首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Capacitation of spermatozoa, a complex process occurring after sperm ejaculation, is required to produce fertilization of the oocyte in vivo and in vitro. Although this process results from a poorly understood series of morphological and molecular events, protein tyrosine phosphorylation has been associated with sperm capacitation in several mammalian species, but it still remains to be demonstrated in ram spermatozoa. Studies of capacitation in ram spermatozoa are of great interest, since several reports have suggested that the reduced fertility of cryopreserved spermatozoa is due to their premature capacitation. In this work, we report for the first time, to our knowledge, that tyrosine phosphorylation of ram sperm membrane proteins is related to the capacitation state of these cells. Capacitation induced tyrosine phosphorylation of some plasma membrane proteins of ram spermatozoa freed from seminal plasma by a dextran/swim-up procedure. It has also been proved that cold-shock induces protein tyrosine phosphorylation as well as a decrease in plasma membrane integrity. Addition of seminal plasma proteins prior to cold-shock not only improved sperm survival but also promoted a decrease in protein tyrosine phosphorylation.  相似文献   

2.
Ejaculated sperm are unable to fertilize an egg until they undergo capacitation. Capacitation results in the acquisition of hyperactivated motility, changes in the properties of the plasma membrane, including changes in proteins and glycoproteins, and acquisition of the ability to undergo the acrosome reaction. In all mammalian species examined, capacitation requires removal of cholesterol from the plasma membrane and the presence of extracellular Ca2+ and HCO3-. We designed experiments to elucidate the conditions required for in vitro capacitation of rat spermatozoa and the effects of Crisp-1, an epididymal secretory protein, on capacitation. Protein tyrosine phosphorylation, a hallmark of capacitation in sperm of other species, occurs during 5 h of in vitro incubation, and this phosphorylation is dependent upon HCO3-, Ca2+, and the removal of cholesterol from the membrane. Crisp-1, which is added to the sperm surface in the epididymis in vivo, is lost during capacitation, and addition of exogenous Crisp-1 to the incubation medium inhibits tyrosine phosphorylation in a dose-dependent manner, thus inhibiting capacitation and ultimately the acrosome reaction. Inhibition of capacitation by Crisp-1 occurs upstream of the production of cAMP by the sperm.  相似文献   

3.
Involvement of a Na+/HCO-3 cotransporter in mouse sperm capacitation   总被引:5,自引:0,他引:5  
Mammalian sperm are incapable of fertilizing eggs immediately after ejaculation; they acquire fertilization capacity after residing in the female tract for a finite period of time. The physiological changes sperm undergo in the female reproductive tract that render sperm able to fertilize constitute the phenomenon of "sperm capacitation." We have demonstrated that capacitation is associated with an increase in the tyrosine phosphorylation of a subset of proteins and that these events are regulated by an HCO(3)(-)/cAMP-dependent pathway involving protein kinase A. Capacitation is also accompanied by hyperpolarization of the sperm plasma membrane. Here we present evidence that, in addition to its role in the regulation of adenylyl cyclase, HCO(3)(-) has a role in the regulation of plasma membrane potential in mouse sperm. Addition of HCO(3)(-) but not Cl(-) induces a hyperpolarizing current in mouse sperm plasma membranes. This HCO(3)(-)-dependent hyperpolarization was not observed when Na(+) was replaced by the non-permeant cation choline(+). Replacement of Na(+) by choline(+) also inhibited the capacitation-associated increase in protein tyrosine phosphorylation as well as the zona pellucida-induced acrosome reaction. The lack of an increase in protein tyrosine phosphorylation was overcome by the presence of cAMP agonists in the incubation medium. The lack of a hyperpolarizing HCO(3)(-) current and the inhibition of the capacitation-dependent increase in protein tyrosine phosphorylation in the absence of Na(+) suggest that a Na(+)/HCO(3)(-) cotransporter is present in mouse sperm and is coupled to events regulating capacitation.  相似文献   

4.
获能是精子发生顶体反应以及与卵子结合之前所必需的生理过程,目前精子获能的机制得到初步阐明,获能伴随着质膜重组,离子通道的调节,胆固醇的流失以及许多蛋白磷酸化状态的改变.获能同时受到内在和外在因子的调节,其中胆固醇、HCO3-、Ca2+以及蛋白磷酸化在精子获能过程中发挥着重要作用.  相似文献   

