.min-1.(mg protein)-1 (n = 4). It is concluded that the cytosolic fraction of porcine aorta contains a protein factor, presumably an enzyme, capable of catalyzing heterolytic decomposition of the S-NO bond of S-nitrosocysteine in a process involving redox cycling of iron ions.  相似文献   

12.
The ability of chelators and ascorbic acid to mobilize iron from crocidolite, amosite, medium- and short-fiber chrysotile, and tremolite was investigated. Ferrozine, a strong Fe(II) chelator, mobilized Fe(II) from crocidolite (6.6 nmol/mg asbestos/h) and amosite (0.4 nmol/mg/h) in 50 mM NaCl, pH 7.5. Inclusion of ascorbate increased these rates to 11.4 and 4.9 nmol/mg/h, respectively. Ferrozine mobilized Fe(II) from medium-fiber chrysotile (0.6 nmol/mg/h) only in the presence of ascorbate. Citrate and ADP mobilized iron (ferrous and/or ferric) from crocidolite at rates of 4.2 and 0.3 nmol/mg/h, respectively, which increased to 4.8 and 1.0 nmol/mg/h in the presence of ascorbate. Since ascorbate alone mobilized iron from crocidolite (0.5 nmol/mg/h), the increase appeared to result from additional chelation by ascorbate. Citrate also mobilized iron from amosite (1.4 nmol/mg/h) and medium-fiber chrysotile (1.6 nmol/mg/h). Mobilization of iron from asbestos appeared to be a function not only of the chelator, but also of the surface area, crystalline structure, and iron content of the asbestos. These results suggest that iron can be mobilized from asbestos in the cell by low-molecular-weight chelators. If this occurs, it may have deleterious effects since this could result in deregulation of normal iron metabolism by proteins within the cell resulting in iron-catalyzed oxidation of biomolecules.  相似文献   

13.
The objectives of this study were to 1). examine skeletal muscle fatty acid oxidation in individuals with varying degrees of adiposity and 2). determine the relationship between skeletal muscle fatty acid oxidation and the accumulation of long-chain fatty acyl-CoAs. Muscle was obtained from normal-weight [n = 8; body mass index (BMI) 23.8 +/- 0.58 kg/m(2)], overweight/obese (n = 8; BMI 30.2 +/- 0.81 kg/m(2)), and extremely obese (n = 8; BMI 53.8 +/- 3.5 kg/m(2)) females undergoing abdominal surgery. Skeletal muscle fatty acid oxidation was assessed in intact muscle strips. Long-chain fatty acyl-CoA concentrations were measured in a separate portion of the same muscle tissue in which fatty acid oxidation was determined. Palmitate oxidation was 58 and 83% lower in skeletal muscle from extremely obese (44.9 +/- 5.2 nmol x g(-1) x h(-1)) patients compared with normal-weight (71.0 +/- 5.0 nmol x g(-1) x h(-1)) and overweight/obese (82.2 +/- 8.7 nmol x g(-1) x h(-1)) patients, respectively. Palmitate oxidation was negatively (R = -0.44, P = 0.003) associated with BMI. Long-chain fatty acyl-CoA content was higher in both the overweight/obese and extremely obese patients compared with normal-weight patients, despite significantly lower fatty acid oxidation only in the extremely obese. No associations were observed between long-chain fatty acyl-CoA content and palmitate oxidation. These data suggest that there is a defect in skeletal muscle fatty acid oxidation with extreme obesity but not overweight/obesity and that the accumulation of intramyocellular long-chain fatty acyl-CoAs is not solely a result of reduced fatty acid oxidation.  相似文献   

14.
We searched for serum concentrations of trace elements and correlated them to malondialdehyde (MDA), which is an indirect marker of oxidative stress, in order to clarify if routine evaluation is necessary in chronic obstructive pulmonary disease (COPD) outpatients. Serum concentrations of copper (Cu), zinc (Zn), and magnesium (Mg) were determined by atomic absorption spectrophotometry and iron (Fe) by a ILLab 1800 autoanalyzer with ILLab test kits. Serum MDA concentrations were detected in terms of TBARS (thiobarbituric acid reactive substances) spectrophotometrically. Serum Cu, Zn, Mg, Fe, and MDA concentrations in patient and control groups were all in the normal reference range. The results respectively were as follows: Cu:123±29.2 and 122.2±23.4 μg/dL; Zn: 87.8±17.8 and 96.9 ± 12.9 μg/dL; Mg: 2.3±0,5 and 2.04±0.28 mg/dL; Fe: 73.8±35.5 and 80.7±51.2 μg/dL; MDA: 1.09±0.11 and 0.95±0.06 nmol/L. MDA was not correlated to Cu, Zn, Mg, or Fe (p>0.05 for all). The serum Zn concentration of COPD group was lower than the control group (p=0.042), whereas the Mg concentration was higher (p=0.021). There was no statistical difference in other study parameters. Oxidative stress was not increased in clinically stable, regularly treated COPD patients. Although there was no deficiency in trace elements (Cu, Fe, Mg, and Zn), serum Zn was close to the lower limit of the reference value. There is no need for routine evaluation of trace elements in clinically stable, regularly treated COPD outpatients.  相似文献   

