首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified a Ca(2+)-binding site of the 29-kDa chlorophyll a/b-binding protein CP29, a light harvesting protein of photosystem II most likely involved in photoregulation. (45)Ca(2+) binding studies and dot blot analyses of CP29 demonstrate that CP29 is a Ca(2+)-binding protein. The primary sequence of CP29 does not exhibit an obvious Ca(2+)-binding site therefore we have used Yb(3+) replacement to analyze this site. Near-infrared Yb(3+) vibronic side band fluorescence spectroscopy (Roselli, C., Boussac, A., and Mattioli, T. A. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 12897-12901) of Yb(3+)-reconstituted CP29 indicated a single population of Yb(3+)-binding sites rich in carboxylic acids, characteristic of Ca(2+)-binding sites. A structural model of CP29 presents two purported extra-membranar loops which are relatively rich in carboxylic acids, one on the stromae side and one on the lumenal side. The loop on the lumenal side is adjacent to glutamic acid 166 in helix C of CP29, which is known to be the binding site for dicyclohexylcarbodiimide (Pesaresi, P., Sandonà, D., Giuffra, E. , and Bassi, R. (1997) FEBS Lett. 402, 151-156). Dicyclohexylcarbodiimide binding prevented Ca(2+) binding, therefore we propose that the Ca(2+) in CP29 is bound in the domain including the lumenal loop between helices B and C.  相似文献   

2.
The dark reaction of tris(hydroxymethyl)aminomethane (Tris) with the O2-evolving center of photosystem II (PSII) in the S1 state causes irreversible inhibition of O2 evolution. Similar inhibition is observed for several other amines: NH3, CH3NH2, (CH3)2NH, ethanolamine, and 2-amino-2-ethyl-1,3-propanediol. In PSII membranes, both depleted of the 17- and 23-kDa polypeptides and undepleted, the rate of reaction of Tris depends inversely upon the Cl- concentration. However, the rate of reaction of Tris is about 2-fold greater with PSII membranes depleted of the 17- and 23-kDa polypeptides than with undepleted PSII membranes. We have used low-temperature electron paramagnetic resonance (EPR) spectroscopy to study the effect of Tris on the oxidation state of the Mn complex in the O2-evolving center, to monitor the electron-donation reactions in Tris-treated samples, and to observe any loss of the Mn complex (forming Mn2+ ions) after Tris treatment. We find that Tris treatment causes loss of electron-donation ability from the Mn complex at the same rate as inhibition of O2 evolution and that Mn2+ ions are released. We conclude that Tris reduces the Mn complex to labile Mn2+ ions, without generating any kinetically stable, partially reduced intermediates, and that the reaction occurs at the Cl(-)-sensitive site previously characterized in studies of the reversible inhibition of O2 evolution by amines.  相似文献   

3.
The roles of Ca(2+) in H(2)O oxidation may be as a site of substrate binding, and as a structural component of the photosystem II O(2)-evolving complex. One indication of this dual role of the metal is revealed by probing the Mn cluster in the Ca(2+) depleted O(2) evolving complex that retains extrinsic 23- and 17-kDa polypeptides with reductants (NH(2)OH and hydroquinone) [Biochemistry 41 (2002) 958]. Calcium appears to bind to photosystem II at a site where it could bind substrate H(2)O. Equilibration of Ca(2+) with this binding site is facilitated by increased ionic strength, and incubation of Ca(2+) reconstitution mixtures at 22 degrees C accelerates equilibration of Ca(2+) with the site. The Ca(2+) reconstituted enzyme system regains properties of unperturbed photosystem II: Sensitivity to NH(2)OH inhibition is decreased, and Cl(-) binding with increased affinity can be detected. The ability of ionic strength and temperature to facilitate rebinding of Ca(2+) to the intact O(2) evolving complex suggests that the structural environment of the oxidizing side of photosystem II may be flexible, rather than rigid.  相似文献   