5.
Capacitation represents the final maturational steps that render mammalian sperm competent to fertilize, either in vivo or in vitro. Capacitation is defined as a series of events that enables sperm to bind the oocyte and undergo the acrosome reaction in response to the zona pellucida. Although the molecular mechanisms involved are not fully understood, sperm protein phosphorylation is associated with capacitation. The hypothesis of this study is that protein tyrosine phosphorylation and kinase activity mediate capacitation of porcine sperm. Fresh sperm were incubated in noncapacitating or capacitating media for various times. Proteins were extracted with SDS, subjected to SDS-PAGE, and immunoblotted with an antiphosphotyrosine antibody. An M(r) 32 000 tyrosine-phosphorylated protein (designated as p32) appeared only when the sperm were incubated in capacitating medium and concomitant with capacitation as assessed by the ionophore-induced acrosome reaction. The p32 was soluble in Triton X-100. Fractionation of sperm proteins with Triton X-114 demonstrated that after capacitation, this tyrosine phosphoprotein is located in both the cytosol and the membrane. Enzyme renaturation of sperm proteins was conducted in gels with or without either poly glu:tyr (a tyrosine kinase substrate) or kemptide (a protein kinase A substrate). An M(r) 32 000 enzyme with kinase behavior was observed in all gels but was preferentially phosphorylated on tyrosine, as assessed by phosphorimagery and by thin layer chromotography to identify the phosphoamino acids. Indirect immunolocalization showed that the phosphotyrosine residues redistribute to the acrosome during capacitation, which is an appropriate location for a protein involved in the acquisition of fertility.  相似文献   

6.
Capacitation is the prerequisite process for sperm to gain the ability for successful fertilization. Unregulated capacitation will cause sperm to undergo a spontaneous acrosome reaction and then fail to fertilize an egg. Seminal plasma is thought to have the ability to suppress sperm capacitation. However, the mechanisms by which seminal proteins suppress capacitation have not been well understood. Recently, we demonstrated that a major seminal vesicle secretory protein, seminal vesicle autoantigen (SVA), is able to suppress bovine serum albumin (BSA)-induced mouse sperm capacitation. To further identify the mechanism of SVA action, we determine the molecular events associated with SVA suppression of BSA's activity. In this communication, we demonstrate that SVA suppresses the BSA-induced increase of intracellular calcium concentration ([Ca2+]i), intracellular pH (pH(i)), the cAMP level, PKA activity, protein tyrosine phosphorylation, and capacitation in mouse sperm. Besides, we also found that the suppression ability of SVA against BSA-induced protein tyrosine phosphorylation and capacitation could be reversed by dbcAMP (a cAMP agonist).  相似文献   

7.
Human sperm have to undergo a maturational process called capacitation in the female reproductive tract. Capacitation confers upon the sperm an ability to gain hypermotility and undergo acrosome reaction. Previous studies have suggested that seminal plasma proteins induce the capacitation of sperm in the female reproductive tract for the successful fertilization of the oocyte. However, the function of seminal plasma proteins in capacitation remains largely unclear. To the end, we found that soluble CD38 (sCD38) in seminal plasma increases the capacitation of sperm via specific interactions between sCD38 and the CD31 on the sperm. Upon the association of sCD38 with CD31, tyrosine kinase Src phosphorylates CD31, a process blocked by Src inhibitors. Shc, SHP-2, Grb2, and SOS, as well as Src kinase were found to associate with the phosphorylated CD31. The sCD38-induced phosphorylation of CD31 initiates a cascade reaction through the phosphorylation of Erk1/2, which results in the acrosome reaction, and sperm hypermotility. These processes were prevented by Src, Ras and MEK inhibitors. Taken together, these data indicate that the sCD38 present in seminal plasma plays a critical role in the capacitation of sperm.  相似文献   

8.
Phosphorylation of tyrosine residues in cellular proteins represents a major event during sperm capacitaton, but its relationship with the acquisition of sperm-fertilizing ability is still unclear. In this study we explored the relationship between the kinetics of the global tyrosine phosphorylation, monitored with a flow cytometric assay, and the acquisition of the human sperm ability to fuse with oocytes, evaluated with the progesterone-enhanced hamster egg penetration test. Sperm tyrosine phosphorylation appeared to be an early event in the capacitation process, with a 3.6-fold mean increase within 1 h of capacitation, but at this time sperm-oocyte fusion was extremely poor compared with that observed at 5 h of capacitation. Capacitation in calcium-free medium produced a 2-fold mean increase in tyrosine phosphorylation compared with that seen in complete capacitation medium both at 1 h and 5 h of capacitation, whereas sperm-oocyte fusion significantly increased only at 1 h, remaining unchanged at 5 h of capacitation. The cAMP analog, N,2-O-dibutyryladenosine 3',5'-cyclic monophosphate (dbcAMP), prevented the inhibitory effect of seminal plasma on tyrosine phosphorylation but not on sperm-oocyte fusion. In conclusion, these results suggest that the acquisition of sperm-fertilizing ability is always associated with an increase of the global tyrosine phosphorylation, but tyrosine phosphorylation does not necessarily reflect the acquisition of the sperm-fertilizing ability. Flow cytometry assay, a reliable technique to quickly quantify the global levels of the human sperm tyrosine phosphorylation, could be useful for a further elucidation of the biological meaning of this process, with the perspective of its clinical use as a measure of the sperm-fertilizing potential.  相似文献   

