首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conantokins are short peptides derived from the venoms of marine cone snails that act as antagonists of the N-methyl-D-aspartate (NMDA) receptor family of excitatory glutamate receptors. These peptides contain γ-carboxyglutamic acid residues typically spaced at i,i+4 and/or i,i+7 intervals, which by chelating divalent cations induce and stabilize helical conformation of the peptide. Introduction of a dicarba bridge (or a staple) can covalently stabilize peptide helicity and improve its pharmacological properties. To test the hypothesis that stapling can effectively replace γ-carboxyglutamic acid residues in stabilizing the helical conformation of conantokins, we designed, synthesized, and characterized several stapled analogs of conantokin G (conG), with varying connectivities in terms of staple length and location along the face of the α-helix. NMR studies confirmed that the ring-closing metathesis reaction yielded a single product with the Z configuration of the olefinic bond. Based on circular dichroism and molecular modeling, the stapled analogs exhibited significantly enhanced helicity compared with the native peptide in a metal-free environment. Stapling i,i+4 was benign with respect to effects on in vitro and in vivo pharmacological properties. One analog, namely conG[11-15,S(i,i+4)S(8)], blocked NR2B-containing NMDA receptors with IC(50) = 0.7 μm and provided significant protection in the 6-Hz psychomotor model of pharmacoresistant epilepsy in mice. Remarkably, unlike native conG, conG[11-15,S(i,i+4)S(8)] produced no behavioral motor toxicity. Our results extend the applications of peptide stapling to helical peptides with extracellular targets and provide a means for engineering conantokins with improved pharmacological properties.  相似文献   

2.
Tang YC  Deber CM 《Biopolymers》2002,65(4):254-262
Peptoid (N-alkylglycyl) residues in peptides have been studied in a variety of applications, but their behavior in membrane environments has not been systematically investigated. We have synthesized a series of membrane-interactive peptides of prototypic structure KKAAAXAAAAAXAAWAAXAAAKKKK-amide, where X corresponds to the peptoid residues Nala (= sarcosine), Nval, Nile, Nleu, Nphe, and Ntrp. Investigation of their relative hydrophobic character by high-performance liquid chromatography indicated an order of hydrophobicity Ntrp > Nphe > Nleu > Nile > Nval > Nala-largely parallel to the relative scale for these side-chains in natural amino acids, although all values were significantly more "hydrophilic" than their amino acid correspondents. Conformations of peptoid-containing peptides measured by circular dichroism spectroscopy were unordered in the presence of SDS micelles but helical for peptides with X = the corresponding amino acids, suggesting a general helix-breaking tendency for the peptoid residues. However, peptides were able to form helical structures in the solvent n-butanol, indicating that this conformation is possible if peptides became inserted into micellar phases. The latter notion was confirmed by increasing hydrophobic content of the peptides by embedding peptoid Nala residues in Leu-rich rather than Ala-rich sequences, which promoted peptide insertion and helical structure in micelles. The overall results suggest that judicious interspersing of amino acid and peptoid residues in peptide sequences can produce hydrophobic water-soluble materials with membrane-partitioning capacity.  相似文献   

3.
We tested the hypothesis that the recurrence of hydrophobic amino acids in a polypeptide at positions falling in an axial, hydrophobic strip if the sequence were coiled as an alpha helix, can lead to helical nucleation on a hydrophobic surface. The hydrophobic surface could anchor such residues, whereas the peptide sequence grows in a helical configuration that is stabilized by hydrogen bonds among carbonyl and amido NH groups along the peptidyl backbone of the helix, and by other intercycle interactions among amino acid side chains. Such bound, helical structures might protect peptides from proteases and/or facilitate transport to a MHC-containing compartment and thus be reflected in the selection of T cell-presented segments. Helical structure in a series of HPLC-purified peptides was estimated from circular dichroism measurements in: 1) 0.01 M phosphate buffer, pH 7.0, 2) that buffer with 45% trifluoroethanol (TFE), and 3) that buffer with di-O-hexadecyl phosphatidylcholine vesicles. By decreasing the dielectric constant of the buffer, TFE enhances intrapeptide interactions generally, whereas the lipid vesicles only provide a surface for hydrophobic interactions. The peptides varied in their strip-of-helix hydrophobicity indices (SOHHI; the mean Kyte-Doolittle hydrophobicities of residues in an axial strip of an alpha helix) and in proline content. Structural order for peptides with helical circular dichroism spectra was estimated as percentage helicity from circular dichroism theta 222 nm values and peptide concentration. A prototypic alpha helical peptide with three cycles plus two amino acids and an axial hydrophobic strip of four leucyl residues (SOHHI = 3.8) was disordered in phosphate buffer, 58% helical in that buffer with 48% TFE, and 36% helical in that buffer with vesicles. Percentage helicity in the presence of vesicles of the subset of peptides without proline followed their SOHHI values. Peptides with multiple prolyl residues had circular dichroism spectra with strong signals, but since they did not have altered spectra in the presence of vesicles relative to phosphate buffer alone, the hydrophobic surface of the vesicle did not appear to stabilize those structures.  相似文献   

