首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Adult rats were injected subcutaneously with 50 i.u. hCG and vascular permeability was compared to that in saline-treated control rats by two independent methods. At 4 h after hCG treatment the rats were injected intra-arterially (i.a.) with FITC-labelled macromolecular dextran (Mr 150,000) and the testicular microcirculation was studied in vivo by using a fluorescence microscope. Other rats were injected i.a. with a suspension of colloidal carbon and the location of leaking blood vessels was recorded in sections from the testes by light and electron microscopy. In hCG-treated animals leucocytes were found adhering to the endothelium in post-capillary venules and in these venular segments dextran was leaking into the interstitium. Carbon particles were deposited in the walls of post-capillary venules and leucocytes migrated through open interendothelial cell gaps in hCG-treated animals. In control animals leucocyte adhesion and migration were not observed, the injected dextran remained in the circulation and the blood vessels were not labelled by carbon. It is suggested that the hCG-induced increase in testicular interstitial fluid volume, like the tissue oedema in inflammation, is caused by a leucocyte-mediated increase in venular permeability.  相似文献   

3.
The specific testicular uptake in vivo of 125I-labelled hCG was compared in control adult rats and adult rats made bilaterally cryptorchid 5 weeks previously. Although a similar temporal pattern of uptake was observed in both groups, uptake of hCG by cryptorchid testes was reduced at all times after injection by up to 70%. The possible causes of this impairment were investigated. It could not be accounted for by differences in the rate of absorption or clearance of 125I-labelled hCG in the two groups. Therefore, because hCG-induced increase in the permeability of testicular capillaries is a crucial factor in determining hCG uptake by the testis, this change was compared in control and cryptorchid testes. Although hCG induced a characteristic increase in testicular capillary wall permeability in both groups, this change was temporally delayed in cryptorchid testes, and occurred after hCG values in the blood had fallen. Even when hCG had crossed the capillary wall into testicular interstitial fluid, its uptake into the testicular tissue was significantly lower in cryptorchid than in control testes. These changes probably account for the impairment of gonadotrophin uptake by the cryptorchid testis and have important implications with respect to the aetiology of Leydig cell changes in cryptorchidism.  相似文献   

4.
5.
'Interstitial fluid' containing high levels of testosterone (60-250 ng/ml) was recovered from the testes of rats, the amounts increasing with increase in age and testis weight. Injection of 170 i.u. hCG/kg resulted 20 h later in significant increases in interstitial fluid and its testosterone content (300-800 ng/ml). In immature rats this effect of hCG was dose-dependent and time-related and the accumulated fluid contained high levels of potassium and phosphate; levels of sodium, calcium and protein were similar to those in serum. At 20 h after injection of hCG, other testicular changes were (1) increased 'adhesiveness', (2) reduced in-vitro binding of 125I-labelled hCG, and (3) an hCG-induced increase in the testis:blood ratio of hCG in vivo.  相似文献   

6.
The effects of ethane dimethyl sulfonate (EDS) on total testicular blood flow, microcirculation, and the testicular interstitial fluid volume (IFV) in rats were studied. In agreement with previous studies, treatment of control rats with human chorionic gonadotropin (hCG) induced an increase in IFV and total testicular blood flow as measured with radioactive microspheres. These effects of hCG were completely abolished in rats pretreated with EDS; in EDS-treated rats not receiving any hCG, there were decreases in IFV when compared with untreated control rats. Furthermore, the pulsatile pattern of testicular microcirculation registered with laser-Doppler flowmetry was abolished after EDS treatment, and this effect was not influenced by hCG treatment. The hCG-induced increase in IFV is associated with an increased accumulation of polymorphonuclear leukocytes locally in the testis, but this accumulation of leukocytes was not observed in rats pretreated with EDS. It was concluded from the present study that hCG-induced changes in total testicular blood flow and testicular microcirculation require functionally intact Leydig cells.  相似文献   

7.
Adult male rats were injected with different doses of hCG, or with 2.5 micrograms ovine LH subcutaneously, and other rats were mated with oestrous females. The animals were examined 4 h after treatments. Treatment with hCG resulted in a dose-dependent increase in leucocyte concentration in testicular blood vessels and in the number of blood vessels which could be labelled with intravenously injected carbon particles. Carbon leakage was not observed in control testes. Treatment with a low dose of ovine LH or inducing an endogenous LH peak by mating also resulted in leucocyte accumulation and vascular leakage of carbon in the testis. The magnitude of the response was considerably lower than after high doses of hCG. The physiological relevance of the discrete response observed after physiological LH stimulation is unknown but LH-induced changes in testicular microcirculation could be of interest for the understanding of the physiology and pathophysiology of the testis.  相似文献   