9.
Capacitation is an essential process by which spermatozoa acquire fertilizing ability. Reactive oxygen species (ROS), protein kinase A (PKA), protein kinase C (PKC), protein tyrosine kinases (PTKs), and the extracellular signal-regulated protein kinase (ERK or mitogen-activated protein kinase [MAPK]) pathway regulate sperm capacitation. Our aim was to evaluate the phosphorylation of MEK (MAPK kinase or MAP2K) or MEK-like proteins in human sperm capacitation and its modulation by ROS and kinases. Immunoblotting using an anti-phospho-MEK antibody indicated that the phosphorylation of three protein bands (55, 94, and 115 kDa) increased in spermatozoa treated with fetal cord serum ultrafiltrate (FCSu), BSA, or isobutylmethylxanthine plus dibutyryl cAMP as capacitating agents. These phospho-MEK-like proteins are localized along the sperm flagellum. The MEK-inhibitors PD98059 and U126 prevented this phosphorylation, suggesting that these proteins are MEK-like proteins. The ROS scavengers prevented, and the addition of H(2)O(2) or spermine-NONOate (nitric oxide donor) triggered, the increase of phospho-MEK-like proteins. The capacitation-related increases in phospho-MEK-like proteins induced by FCSu, H(2)O(2), and spermine-NONOate were similarly modulated by PKA, PKC, and PTK, suggesting ROS as mediators in this phenomenon. These results indicate that phospho-MEK-like proteins are modulated by ROS and kinases and probably represent an intermediary step between the early events and the late tyrosine phosphorylation associated with capacitation.  相似文献   

10.

Background  

Serum albumin is a key component in mammalian sperm capacitation, a functional maturation process by which sperm become competent to fertilize oocytes. Capacitation is accompanied by several cellular and molecular changes including an increased tyrosine phosphorylation of sperm proteins and a development of hyperactivated sperm motility. Both of these processes require extracellular calcium, but how calcium enters sperm during capacitation is not well understood.  相似文献   

11.
Capacitation is defined as a series of events that render boar sperm competent to fertilize, either in vivo or in vitro. Moreover, preliminary stages of cryopreservation of spermatozoa involving cooling to 5 degrees C have been shown to induce capacitation-like changes in boar spermatozoa. Capacitation of boar spermatozoa is accompanied by protein phosphorylation, however the relationship between both processes is poorly understood. Capacitation status was assessed by chlortetracycline (CTC) staining. Changes in protein tyrosine phosphorylation were examined in pre-cleared whole cell lysates using a specific anti-phosphotyrosine monoclonal antibody. Our results in boar spermatozoa show a significant positive correlation between p32 tyrosine phosphorylation levels and percentage of capacitated (CTC pattern B) spermatozoa. Moreover, incubation of boar spermatozoa with two unrelated tyrosine kinase inhibitors induces a significant reduction in the percentages of capacitated and acrosome-reacted (AR) boar spermatozoa and a reduction in the p32 tyrosine phosphorylation. In our conditions, cooling boar spermatozoa to 5 degrees C and rewarming to 39 degrees C in a noncapacitating medium results in similar CTC staining patterns to those obtained after incubation of boar sperm for 1 or 4 hr at 39 degrees C in a capacitating medium. However, cooled-rewarmed fails to induce an increase in p32 tyrosine phosphorylation in boar spermatozoa. Moreover, CTC staining patterns of cooled-rewarmed spermatozoa do not change after incubation with a tyrosine kinase inhibitor. In conclusion, our results show a direct relationship between capacitation and tyrosine phosphorylation and suggest that p32 tyrosine phosphorylation levels could be used as a marker of the true capacitation changes observed in boar spermatozoa. Moreover, our results show that true capacitation and capacitation-like changes induced after cooling involve alternative intracellular tyrosine phosphorylation pathways in boar spermatozoa.  相似文献   