15.
To elucidate the protective effects of glutathione against iron-induced peroxidative injury, changes in the hepatic glutathione metabolism were studied in chronically iron-loaded mice. When the diets of the mice were supplemented with carbonyl iron, iron deposition occurred primarily in the parenchymal cells of the liver. In addition, expiratory ethane production was elevated, suggesting an enhancement in lipid peroxidation. In iron-loaded mice, the total hepatic glutathione contents were higher (6.21 +/- 0.53 mumol/g wet wt.) than in control mice (4.61 +/- 0.31 mumol/g wet wt.), primarily due to an increase in the reduced glutathione contents. The value of oxidized glutathione was also higher (98.5 +/- 8.1 nmol/g wet wt.) than in the controls (60.8 +/- 9.5 nmol/g wet wt.), and the ratio of oxidized glutathione to total glutathione increased. The excretion rate of glutathione from the hepatocytes in iron-loaded mice also increased. These observations suggest that chronic iron-loading of mice stimulates lipid peroxidation and oxidation of glutathione and that peroxidized molecules may be catabolized using reduced glutathione.  相似文献   

16.
V T Maddaiah 《FASEB journal》1990,4(5):1513-1518
The temporal relationship of changes in state 3 respiration, lipid peroxidation, and glutathione (GSH) content was investigated in liver mitochondria of hypophysectomized rats after an injection of 3,3',5-triiodo-L-thyronine (T3). Lipid peroxidation induced by ADP/Fe3+/NADPH was determined by the amount of malondialdehyde formed. Hypophysectomy decreased respiration and lipid peroxidation (from 19.88 +/- 3.04 to 14.19 +/- 1.14 nmol malondialdehyde.mg protein-1.10 min-1) but increased GSH content (from 7.06 +/- 2.08 to 12.46 +/- 3.58 nmol/mg protein). Daily injections of a low dose (5 micrograms/100 g) of T3 for 7 days restored the parameters. Time course (up to 96 h) of these changes was followed after one injection of a moderate (100 micrograms/100 g) and high (1000 micrograms/100 g) dose of the hormone. Respiration showed a significant increase at 24 h and declined slightly at 96 h. There was a slow loss of respiratory control ratio after 24 h. Lipid peroxidation remained unchanged at 24 h and showed a gradual increase, becoming significantly higher at 72-96 h depending on the hormone dosage. Changes in GSH content followed a time course similar to that of lipid peroxidation except that it showed a decrease instead of an increase. There was a high degree of inverse linear correlation between lipid peroxidation and GSH (correlation coefficient = 0.95). Because GSH is required for detoxification of hydroperoxides generated by the respiratory chain, it is suggested that lipid peroxidation may play a major role in the modulation of intramitochondrial GSH.  相似文献   

17.
The initial aim of this study was to investigate how charge and other chemical properties of some radical scavengers influence the radiation-induced formation of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG) in two model systems. The target molecule, deoxyguanosine (dG), was either organized in the DNA-helix form or present as a free nucleoside in an aerated aqueous phosphate buffer. Samples were irradiated with 137Cs gamma rays, alone or in the presence of different thiols, alcohols or ascorbate with net charges from -1 to +1. The formation of 8-oxo-dG was assayed with reverse-phase HPLC coupled to an electrochemical detector. In the absence of radical scavengers, the radiation-induced formation of 8-oxo-dG in DNA was extensive, and the ratio for formation of 8-oxo-dG was 20-fold higher for DNA compared to dG. The yields of 8-oxo-dG in DNA and dG were 7.7 x 10(-3) micromol J(-1) and 3.8 x 10(-4) micromol J(-1), respectively. Yield-dose plots showed that the efficiency of the positively charged thiol cysteamine to counteract the radiation-induced formation of 8-oxo-dG in DNA was significantly (P < 0.001) greater compared to the uncharged or negatively charged thiols. Uncharged thiols were significantly (0.001 < P < 0.05) more effective in protecting DNA compared to negatively charged thiols. In contrast to the protection against oxidative damage provided by thiols and ascorbate when they were present during irradiation of DNA, the formation of 8-oxo-dG was significantly increased when these compounds were present during irradiation of dG in solution. Compared to the irradiated control, the increase was 11- to 116-fold for thiols and ascorbate, respectively. The enhanced oxidative damage of dG observed in the presence of ascorbate or thiols suggests that secondarily formed radicals from thiols or ascorbate may react with dG, or that transformation of different primary sites of damage on dG to 8-oxo-dG is enhanced.  相似文献   