4.
R Mei  C F Yocum 《Biochemistry》1992,31(36):8449-8454
Calcium binding to photosystem II slows NH2OH inhibition of O2 evolution; Mn2+ is retained by the O2-evolving complex [Mei, R., & Yocum, C. F. (1991) Biochemistry 30, 7836-7842]. This Ca(2+)-induced stability has been further characterized using the large reductant hydroquinone. Salt-washed photosystem II membranes reduced by hydroquinone in the presence of Ca2+ retain 80% of steady-state O2 evolution activity and contain about 2 Mn2+/reaction center that can be detected at room temperature by electron paramagnetic resonance. This Mn2+ produces a weak enhancement of H2O proton spin-lattice relaxation rates, cannot be easily extracted by a chelator, and is reincorporated into the O2-evolving complex upon illumination. A comparison of the properties of Ca(2+)-supplemented photosystem II samples reduced by hydroquinone or NH2OH alone or in sequence reveals the presence of a subpopulation of manganese atoms at the active site of H2O oxidation that is not accessible to facile hydroquinone reduction. At least one of these manganese atoms can be readily reduced by NH2OH following a noninhibitory hydroquinone reduction step. Under these conditions, about 3 Mn2+/reaction center are lost and O2 evolution activity is irreversibly inhibited. We interpret the existence of distinct sites of reductant action on manganese as further evidence that the Ca(2+)-binding site in photosystem II participates in regulation of the organization of manganese-binding ligands and the overall structure of the O2-evolving complex.  相似文献   

5.
Kuntzleman T  Yocum CF 《Biochemistry》2005,44(6):2129-2142
Hydroxylamine and hydroquinone were used to probe the oxidation states of Mn in the oxygen-evolving complex of dark-adapted intact (hydroxylamine) and salt-washed (hydroquinone) photosystem II. These preparations were incubated in the dark for 24 h in the presence of increasing reductant/photosystem II ratios, and the loss of oxygen evolution activity and of Mn(II) was determined for each incubation mixture. Monte Carlo simulations of these data yielded models that provide insight into the structure, reactivity, and oxidation states of the manganese in the oxygen-evolving complex. Specifically, the data support oxidation states of Mn(III)(2)/Mn(IV)(2) for the dark stable S(1) state of the O(2)-evolving complex. Activity and Mn(II) loss data were best modeled by assuming an S(1) --> S(-)(1) conversion of intermediate probability, a S(-)(1) --> S(-)(3) reaction of high probability, and subsequent step(s) of low probability. This model predicts that photosystem II Mn clusters that have undergone an initial reduction step become more reactive toward a second reduction, followed by a slower third reduction step. Analysis of the Mn(II) release parameters used to model the data suggests that the photosystem II manganese cluster consists of three Mn atoms that exhibit a facile reactivity with both reductants, and a single Mn that is reducible but sterically trapped at or near its binding site. Activity assays indicate that intact photosystem II centers reduced to S(-)(1) can evolve oxygen upon illumination, but that these centers are inactive in preparations depleted of the extrinsic 23 and 17 kDa polypeptides. Finally, it was found that a substantial population of the tyrosine D radical is reduced by hydroxylamine, but a smaller population reacts with hydroquinone over the course of a 24 h exposure to the reductant.  相似文献   