12.
获能是精子发生顶体反应以及与卵子结合之前所必需的生理过程.研究发现在精子获能过程中伴随有蛋白质的磷酸化特别是酪氨酸的磷酸化.主要对酪氨酸磷酸化蛋白在精子获能过程中的作用及其存在的部位进行归纳总结,为进一步阐明精子获能分子机制奠定基础.  相似文献   

13.
Mammalian sperm acquire fertilization capacity after residing in the female tract during a process known as capacitation. The present study examined whether cholesterol efflux during capacitation alters the biophysical properties of the sperm plasma membrane by potentially reducing the extent of lipid raft domains as analyzed by the isolation of detergent-resistant membrane fractions using sucrose gradients. In addition, this work investigated whether dissociation of the detergent-resistant membrane fraction during capacitation alters resident sperm raft proteins. Mouse sperm proteins associated with such fractions were studied by silver staining, tandem mass spectrometry, and Western blot analysis. Caveolin 1 was identified in sperm lipid rafts in multimeric states, including a high-molecular-weight oligomer that is sensitive to degradation under reducing conditions at high pH. Capacitation resulted in reduction of the light buoyant-density, detergent-resistant membrane fraction and decreased the array of proteins isolated within this fraction, including loss of the high-molecular-weight caveolin 1 oligomers. Proteomic analysis of sperm proteins isolated in the light buoyant-density fraction identified several proteins, including hexokinase 1, testis serine proteases 1 and 2, TEX101, hyaluronidase (PH20, SPAM1), facilitated glucose transporter 3, lactate dehydrogenase A, carbonic anhydrase IV, IZUMO, pantophysin, basigin, and cysteine-rich inhibitory secretory protein 1. Capacitation also resulted in a significant reduction of sperm labeling by the fluorescent lipid-analog DiIC16, indicating that capacitation alters the liquid-ordered domains in the sperm plasma membrane. The observations that capacitation alters the protein composition of the detergent-resistant membrane fractions is consistent with the hypothesis that cholesterol efflux during capacitation dissociates lipid raft constituents, initiating signaling events that lead to sperm capacitation.  相似文献   

14.
To fertilize the oocyte, mammalian spermatozoa must undergo capacitation and acrosome reaction. These events are believed to be associated with various biochemical changes primarily mediated by cAMP, Ca2+ and protein kinases. But the precise signaling mechanisms governing sperm function are not clear. To study this, we used pentoxifylline (PF), a sperm motility stimulant and a cAMP-phosphodiesterase inhibitor, during capacitation and acrosome reaction of hamster spermatozoa. PF induced an early onset of sperm capacitation and its action involved modulation of sperm cell signaling molecules viz, cAMP, [Ca2+]i and protein kinases. The PF-induced capacitation was associated with an early and increased total protein phosphorylation coupled with changes in the levels of reactive oxygen species. Protein kinase (PK)-A inhibitor (H-89) completely inhibited phosphorylation of a 29 kDa protein while PK-C inhibitor (staurosporine) did not inhibit phosphorylation. Interestingly, PF induced protein tyrosine phosphorylation of a set of proteins (Mr 45-80 K) and a greater proportion of PF-treated spermatozoa exhibited protein tyrosine phosphorylation, compared to untreated controls (82 + 9% vs 34 +/- 10%; p < 0.001); tyrosine-phosphorylated proteins were localized specifically to the mid-piece of the sperm. The profile of protein tyrosine phosphorylation was inhibitable by higher concentrations (> 0.5 mM) of tyrosine kinase inhibitor, tyrphostin A47. However, at lower (0.1-0.25 mM) concentrations, the compound interestingly induced early sperm capacitation and protein tyrosine phosphorylation, like PF. These results show that protein tyrosine phosphorylation in the mid-piece segment (mitochondrial sheath) appears to be an early and essential event during PF-induced capacitation and a regulated level of tyrosine phosphorylation of sperm proteins is critical for capacitation of hamster spermatozoa.  相似文献   