18.
This article describes a study in which four trace elements (Se, Mn, Cu, and Fe) were analyzed in the blood serum of the patients with colorectal cancer from the Moravian region of the Czech Republic. Atomic absorption spectrometry with graphite furnace atomization was used for analysis of selenium and manganese and with flame atomization for analysis of copper and iron. The observed serum concentrations in adenocarcinoma colorectal patients of selenium were significantly lower (41.8 ± 11.6 μg/L) and those of manganese (16.3 ± 4.5 μg/L) and iron (2.89 ± 1.23 mg/L) were significantly higher as compared to the age-matched control group. Copper serum content (0.95 ± 0.28 mg/L) did not significantly differ as compared to healthy population.  相似文献   

19.
The hydrolysis of ATP to ADP and P(i) is an integral part of all substrate reduction reactions catalyzed by nitrogenase. In this work, evidence is presented that nitrogenases isolated from Azotobacter vinelandii and Clostridium pasteurianum can hydrolyze MgGTP, MgITP, and MgUTP to their respective nucleoside diphosphates at rates comparable to those measured for MgATP hydrolysis. The reactions were dependent on the presence of both the iron (Fe) protein and the molybdenum-iron (MoFe) protein. The oxidation state of nitrogenase was found to greatly influence the nucleotide hydrolysis rates. MgATP hydrolysis rates were 20 times higher under dithionite reducing conditions (approximately 4,000 nmol of MgADP formed per min/mg of Fe protein) as compared with indigo disulfonate oxidizing conditions (200 nmol of MgADP formed per min/mg of Fe protein). In contrast, MgGTP, MgITP, and MgUTP hydrolysis rates were significantly higher under oxidizing conditions (1,400-2,000 nmol of MgNDP formed per min/mg of Fe protein) as compared with reducing conditions (80-230 nmol of MgNDP formed per min/mg of Fe protein). The K(m) values for MgATP, MgGTP, MgUTP, and MgITP hydrolysis were found to be similar (330-540 microM) for both the reduced and oxidized states of nitrogenase. Incubation of Fe and MoFe proteins with each of the MgNTP molecules and AlF(4)(-) resulted in the formation of non-dissociating protein-protein complexes, presumably with trapped AlF(4)(-) x MgNDP. The implications of these results in understanding how nucleotide hydrolysis is coupled to substrate reduction in nitrogenase are discussed.  相似文献   

20.
Hydroperoxides are the primary oxygenated products of polyunsaturated fatty acids and were determined spectrophotometrically based on their reaction with an excess of Fe2+ at low pH in the presence of the dye Xylenol Orange. Triphenylphosphine-mediated hydroxide formation was used to authenticate the signal generated by the hydroperoxides. The method readily detected lipid peroxidation in a range of plant tissues including Phaseolus hypocotyls (26 +/- 5 nmol.g of fresh weight(-1); mean +/- S.D.), Alstroemeria floral tissues (sepals, 66+/-13 nmol.g of fresh weight(-1); petals, 49+/-6 nmol.g of fresh weight(-1)), potato leaves (334+/-75 nmol.g of fresh weight(-1)), broccoli florets (568+/-68 nmol.g of fresh weight(-1)) and Chlamydomonas cells (602+/-40 nmol.g of wet weight(-1)). Relative to the total fatty acid content of the tissues, the percentage hydroperoxide content was within the range of 0.6-1.7% for all tissue types (photosynthetic and non-photosynthetic) and represents the basal oxidation level of membrane fatty acids in plant cells. Leaves of transgenic potato with the fatty acid hydroperoxide lyase enzyme expressed in the antisense orientation were elevated by 38%, indicating a role for this enzyme in the maintenance of cellular levels of lipid hydroperoxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号