8.
The properties of hCG binding to LH receptors of the neonatal (5-day-old) rat testis were analysed and compared with those of the adult testis. The equilibrium association constants (Ka) of hCG-binding were similar at both ages, 2-4 X 10(10) M-1. In contrast, kinetic binding studies revealed that the association and dissociation rate constants of hCG binding were more rapid in the neonatal testis. Likewise, it was observed that the progression from loose (easily dissociable) to tight (non-dissociable) binding was less complete in the young than in the adult testis. Autoradiography of 125I-labelled hCG binding to interstitial cell suspensions at the two ages showed that the gonadotrophin binding per Leydig cell was about 50% lower in the neonatal testis. Conversely, since the surface area of adult Leydig cells was about 4-fold larger, the receptor density appeared to be higher in the neonatal Leydig cells. The rapid recovery of LH receptors after hCG stimulation, typical of the neonatal cells, was due to rapid replenishment of binding in the cells initially occupied by the injected hormone, rather than to an hCG-induced increase of Leydig cell number. Finally, in-vivo experiments with cycloheximide revealed that the rapid recovery of LH receptors was dependent on protein synthesis. These differences in the kinetics of neonatal testicular LH receptor turnover may be involved in the unique functional features of the fetal-neonatal growth phase of rat testicular Leydig cells.  相似文献   

9.
Methods have been established and validated for quantitative assessment of the distribution of testosterone in the testis, by measurement of testosterone concentrations in whole testis, in isolated seminiferous tubules and in testicular interstitial fluid. These measurements were made in individual rats injected 2-40 h previously with saline (0.9% NaCl) or a potent antiserum to ovine LH. Testosterone concentrations in interstitial fluid and seminiferous tubules were closely correlated (r = +0.98; n = 60) and their relationship was log linear over a 200-fold range. However, although the concentrations of testosterone in interstitial fluid and seminiferous tubules decreased progressively with time after LH antiserum injection, this decrease was far more pronounced for interstitial fluid. In association with this change there was a significant increase in the amounts of a locally-produced factor in interstitial fluid which stimulates basal and hCG-stimulated testosterone production by isolated purified Leydig cells. This increase was reversed by injection of hCG but not by peripheral injection of a dose (20 mg) of testosterone propionate which restored normal intratesticular concentrations of testosterone. It is concluded that the tubular 'conservation' of testosterone, which occurs as interstitial fluid levels of this steroid decrease, may be a consequence of restricted diffusion of testosterone out of the tubules, but is also associated with increased amounts of a peptide stimulator of testosterone production.  相似文献   

10.
These studies determined the local acute responsiveness of the testis to intratesticular administration of human chorionic gonadotropin (hCG) under basal, stimulated (systemic hCG pre-treated), hypogonadotropic (steroid pre-treatment) and hyperprolactinemic conditions in male mice. In addition, testicular testosterone (T) levels were determined after intratesticular administration of the aromatase inhibitor, 4-hydroxyandrostenedione (4-OHA) or progesterone under basal or hCG-stimulated conditions. Intratesticular administration of 0.025, 0.25, 2.5 or 25 mIU hCG resulted in a dose-dependent (3- to 14-fold) increase in testicular T concentrations in hCG compared to vehicle-injected testes. Systemic (i.p.) pre-treatment with 5 IU hCG 24 h before prevented any further increases in the already elevated (10-fold basal) T levels after direct intratesticular hCG injection. Pretreatment with 250 micrograms testosterone propionate (TP) reduced basal testicular T concentrations, but resulted in increased responsiveness to intratesticular hCG administration. In contrast, estradiol benzoate (EB) pretreatment, which also reduced basal testicular T concentrations, did not affect the testicular responsiveness to hCG. Hyperprolactinemia reduced testicular responsiveness to intratesticular administration of 0.025, 0.25 or 2.5 mIU hCG, but basal levels of testicular T were elevated. One hour after intratesticular injections of an aromatase inhibitor, 4-OHA; (0.25 micrograms) testis, T levels were increased in males pre-treated with 5 IU hCG (i.p.) 24 h earlier. Higher doses of 4-OHA (2.5, 25 or 250 micrograms) resulted in significant, dose-related increases in basal testicular T levels which were attenuated by hCG-pre-treatment. Intratesticular administration of 20 micrograms progesterone increased testicular T concentrations 2.7-fold, but this effect was attenuated (1.5-fold) in hCG-pre-treated mice, suggesting that enzymatic lesions beyond progesterone may be involved in hCG-induced testicular desensitization. These results indicate that testicular responsiveness to hCG depends on the existing levels of gonadotropic stimulation. However, it is evident that estrogens and prolactin also influence the sensitivity of the testis to gonadotropin.  相似文献   