15.
Capacitation confers on the spermatozoa the competence to fertilize the oocyte. At the molecular level, a cyclic adenosine monophosphate (cAMP) dependent protein tyrosine phosphorylation pathway operates in capacitated spermatozoa, thus resulting in tyrosine phosphorylation of specific proteins. Identification of these tyrosine‐phosphorylated proteins and their function with respect to hyperactivation and acrosome reaction, would unravel the molecular basis of capacitation. With this in view, 21 phosphotyrosine proteins have been identified in capacitated hamster spermatozoa out of which 11 did not identify with any known sperm protein. So, in the present study attempts have been made to ascertain the role of one of these eleven proteins namely glycerol‐3‐phosphate dehydrogenase 2 (GPD2) in hamster sperm capacitation. GPD2 is phosphorylated only in capacitated hamster spermatozoa and is noncanonically localized in the acrosome and principal piece in human, mouse, rat, and hamster spermatozoa, though in somatic cells it is localized in the mitochondria. This noncanonical localization may imply a role of GPD2 in acrosome reaction and hyperactivation. Further, enzymatic activity of GPD2 during capacitation correlates positively with hyperactivation and acrosome reaction thus demonstrating that GPD2 may be required for sperm capacitation.  相似文献   

16.
Incubation of bovine sperm with ouabain, an endogenous cardiac glycoside that inhibits both the ubiquitous (ATP1A1) and testis‐specific α4 (ATP1A4) isoforms of Na+/K+ATPase, induces tyrosine phosphorylation and capacitation. The objectives of this study were to investigate: (1) fertilizing ability of bovine sperm capacitated by incubating with ouabain; (2) involvement of ATP1A4 in this process; and (3) signaling mechanisms involved in the regulation of sperm capacitation induced by inhibition of Na+/K+ATPase activity. Fresh sperm capacitated by incubating with ouabain (inhibits both ATP1A1 and ATP1A4) or with anti‐ATP1A4 immunoserum fertilized bovine oocytes in vitro. Capacitation was associated with relocalization of ATP1A4 from the entire sperm head to the post‐acrosomal region. To investigate signaling mechanisms involved in oubain‐induced regulation of sperm capacitation, sperm preparations were pre‐incubated with inhibitors of specific signaling molecules, followed by incubation with ouabain. The phosphotyrosine content of sperm preparations was determined by immunoblotting, and capacitation status of these sperm preparations were evaluated through an acrosome reaction assay. We inferred that Na+/K+ATPase was involved in the regulation of tyrosine phosphorylation in sperm proteins through receptor tyrosine kinase, nonreceptor type protein kinase, and protein kinases A and C. In conclusion, inhibition of Na+/K+ATPase induced tyrosine phosphorylation and capacitation through multiple signal transduction pathways, imparting fertilizing ability in bovine sperm. To our knowledge, this is the first report documenting both the involvement of ATP1A4 in the regulation of bovine sperm capacitation and that fresh bovine sperm capacitated by the inhibition of Na+/K+ATPase can fertilize oocytes in vitro. Mol. Reprod. Dev. 77: 136–148, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
The effect of various capacitation inducers, i.e. heparin, superoxide anion, bicarbonate, adenosine, and caffeine, and their role in intracellular mechanisms involved in capacitation, were studied in cryopreserved bovine sperm. Capacitation was determined by epifluorescence chlortetracycline, protein tyrosine phosphorylation, and the ability of capacitated sperm to undergo an acrosome reaction and fertilize in vitro matured oocytes. Participation of membrane adenylate cyclase and protein kinases (protein kinase A, protein kinase C, and protein tyrosine kinase) was evaluated indirectly (with specific inhibitors). Involvement of reactive oxygen species (ROS) was determined with scavengers of superoxide anion, hydrogen peroxide, or nitric oxide. Percentages of capacitated (27-29%) and acrosome-reacted sperm (23-26%) did not differ (P > 0.05) among various capacitation inducers. Significantly higher rates of IVF were obtained with heparin (43%) or bicarbonate plus caffeine (45%), when compared with control samples (17%). Adding the membrane adenylate cyclase inhibitor diminished capacitation rates with heparin (8%) or adenosine (10%). There was differential protein kinase participation in response to inducers; protein kinase inhibitors diminished cleavage rates in heparin-capacitated sperm relative to controls. There were differences between and within the studied inducers in protein tyrosine phosphorylation patterns. We inferred that capacitation in cryopreserved bovine sperm was promoted through diverse pathways. Mechanisms triggered by heparin, or caffeine plus bicarbonate-induced capacitation, involved activation of intracellular pathways to optimize fertilizing capability of cryopreserved bovine sperm.  相似文献   

