首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.

Background

The outcome of chemotherapy in breast cancer is strongly influenced by multidrug resistance (MDR). Several surrogate markers of chemoresistance have been identified including - CD24 (cluster differentiation 24) expression, stem cell growth factor (SCF), B-cell lymphocyte protein 2 (Bcl-2) and annexin V. The present study aimed to examine the expression of CD24 in the sensitive breast cancer cell line MCF-7 (Michigan Foudation-7) and MCF-7/adriamycin resistant (MCF-7/AdrRes) cells, and, if minimal effective doses of the anthracycline drug adriamycin (0.579???M and 88.2???M) would be enhanced by the antibody to SCF (anti-SCF).

Methods

CD24 expression was analysed by flow cytometry. Both Bcl-2 and annexin V protein expression were quantitatively assessed by the enzyme-linked immunosorbent assay (ELISA).

Results

In MCF-7/AdrRes cells the expression of CD24 was significantly higher compared to MCF-7 cells, 86.6% and 16.3% (p?Conclusion Adding anti-SCF to the chemotherapeutic regime of adriamycin may strongly enhance its chemotherapeutic effect in the treatment of patients with breast cancer.  相似文献   

4.
Introduction: Chemoresistance is a major challenge to current ovarian cancer chemotherapy. It is important to identify biomarkers to distinguish chemosensitive and chemoresistant patients.

Areas covered: We review the medical literature, discuss MS-based technologies with respect to chemoresistant ovarian cancer and summarize the promising chemoresistant biomarkers identified. In addition, the challenges and future perspectives of biomarker discovery research are explored. With the employment of mass spectrometry-based (MS-based) proteomics, biomarker discovery of ovarian cancer has made great progress in the last decade. Many potential biomarkers were identified by MS-based proteomics technologies, some of which have been validated for further extensive studies in clinical settings.

Expert commentary: The discovery of chemoresistant biomarkers is a newly developing area and may provide a clue for predicting chemotherapeutic response and discover therapeutic targets for paving the way of personalized medicine. Multiple complementary MS-based proteomics approaches hold promise for finding novel therapeutic targets in ovarian cancer treatment.  相似文献   


5.
Breast cancer cells experience a range of shear stresses in the tumor microenvironment (TME). However most current in vitro three-dimensional (3D) models fail to systematically probe the effects of this biophysical stimuli on cancer cell metastasis, proliferation, and chemoresistance. To investigate the roles of shear stress within the mammary and lung pleural effusion TME, a bioreactor capable of applying shear stress to cells within a 3D extracellular matrix was designed and characterized. Breast cancer cells were encapsulated within an interpenetrating network hydrogel and subjected to shear stress of 5.4 dynes cm−2 for 72 hr. Finite element modeling assessed shear stress profiles within the bioreactor. Cells exposed to shear stress had significantly higher cellular area and significantly lower circularity, indicating a motile phenotype. Stimulated cells were more proliferative than static controls and showed higher rates of chemoresistance to the anti-neoplastic drug paclitaxel. Fluid shear stress-induced significant upregulation of the PLAU gene and elevated urokinase activity was confirmed through zymography and activity assay. Overall, these results indicate that pulsatile shear stress promotes breast cancer cell proliferation, invasive potential, chemoresistance, and PLAU signaling.  相似文献   

6.
7.
8.
The prevalence of overweight and obesity is rapidly increasing world wide. Numerous epidemiological studies have shown that obesity is a risk factor for postmenopausal breast cancer and relapse. However, the biological factors that drive the growth and progression of these tumors and how obesity contributes to the tumor microenvironment are poorly understood. Tumor development and metastasis are dependent on the process of angiogenesis or the formation of new blood vessels. More importantly, a ready supply of adipose tissue-derived angiogenic adipokines, notably VEGF and leptin, and the production of inflammatory cytokines by infiltrating macrophages that occurs in adipose tissues with obesity, promotes the paracrine stimulation of vascular endothelial cell growth needed for adipogenesis, while maintaining a microenvironment that is favorable for breast tumorigenesis.  相似文献   