11.
Regulation of blood flow through the testicular microvasculature by vasomotion is thought to be important for normal testis function as it regulates interstitial fluid (IF) dynamics which is an important intra-testicular transport medium. Androgens control vasomotion, but how they exert these effects remains unclear. One possibility is by signalling via androgen receptors (AR) expressed in testicular arteriole smooth muscle cells. To investigate this and determine the overall importance of this mechanism in testis function, we generated a blood vessel smooth muscle cell-specific AR knockout mouse (SMARKO). Gross reproductive development was normal in SMARKO mice but testis weight was reduced in adulthood compared to control littermates; this reduction was not due to any changes in germ cell volume or to deficits in testosterone, LH or FSH concentrations and did not cause infertility. However, seminiferous tubule lumen volume was reduced in adult SMARKO males while interstitial volume was increased, perhaps indicating altered fluid dynamics; this was associated with compensated Leydig cell failure. Vasomotion was impaired in adult SMARKO males, though overall testis blood flow was normal and there was an increase in the overall blood vessel volume per testis in adult SMARKOs. In conclusion, these results indicate that ablating arteriole smooth muscle AR does not grossly alter spermatogenesis or affect male fertility but does subtly impair Leydig cell function and testicular fluid exchange, possibly by locally regulating microvascular blood flow within the testis.  相似文献   

12.
A nonlinear, coupled biphasic-mass transport model that includes transvascular fluid exchange is proposed for flow-controlled infusions in brain tissue. The model accounts for geometric and material nonlinearities, a hydraulic conductivity dependent on deformation, and transvascular fluid exchange according to Starling’s law. The governing equations were implemented in a custom-written code assuming spherical symmetry and using an updated Lagrangian finite-element algorithm. Results of the model indicate that, using normal physiological values of vascular permeability, transvascular fluid exchange has negligible effects on tissue deformation, fluid pressure, and transport of the infused agent. As vascular permeability may be increased artificially through methods such as administering nitric oxide, a parametric study was conducted to determine how increased vascular permeability affects flow-controlled infusion. Increased vascular permeability reduced both tissue deformation and fluid pressure, possibly reducing damage to tissue adjacent to the infusion catheter. Furthermore, the loss of fluid to the vasculature resulted in a significantly increased interstitial fluid concentration but a modestly increased tissue concentration. From a clinical point of view, this increase in concentration could be beneficial if limited to levels below which toxicity would not occur. However, the modestly increased tissue concentration may make the increase in interstitial fluid concentration difficult to assess in vivo using co-infused radiolabeled agents.  相似文献   

13.
Testicular response to human chorionic gonadotropin (hCG) was studied in male lambs. Adenosine 3':5'-cyclic monophosphate (cAMP), testosterone (T), delta 4-androstenedione and 17 alpha-hydroxyprogesterone content and cAMP and T production by dispersed interstitial cells were assessed in control and hCG-pretreated animals. Plasma T levels increased after hCG at 1, 4 and 8 weeks. Increments in the testicular content of cAMP, delta 4-androstenedione, and T were greater at 8 weeks and that of 17 alpha-hydroxyprogesterone and 125I-hCG binding to dispersed interstitial cells were identical at all ages. cAMP and T production by dispersed interstitial cells from nonstimulated animals and the response to hCG and choleratoxin were similar in all lambs. In contrast, cAMP and T production were higher at 1 week only in animals pretreated with hCG in vivo. These data are compatible with hCG-induced desensitization at 4 and 8 weeks.  相似文献   