6.
Bryson DI  Doctor N  Johnson R  Baranov S  Haddy A 《Biochemistry》2005,44(19):7354-7360
Oxygen evolution by photosystem II (PSII) is activated by chloride and other monovalent anions. In this study, the effects of iodide on oxygen evolution activity were investigated using PSII-enriched membrane fragments from spinach. In the absence of Cl(-), the dependence of oxygen evolution activity on I(-) concentration showed activation followed by inhibition in both intact PSII and NaCl-washed PSII, which lacked the PsbP and PsbQ subunits. Using a substrate inhibition model, the range of values of the Michaelis constant K(M) in intact PSII (0.5-1.5 mM) was smaller than that in NaCl-washed PSII (1.5-5 mM), whereas values of the inhibition constant K(I) in intact PSII (9-17 mM) were larger than those in NaCl-washed PSII (1-4 mM). Studies of I(-) inhibition of Cl(-)-activated oxygen evolution in intact PSII revealed that I(-) was primarily an uncompetitive inhibitor, with uncompetitive constant K(i)' = 37 mM and Cl(-)-competitive constant K(i) > 200 mM. This result indicated that the activating Cl(-) must be bound for inhibition to take place, which is consistent with the substrate inhibition model for I(-) activation. The S(2) state multiline and g = 4.1 EPR signals in NaCl-washed PSII were examined in the presence of 3 and 25 mM NaI, corresponding to I(-)-activated and I(-)-inhibited conditions, respectively. The two S(2) state signals were observed at both I(-) concentrations, indicating that I(-) substitutes for Cl(-) in formation of the signals and that advancement to the S(2) state was not prevented by high I(-) concentrations. A model is presented that incorporates the results of this study, including the action of both chloride and iodide.  相似文献   

7.
8.
The phytotoxic effects of sulfur dioxide (SO2) were investigatedby fumigating spinach plants with SO2. Inhibition of 2,6-dichloroindophenol(DCIP) photoreduction was observed in spinach chloroplasts isolatedfrom fumigated leaves. NADP and DCIP photoreductions were inhibitedto a similar extent by fumigation with 2.0 ppm SO2 but electronflow from reduced DCIP to NADP was not affected. When electronflow from H2O to NADP was inhibited by 36%, a 39% inhibitionof non-cyclic photophosphorylation was observed. However, phenazinemethosulfate(PMS)-catalyzed cyclic photophosphorylation wasas active as in the control chloroplasts. Moreover, in the presenceof PMS, no significant suppression was observed in the extentof light-induced H+ uptake or in the rate of H+ efflux in chloroplasts.From these results, it can be concluded that SO2 inhibits theelectron flow driven by photosystem II when plants have beenfumigated with SO2. In spinach leaves fumigated with SO2, the rate of photosyntheticO2 evolution was reduced under light-limited conditions, whilethe rate of respiratory O2 uptake changed slightly. (Received February 8, 1979; )  相似文献   

9.
T A Ono  H Mino 《Biochemistry》1999,38(27):8778-8785
Binding of Mn2+ to manganese-depleted photosystem II and electron donation from the bound Mn2+ to an oxidized YZ tyrosine were studied under the same equilibrium conditions. Mn2+ associated with the depleted membranes in a nonsaturating manner when added alone, but only one Mn2+ ion per photosystem II (PS II) was bound to the membranes in the presence of other divalent cations including Ca2+ and Mg2+. Mn2+-dependent electron donation to photosystem II studied by monitoring the decay kinetics of chlorophyll fluorescence and the electron paramagnetic resonance (EPR) signal of an oxidized YZ tyrosine (YZ+) after a single-turnover flash indicated that the binding of only one Mn2+ ion to the manganese-depleted PS II is sufficient for the complete reduction of YZ+ induced by flash excitation. The results indicate that the manganese-depleted membranes have only one unique binding site, which has higher affinity and higher specificity for Mn2+ compared with Mg2+ and Ca2+, and that Mn2+ bound to this unique site can deliver an electron to YZ+ with high efficiency. The dissociation constant for Mn2+ of this site largely depended on pH, suggesting that a single amino acid residue with a pKa value around neutral pH is implicated in the binding of Mn2+. The results are discussed in relation to the photoactivation mechanism that forms the active manganese cluster.  相似文献   

10.
In order to investigate oxygen binding and hydrophobic cavities in photosystem II (PSII), we have introduced xenon under pressure into crystals of PSII isolated from Thermosynechococcus elongatus and used X-ray anomalous diffraction analyses to identify the xenon sites in the complex. Under the conditions employed, 25 Xe-binding sites were identified in each monomer of the dimeric PSII complex. The majority of these were distributed within the membrane spanning portion of the complex with no obvious correlation with the previously proposed oxygen channels. One binding site was located close to the haem of cytochrome b559 in a position analogous to a Xe-binding site of myoglobin. The only Xe-binding site not associated with the intrinsic subunits of PSII was within the hydrophobic core of the PsbO protein.  相似文献   