9.
Multidrug resistance is a major treatment obstacle for recurrent and metastatic bladder cancer, which often leads to disease progression and poor clinical outcome. Although overexpression of interleukin-6 (IL-6) appears to play a critical role in the development of chemotherapy resistance, inhibitors for IL-6 alone have not improved clinical outcomes. Since the IL-6/IL-6R/GP130 complex is involved in multidrug resistance, another strategy would be to focus on glycoprotein-130 (GP130) since it dimerizes with IL-6R/CD26 as a membrane-bound signaling transducer receptor and initiates subsequent signaling activation and may be a potential therapeutic target. Currently, the role of GP130 in chemoresistant bladder cancer is unknown. In the present study, we demonstrate that GP130 is over-expressed in cisplatin and gemcitabine-resistant bladder cancer cells, and that the inhibition of GP130 expression significantly reduces cell viability, survival and migration. Downstream of GP130 is PI3K/AKT/mTOR signaling, which is inactivated by SC144, a GP130 inhibitor. However, Raf/MEK/ERK signaling, which also is downstream of GP130 is activated by SC144. This activation is likely based on a mTOR/S6K1/PI3K/ERK negative feedback loop, which is presumed to counteract the inhibitory effect of SC144 on tumor aggressiveness. Blocking both GP130 and pERK resulted in synergistic inhibition of cytotoxicity, clonal survival rates and cell migration in our chemotherapy resistant bladder cancer cells. This vertical inhibition offers a novel therapeutic strategy for targeting human chemoresistant bladder cancer.  相似文献   

10.
Estrogens are known to be important in the growth of breast cancers in both pre and postmenopausal women. As the number of breast cancer patients increases with age, the majority of breast cancer patients are postmenopausal women. Although estrogens are no longer made in the ovaries after menopause, peripheral tissues produce sufficient concentrations to stimulate tumor growth. As aromatase catalyzes the final and rate-limiting step in the biosynthesis of estrogen, inhibitors of this enzyme are effective targeted therapy for breast cancer. Three aromatase inhibitors (AIs) are now FDA approved and have been shown to be more effective than the antiestrogen tamoxifen and are well tolerated. AIs are now a standard treatment for postmenopausal patients. AIs are effective in adjuvant and first-line metastatic setting. This review describes the development of AIs and their current use in breast cancer. Recent research focuses on elucidating mechanisms of acquired resistance that may develop in some patients with long term AI treatment and also in innate resistance. Preclinical data in resistance models demonstrated that the crosstalk between ER and other signaling pathways particularly MAPK and PI3K/Akt is an important resistant mechanism. Blockade of these other signaling pathways is an attractive strategy to circumvent the resistance to AI therapy in breast cancer. Several clinical trials are ongoing to evaluate the role of these novel targeted therapies to reverse resistance to AIs. Article from the special issue on 'Targeted Inhibitors'.  相似文献   

11.
Although histone deacetylase inhibitors (HDACi) have shown promising antitumor effects in specific types of blood cancer, their effects on solid tumors are limited. Previously, we developed LMK235 (5), a class I and class IIb preferential HDACi with chemosensitizing effects on breast cancer, ovarian cancer and HNSCC. Based on its promising effects on solid tumor cells, we modified the cap group of 5 to improve its anticancer activity. The tri- and dimethoxy-phenyl substituted compounds 13a and 13d turned out to be the most potent HDAC inhibitors of this study. The isoform profiling revealed a dual HDAC2/HDAC6 inhibition profile, which was confirmed by the acetylation of α-tubulin and histone H3 in Cal27 and Cal27CisR. In combination with cisplatin, both compounds enhanced the cisplatin-induced cytotoxicity via caspase-3/7 activation. The effect was more pronounced in the cisplatin resistant subline Cal27CisR. The pretreatment with 13d resulted in a complete resensitisation of Cal27CisR with IC50 values in the range of the parental cell line. Therefore, 13d may serve as an epigenetic tool to analyze and modulate the cisplatin resistance of solid tumors.  相似文献   