14.
High-performance liquid (HPL)-anion-exchange chromatography of testicular interstitial fluid (IF) and medium conditioned by polymorphonuclear leucocytes (PMN) revealed two major peaks (at fractions 2-3 and 7-8), which, with human chorionic gonadotrophin (hCG) increased vasopermeability in rat testes measured by the uptake of iodinated hCG and by interstitial fluid volume. When hCG was incubated with the fraction 7-8 peak and subsequently purified on HPLC it significantly increased testicular vasopermeability with a concomitant accumulation of PMNs in the testicular blood vessels and interstitium. The removal of hCG from the purified preparation with anti-hCG Sepharose 4B abolished the vasopermeability effect of the preparation, confirming that hCG itself is modified in such a way as to produce the response. The results suggest that both IF and PMN-conditioned medium contain two components with different charges, which interact with hCG to increase vasopermeability by a PMN-mediated process. The results also indicated that hCG may itself be modified chemotactically, or so that it elicits production of leucoattractant in the testes.  相似文献   

15.
Testosterone (T) is an absolute requirement for spermatogenesis and is supplied by mature Leydig cells stimulated by LH. We previously showed in gonadotropin-deficient hpg mice that T alone initiates qualitatively complete spermatogenesis bypassing LH-dependent Leydig cell maturation and steroidogenesis. However, because maximal T effects do not restore testis weight or germ cell number to wild-type control levels, additional Leydig cell factors may be involved. We therefore examined 1). whether chronic hCG administration to restore Leydig cell maturation and steroidogenesis can restore quantitatively normal spermatogenesis and testis development and 2). whether nonandrogenic Leydig cell products are required to initiate spermatogenesis. Weanling hpg mice were administered hCG (0.1-100 IU i.p. injection three times weekly) or T (1-cm subdermal Silastic implant) for 6 weeks, after which stereological estimates of germinal cell populations, serum and testicular T content, and testis weight were evaluated. Human CG stimulated Leydig cell maturation and normalized testicular T content compared with T treatment where Leydig cells remained immature and inactive. The maximal hCG-induced increases in testis weight and serum T concentrations were similar to those for T treatment and produced complete spermatogenesis characterized by mature, basally located Sertoli cells (SCs) with tripartite nucleoli, condensed haploid sperm, and lumen development. Compared with T treatment, hCG increased spermatogonial numbers, but both hCG and T had similar effects on numbers of spermatocytes and round and elongated spermatids per testis as well as per SC. Nevertheless, testis weight and germ cell numbers per testis and per SC remained well below phenotypically normal controls, confirming the involvement of non-Leydig cell factors such as FSH for quantitative normalization of spermatogenesis. We conclude that hCG stimulation of Leydig cell maturation and steroidogenesis is not required, and that T alone mostly replicates the effects of hCG, to initiate spermatogenesis. Because T is both necessary and sufficient for initiation of spermatogenesis, it is likely that T is the main Leydig cell secretory product involved and that additional LH-dependent Leydig cell factors are not essential for induction of murine spermatogenesis.  相似文献   

16.
The ultrastructure of the developing testicular microvasculature in the testes of immature (3, 5, 8, 10, 12, 16, 20, 25, 30 and 35 days old) golden hamsters was examined and compared to the testicular microvasculature of adult (3 months old) hamsters. In addition, in 16- to 35-day-old hamsters vascular permeability was studied after localization of injected horseradish peroxidase (HRP). Angiogenic processes were present in the testes of all examined immature hamsters and were most conspicuous between 8 and 25 days of age. These processes were absent in the testes of 3-month-old hamsters. On days 3 and 5, few undifferentiated blood vessels with activated endothelium were present in the interstitial spaces. Endothelial cell migration started from these 'mother vessels' and led to invasion of intertubular spaces by vascular sprouts, before vascularization of peritubular spaces occurred (after day 12). Sprouting endothelial cells were identified by the presence of a basal lamina and characterized by abundant cytoplasm and cell organelles. HRP-positive slits were seen in developing vessels, which opened to form the vascular lumen. HRP exited the vascular lumen through unspecialized endothelial contacts and micropinocytotic vesicles. By day 16, the blood-testis barrier prevented HRP from entering the seminiferous tubules beyond the basal compartment. By days 30 and 35 most testicular microvessels and at the age of 3 months all testicular microvessels were of the mature type, with narrow inactive endothelium and specialized cell contacts (including tight junctions). These results demonstrate that the postnatal vascularization of the testis in the golden hamster is a timed complex process. Due to high permeability, vascular sprouts are likely to influence the metabolic situation and thus the maturation processes of the testis. Angiogenesis in the golden hamster testis shares typical morphological features with angiogenic processes in other organs and species under various pathological and physiological conditions. We therefore conclude that the postnatal testis can be viewed as a physiological model of angiogenesis.  相似文献   