11.
Washing with EDTA changes the specificity of Anacystis nidulans particles having photosystem II activities for activation by cations. A specific requirement for Mn2+ and a somewhat lower specificity for Ca2+ can be demonstrated in the EDTA-washed particles. Both ions must be added to reconstitute the system evolving O2 in the light. EDTA-washed particles retain the L-amino acid oxidase with high specificity for the basic L-amino acids [Pistorius, E. K. and Voss, H. (1980) Biochem. Biophys. Acta, 611, 227-240] as well as the ability to reduce 2,6-dichloroindophenol with diphenylcarbazide as a donor in the light. The latter reaction which does not require added cations, can be inhibited by chlorpromazine, and this inhibition can be partially relieved by Ca2+ ions. Evidence is also presented that the L-amino-acid oxidase is inhibited by chlorpromazine, and this inhibition can be relieved by L-arginine in much the same way as the inhibition of the enzyme by Ca2+ ions can be relieved by L-arginine. The data are compatible with, but do not prove, an involvement of the L-amino-acid oxidase in the redox reactions of photosystem II of A. nidulans.  相似文献   

12.
13.
Metal ions, such as Ca2+ and Mn2+, are necessary for the generation of cofactor activity following reconstitution of factor VIII from its isolated light chain (LC) and heavy chain (HC). Titration of EDTA-treated factor VIII with Mn2+ showed saturable binding with high affinity (K(d) = 5.7 +/- 2.1 microM) as detected using a factor Xa generation assay. No significant competition between Ca2+ and Mn2+ for factor VIII binding (K(i) = 4.6 mM) was observed as measured by equilibrium dialysis using 20 microM Ca2+ and 8 microM factor VIII in the presence of 0-1 mM Mn2+. The intersubunit affinity measured by fluorescence energy transfer of an acrylodan-labeled LC (fluorescence donor) and fluorescein-labeled HC (fluorescence acceptor) in the presence of 20 mM Mn2+ (K(d) = 53.0 +/- 17.1 nM) was not significantly different from the affinity value previously obtained in the absence of metal ion (K(d) = 53.8 +/- 14.2 nM). The sensitization of phosphorescence of Tb3+ bound to factor VIII subunits was utilized to detect Mn2+ binding to the subunits. Mn2+ inhibited the phosphorescence of Tb3+ bound to HC and LC, as well as the HC-derived A1 and A2 subunits with a relatively wide range of estimated inhibition constant values (K(i) values = 169-1147 microM), whereas Ca2+ showed no effect on Tb3+ phosphorescence. These results suggest that factor VIII cofactor activity can be generated by Mn2+ binding to site(s) on factor VIII that are different from the high-affinity Ca2+ binding site. However, like Ca2+, Mn2+ did not alter the affinity for HC and LC association. Thus, Mn2+appears to generate factor VIII cofactor activity by a similar mechanism as observed for Ca2+following its association at nonidentical sites on the protein.  相似文献   