12.
Morphological, qualitative observations allow pathologists to correlate the shape the cells acquire with the progressive, underlying neoplastic transformation they are experienced. Cell morphology, indeed, roughly scales with malignancy. A quantitative parameter for characterizing complex irregular structures is the Normalized Bending Energy (NBE). NBE provides a global feature for shape characterization correspondent to the amount of energy needed to transform the specific shape under analysis into its lowest energy state. We hypothesized that a chemotherapy resistant cancer cell line would experience a significant change in its shape, and that such a modification might be quantified by means of NBE parameterization. We checked out the usefulness of a mathematical algorithm to distinguish wild and 5-fluorouracil (5-FU)-resistant colon cancer HCT-8 cells (HCT-8FUres). NBE values, as well as cellular and molecular parameters, were recorded in both cell populations. Results demonstrated that acquisition of drug resistance is accompanied by statistically significant morphological changes in cell membrane, as well as in biological parameters. Namely, NBE increased progressively meanwhile cells become more resistant to increasing 5-FU concentrations. These data indicate how tight the relationships between morphology and phenotype is, and they support the idea to follow a cell transition toward a drug-resistant phenotype by means of morphological monitoring.  相似文献   

13.
14.
The mechanical events of mitosis depend on the action of microtubules and mitotic motors, but whether these spindle components act alone or in concert with a spindle matrix is an important question.  相似文献   

15.
Estrogen, alcohol and breast cancer risk   总被引:4,自引:0,他引:4  
Estrogen replacement has been used for many years to reverse the hypoestrogenic symptoms of menopause and prevent osteoporosis. Studies have found that estrogen replacement also decreases cardiovascular risk. In addition, social use of alcohol has been found to decrease cardiovascular risk. Therefore, both estrogen replacement therapy and alcohol use have been proposed to have cardiovascular benefits, and are often used in combination. Epidemiologic evidence indicates that estrogen replacement therapy after menopause increases breast cancer risk. Regular alcohol consumption is also associated with increase in risk. However, interactions between the two are poorly understood. In addition, if alcohol alters circulating estrogen levels in estrogen users, this may have implications in terms of altering the risks:benefit ratio of estrogen replacement in an undesirable direction. For example, there are data suggesting that the use of both alcohol and estrogen may increase breast cancer risk more than the use of either one alone. Data support both acute and chronic effects of alcohol in raising circulating estrogen levels in premenopausal women on no hormonal medications. In postmenopausal women studies focusing on acute effects of alcohol on estrogen metabolism indicate that alcohol has a much more pronounced effect in women using estrogen replacement than in those who do not. Studies evaluating chronic effects of alcohol ingestion on circulating estrogens in postmenopausal women are needed.  相似文献   

16.
17.
18.
19.
20.
Artelastin, a novel prenylated flavone, previously isolated from the wood bark of Artocarpus elasticus, was evaluated for its capacity to inhibit the growth of fifty-two human tumor cell lines, representing nine different tumor types. A pronounced dose-dependent growth inhibitory effect was detected in all the cell lines, with GI50 values ranging from 0.8-20.8 microM. Studies to elucidate the basis of the growth inhibitory activity of artelastin were performed in the MCF-7 human breast cancer cell line (GI50 = 6.0 microM). We show that artelastin exerts a biphasic effect in the DNA synthesis of MCF-7 cells, a stimulatory effect at low concentrations (below GI50) for short times of exposition (6 h and 24 h), and an inhibitory effect at high concentrations (above GI50). Remarkably, treated cells that have DNA synthesis affected could be viable and metabolically active. Furthermore, artelastin acts as a cytotoxic rather than a cytostatic compound. Massive cytoplasmatic vacuoles were detected in cells after artelastin treatment. Together with these morphological alterations, cells show the presence of abnormal nuclear morphologies, and occasionally nuclear condensation, which were identified as apoptotic by TUNEL assay. Moreover, artelastin was shown to disturb the microtubule network while no effect was observed on the kinetochores. Flow cytometry analysis of cells treated with artelastin reveal an accumulation in S phase that interferes with the cell cycle progression. Additionally, according to BrdU patterns, studies with synchronized cells at G0 and at G1/S transition also suggest that artelastin delays DNA replication since progression of cells trough S-phase is perturbed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号