17.
18.
An intradermal injection of testicular interstitial fluid (IF) produced a marked increase in vasopermeability in a dose-dependent manner. Likewise bovine follicular fluid caused a smaller but significant response. The effect of IF was associated with accumulation of polymorphonuclear leucocytes (PMNs) inside the dermal venules and with their adherence to the venular endothelium. A minor but significant response was noticed after injecting anterior chamber fluid, but there was no response after an injection of amniotic fluid or serum intracutaneously. Destroying the Leydig cells with ethane dimethanesulphonate did not change the vasopermeability-increasing effect of IF, but after denaturation of IF proteins the effect was diminished by about 50%. Intravenous administration of hCG did not increase the ability of IF to cause the effect. These results suggest that rat testicular interstitial fluid contains mediators of vasopermeability, probably specific for the testis and also follicular fluid. The vasopermeability effect of IF does not seem to depend on the collecting time or on Leydig cells and is at least partly mediated by PMNs which are seen in the dermal venules shortly after an injection of IF.  相似文献   

19.
The cysteinyl leukotrienes (cys-LTs) mediate both acute and chronic inflammatory responses in mice, as demonstrated by the attenuation of the IgE/antigen-mediated increase in microvascular permeability and of bleomycin-induced pulmonary fibrosis, respectively, in a strain with targeted disruption of leukotriene C(4) synthase to prevent cys-LT synthesis. Our earlier finding that the acute, but not the chronic, injury was attenuated in a strain with targeted disruption of the cysteinyl leukotriene 1 (CysLT(1)) receptor suggested that the chronic injury might be mediated through the CysLT(2) receptor. Thus, we generated CysLT(2) receptor-deficient mice by targeted gene disruption. These mice developed normally and were fertile. The increased vascular permeability associated with IgE-dependent passive cutaneous anaphylaxis was significantly reduced in CysLT(2) receptor-null mice as compared with wild-type mice, whereas plasma protein extravasation in response to zymosan A-induced peritoneal inflammation was not altered. Alveolar septal thickening after intratracheal injection of bleomycin, characterized by interstitial infiltration with macrophages and fibroblasts and the accumulation of collagen fibers, was significantly reduced in CysLT(2) receptor-null mice as compared with the wild-type mice. The amounts of cys-LTs in bronchoalveolar lavage fluid after bleomycin injection were similar in the CysLT(2) receptor-null mice and the wild-type mice. Thus, in response to a particular pathobiologic event the CysLT(2) receptor can mediate an increase in vascular permeability in some tissues or promote chronic pulmonary inflammation with fibrosis.  相似文献   

20.
The volume of interstitial fluid in the limbs varies considerably, due to hydrostatic effects. As signals from working muscle, responsible for much of the cardiovascular drive, are assumed to be transmitted in this compartment, blood pressure and heart rate could be affected by local or systemic variations in interstitial hydration. Using a special calf ergometer, eight male subjects performed rhythmic aerobic plantar flexions in a supine position with dependent calves for periods of 7 min. During exercise heart rate, blood pressure, oxygen uptake (VO2) and blood lactate concentrations were measured in two different tests, one before and after interstitial calf dehydration through limb elevation for 25 min, compared to the other, a control with unaltered fluid volume in a maintained working position. Impedance plethysmography showed calf volume to be stabilized in the control position. Leg elevation by passive hip flexion to 90 degrees resulted in a fast (vascular) volume decrease lasting less than 2 min, followed by a slow linear fluid loss from the interstitial compartment. Then, when returned to the control position, adjustment of vascular volume was completed within 2 min and exercise could be performed with dehydration remaining in the interstitium only. Cardiovascular response was identical at the start of both tests. However, exercising with dehydrated calves elicited a significantly larger increase in heart rate compared to the control, whereas VO2 was identical. The blood pressure response was shown to be only slightly enhanced. Structural interstitial features varying with hydration, most likely chemical or mechanical ones, may have been responsible for this amplification of signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号