18.
A heteromeric integral membrane protein, Na+/K+ATPase is composed of two polypeptides, alpha and beta, and is active in many cell types, including testis and spermatozoa. It is a well-known ion transporter, but binding of ouabain, a specific inhibitor of Na+/K+ATPase, to Na+/K+ATPase in somatic cells initiates responses that are similar to signaling events associated with bovine sperm capacitation. The objectives of the present study were to demonstrate the presence of Na+/K+ATPase in bovine sperm and to investigate its role in the regulation of bovine sperm capacitation. The presence of Na+/K+ATPase in sperm from mature Holstein bulls was demonstrated by immunoblotting and immunocytochemistry using a monoclonal antibody developed in mouse against the beta 1 polypeptide of Na+/K+ATPase. Binding of ouabain to Na+/K+ATPase inhibited motility (decreased progressive motility, average path velocity, and curvilinear velocity) and induced tyrosine phosphorylation and capacitation but did not increase intracellular calcium levels in spermatozoa. Furthermore, binding of ouabain to Na+/K+ATPase induced depolarization of sperm plasma membrane. Therefore, binding of ouabain to Na+/K+ATPase induced sperm capacitation through depolarization of sperm plasma membrane and signaling via the tyrosine phosphorylation pathway without an appreciable increase in intracellular calcium. To our knowledge, this is the first report concerning the signaling role of Na+/K+ATPase in mammalian sperm capacitation.  相似文献   

19.
Eight different lectins conjugated to fluorescein isothiocyanate (FITC) were used to screen for sperm plasma membrane changes during in vitro capacitation of bovine sperm. Analysis of lectin binding to sperm was done using flow cytometry. Of the eight lectins, only Triticum vulgaris (wheat germ agglutinin, WGA) binding to sperm was altered with capacitation. Capacitation of bovine sperm by heparin was found to decrease WGA binding to sperm by 78% (P < 0.05). The effect of capacitation by oviduct fluid was next compared with capacitation by heparin for changes in WGA binding to sperm. The effect of inhibiting capacitation with glucose on WGA binding was also determined. WGA-bound sperm were detected by flow cytometry as being present in two fluorescence peaks defined as low fluorescence (A) or high fluorescence (B) intensity. The percentage of sperm in peak A was greater for heparin and oviduct fluid-treated sperm compared to sperm incubated under noncapacitating conditions in only culture medium (P < 0.001). Capacitation with either heparin or oviduct fluid was inhibited by glucose as assessed by the ability of lysophosphatidylcholine (100 μg/ml) to induce acrosome reactions. Glucose also reduced the percentage of sperm in peak A for both heparin- and oviduct fluid-treated sperm (P < 0.01). We conclude that heparin or oviduct fluid induced changes on the sperm plasma membrane during capacitation. Binding sites for WGA on sperm were either structurally altered or lost during capacitation. © 1996 Wiley-Liss, Inc.  相似文献   

20.
It is generally accepted that incubation with heparin is required to induce capacitation of ejaculated bovine spermatozoa in vitro. The capacitation process implicates many biochemical events, and is correlated with modified sperm motility and the phosphorylation of specific proteins on tyrosine residues. To better understand the molecular basis of heparin-induced capacitation, bovine spermatozoa were incorporated with a radioactive substrate of protein kinases [gamma32P]-ATP, to observe protein phosphorylation dynamics over time. Sperm motion parameters including the percentage of motile spermatozoa, amplitude of lateral head displacement (ALH) and flagellar beat cross frequency (BCF) were assessed to determine whether the protein phosphorylation patterns induced by heparin also promote changes in motility. Capacitation was confirmed using the chlortetracycline fluorescence assay and the appearance of 'pattern B' stained spermatozoa. Evaluation of the different motility parameters during capacitation reveal that heparin has a marked negative effect, over time, on the percentage of motile spermatozoa, consistent with hyperactivation. Indeed, the presence of heparin greatly increases the BCF of bull spermatozoa and induces a significant increase in the ALH compared to spermatozoa incubated without heparin. We detected several sperm proteins that are phosphorylated over time. A 45 kDa protein is the most intensely phosphorylated of the sperm proteins. However, it is visible regardless of the presence of heparin. Interestingly, a second phosphorylated protein of approximately 50 kDa undergoes more intense phosphorylation with heparin than without. In summary, the present study demonstrated that heparin induces physiological changes in several sperm motility parameters including ALH, BCF and the percentage of motile spermatozoa. Heparin also increases the intensity of phosphorylation of a 50 kDa sperm protein. These results suggest that capacitation of bovine spermatozoa and capacitation-associated motility changes may be regulated by a mechanism that includes protein phosphorylation, and that a presently unknown protein kinase is involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号