14.
A 5 min exposure of photosystem II to a pH 3 citric acid solution is a simple method for selective removal of Ca(2+) from the O(2)-evolving complex. The resulting preparation retains the 23 and 17 kDa extrinsic polypeptides, but the activity of this material is only 10-20% of that of an untreated control sample. Biochemical characterization of citrate-treated photosystem II reveals that some reaction centers lose the extrinsic proteins during citrate treatment. Furthermore, a comparison of photosystem II preparations treated with citrate, or depleted of 23 and 17 kDa extrinsic polypeptides by high-salt treatment, shows that low concentrations of a small reductant, NH(2)OH, which has little effect on the activity of intact photosystem II, can reduce and inhibit the Mn cluster in both types of preparations. In contrast, a large reductant, hydroquinone, cannot access the majority of O(2)-evolving centers in citrate-treated preparations, while 23 and 17 kDa-depleted material is rapidly inactivated by the reductant. Incubation of the citrate-treated samples in high ( approximately 60 mM) concentrations of CaCl(2) restores 50% of the lost activity; this Ca(2+)-reconstituted activity is chelator-insensitive, indicating that rebinding of Ca(2+) restores the structural integrity of the O(2)-evolving complex. A characterization of Ca(2+) and Cl(-) affinities in steady-state activity assays shows that citrate-treated preparations exhibit a Cl(-) requirement similar to that of polypeptide-depleted photosystem II, while Ca(2+) reactivation of O(2) evolution appears to occur at two structurally distinct sites. One site exhibits a high Ca(2+) affinity, similar to that found in polypeptide-depleted samples, but a second, lower-affinity site also exists, with a K(M) that is approximately 10 times greater than that of the high-affinity site, which is associated with centers that retain the extrinsic polypeptides. These data indicate that citrate-induced Ca(2+) depletion causes release of the 23 and 17 kDa extrinsic polypeptides from some photosystem II reaction centers, and also modifies the structure of the polypeptide-retaining O(2)-evolving centers so that the Mn cluster is exposed to small, but not large, reductants. This change may be due to subtle modifications to the structure of the photosystem II extrinsic proteins that produces a new pathway between the solvent and the Mn cluster or, alternatively, to the opening of an existing channel in the intrinsic lumenal polypeptide domain, between the solvent and the Mn cluster, that is normally occluded by a bound Ca(2+) atom.  相似文献   

15.
The metal ion requirement of myosin-ADP binding was investigated by use of Mn2+. Mn2+ binds to two sets of noninteracting sites on myosin which are characterized by affinity constants of 106 and 103, M−1 at 0.016 M KCl concentration. The maximum number of sites is 2 for the high affinity and 20–25 for the low affinity set. Binding of Mn2+ to the high affinity sites increases the affinity of ADP binding to myosin. F-actin inhibits ADP binding (Kiely, B., and Martonosi, A., Biochim. Biophys. Acta 172: 158–170 [1969]), but even at F-actin concentrations much higher than that required to saturate the actin binding sites of myosin or its proteolytic fragments, significant ADP binding remained. The actin insensitive portion of ADP binding was inhibited by 10−4 M inorganic pyrophosphate or ATP. The results are discussed on the basis of a model in which actin and ADP bind to myosin at distinct but interacting sites.  相似文献   

16.
W Vermaas  J Charité  G Z Shen 《Biochemistry》1990,29(22):5325-5332
To probe the involvement of amino acid residues of the D2 protein in the water-splitting process in photosystem II, site-directed mutagenesis was applied to identify D2 residues that might contribute to binding the Mn cluster involved in oxygen evolution. Mutation of Glu-69 to Gln or Val in D2 of the cyanobacterium Synechocystis sp. PCC 6803 was found to lead to a loss of photoautotrophic growth. However, in cells of the Gln mutant (E69Q) a significant Hill reaction rate could be observed upon the start of illumination, but the oxygen evolution rate declined with a half-time of approximately 1 min. Addition of 1 mM Mn2+ stabilized oxygen evolution in E69Q thylakoids. Other divalent cations were ineffective in specific stabilization. When the water-splitting system was bypassed, the rate of electron transport remained stable during illumination, indicating that the inactivation of oxygen evolution is localized in the water-splitting complex. We interpret these observations to indicate that Glu-69 is a Mn ligand and that the loss of oxygen evolution in the E69Q mutant upon turnover of PS II is initiated by changes in the Mn cluster, possibly leading to Mn release from the water-splitting complex. The addition of exogenous Mn to E69Q thylakoids may help to keep the Mn cluster active for a longer time, perhaps by providing Mn to rebind in the cluster after release of one Mn and before the Mn cluster had disintegrated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
W F Beck  G W Brudvig 《Biochemistry》1986,25(21):6479-6486
The binding of several primary amines to the O2-evolving center (OEC) of photosystem II (PSII) has been studied by using low-temperature electron paramagnetic resonance (EPR) spectroscopy of the S2 state. Spinach PSII membranes treated with NH4Cl at pH 7.5 produce a novel S2-state multiline EPR spectrum with a 67.5-G hyperfine line spacing when the S2 state is produced by illumination at 0 degrees C [Beck, W. F., de Paula, J. C., & Brudvig, G. W. (1986) J. Am. Chem. Soc. 108, 4018-4022]. The altered hyperfine line spacing and temperature dependence of the S2-state multiline EPR signal observed in the presence of NH4Cl are direct spectroscopic evidence for coordination of one or more NH3 molecules to the Mn site in the OEC. In contrast, the hyperfine line pattern and temperature dependence of the S2-state multiline EPR spectrum in the presence of tris(hydroxymethyl)aminomethane, 2-amino-2-ethyl-1,3-propanediol, or CH3NH2 at pH 7.5 were the same as those observed in untreated PSII membranes. We conclude that amines other than NH3 do not readily bind to the Mn site in the S2 state because of steric factors. Further, NH3 binds to an additional site on the OEC, not necessarily located on Mn, and alters the stability of the S2-state g = 4.1 EPR signal species. The effects on the intensities of the g = 4.1 and multiline EPR signals as the NH3 concentration was varied indicate that both EPR signals arise from the same paramagnetic site and that binding of NH3 to the OEC affects an equilibrium between two configurations exhibiting the different EPR signals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Lee CI  Lakshmi KV  Brudvig GW 《Biochemistry》2007,46(11):3211-3223
Photosynthetic oxygen evolution in photosystem II (PSII) takes place in the oxygen-evolving complex (OEC) that is comprised of a tetranuclear manganese cluster (Mn4), a redox-active tyrosine residue (YZ), and Ca2+ and Cl- cofactors. The OEC is successively oxidized by the absorption of 4 quanta of light that results in the oxidation of water and the release of O2. Ca2+ is an essential cofactor in the water-oxidation reaction, as its depletion causes the loss of the oxygen-evolution activity in PSII. In recent X-ray crystal structures, Ca2+ has been revealed to be associated with the Mn4 cluster of PSII. Although several mechanisms have been proposed for the water-oxidation reaction of PSII, the role of Ca2+ in oxygen evolution remains unclear. In this study, we probe the role of Ca2+ in oxygen evolution by monitoring the S1 to S2 state transition in PSII membranes and PSII core complexes upon inhibition of oxygen evolution by Dy3+, Cu2+, and Cd2+ ions. By using a cation-exchange procedure in which Ca2+ is not removed prior to addition of the studied cations, we achieve a high degree of reversible inhibition of PSII membranes and PSII core complexes by Dy3+, Cu2+, and Cd2+ ions. EPR spectroscopy is used to quantitate the number of bound Dy3+ and Cu2+ ions per PSII center and to determine the proximity of Dy3+ to other paramagnetic centers in PSII. We observe, for the first time, the S2 state multiline electron paramagnetic resonance (EPR) signal in Dy3+- and Cd2+-inhibited PSII and conclude that the Ca2+ cofactor is not specifically required for the S1 to S2 state transition of PSII. This observation provides direct support for the proposal that Ca2+ plays a structural role in the early S-state transitions, which can be fulfilled by other cations of similar ionic radius, and that the functional role of Ca2+ to activate water in the O-O bond-forming reaction that occurs in the final step of the S state cycle can only be fulfilled by Ca2+ and Sr2+, which have similar Lewis acidities.  相似文献   

19.
20.
The mechanisms of Mn2+ cation oxidation in alkaline, neutral and slightly acidic media were studied. In all cases, the Mn2+ oxidation resulted in the formation of the structure[see text]. The formal resemblance and differences in the Mn2O3 structure and Klein's model of the Mn cluster of PS II were noted. The necessity of the primary ligation of Mn2+ cations was discussed for both the decrease in the Mn2+ oxidation potential and the stability of the Mn2O3 structure. It was supposed that Mn2O3 is an initial block for the assembly of the inorganic core of the photosynthetic water-oxidizing complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号