4.
We investigated the interaction of six 18-residue peptides derived from amphipathic helical segments of globular proteins with model membranes. The net charge of the peptides at neutral pH varies from −1 to +6. Circular dichroism spectra indicate that peptides with a high net positive charge tend to fold into a helical conformation in the presence of negatively charged lipid vesicles. In helical conformation, their average hydrophobic moment and hydrophobicity would render them surface-active. The composition of amino acids on the polar face of the helix in the peptides is considerably different. The peptides show variations in their ability to permeabilise zwitterionic and anionic lipid vesicles. Whereas increased net positive charge favours greater permeabilisation, the distribution of charged residues in the polar face also plays a role in determining membrane activity. The distribution of amino acids in the polar face of the helix in the peptides that were investigated do not fall into the canonical classes described. Amphipathic helices, which are part of proteins, with a pattern of amino acid distribution different from those observed in class L, A and others, could help in providing newer insights into peptide-membrane interactions.  相似文献   

5.
C D Andrew  S Penel  G R Jones  A J Doig 《Proteins》2001,45(4):449-455
A simplistic, yet often used, view of protein stability is that amino acids attract other amino acids with similar polarity, whereas nonpolar and polar side chains repel. Here we show that nonpolar/polar interactions, namely Val or Ile bonding to Lys or Arg in alpha-helices, can in fact be stabilizing. Residues spaced i, i + 4 in alpha-helices are on the same face of the helix, with potential to favorably interact and stabilize the structure. We observe that the nonpolar/polar pairs Ile-Lys, Ile-Arg, and Val-Lys occur in protein helices more often than expected when spaced i, i + 4. Partially helical peptides containing pairs of nonpolar/polar residues were synthesized. Controls with i, i + 5 spacing have the residues on opposite faces of the helix and are less helical than the test peptides with the i, i + 4 interactions. Experimental circular dichroism results were analyzed with helix-coil theory to calculate the free energy for the interactions. All three stabilize the helix with DeltaG between -0.14 and -0.32 kcal x mol(-1). The interactions are hydrophobic with contacts between Val or Ile and the alkyl groups in Arg or Lys. Side chains such as Lys and Arg can thus interact favorably with both polar and nonpolar residues.  相似文献   

6.
Summary A series of amphiphilic, helical peptides was designed and synthesized to investigate the components necessary for formation of helical bundles with differing aggregation states. Minimalistic sequences were employed for the peptides which contained either four (Leu4), six (Leu6) or eight (Leu8) leucine residues within a sixteen amino acid sequence. All peptides were highly helical as evaluated by circular dichroism, and the helical content of each peptide exhibited a concentration dependence. Size exclusion chromatography confirmed aggregation states of dimer/trimer forLeu4, tetramer forLeu6, and hexamer octamer forLeu8. Disulfide crosslinking studies also confirmed that the dimer ofLeu4 favored a parallel orientation with respect to the helical dipole. This systematic study clearly defines the role of hydrophobicity in the self assembly of helical peptides; peptides with a small hydrophobic face favor small bundle sizes, whereas peptides containing larger hydrophobic faces form correspondingly larger helical bundles.  相似文献   

7.
Automated design of the surface positions of protein helices.   总被引:10,自引:8,他引:2  
Using a protein design algorithm that quantitatively considers side-chain interactions, the design of surface residues of alpha helices was examined. Three scoring functions were tested: a hydrogen-bond potential, a hydrogen-bond potential in conjunction with a penalty for uncompensated burial of polar hydrogens, and a hydrogen-bond potential in combination with helix propensity. The solvent exposed residues of a homodimeric coiled coil based on GCN4-p1 were designed by using the Dead-End Elimination Theorem to find the optimal amino acid sequence for each scoring function. The corresponding peptides were synthesized and characterized by circular dichroism spectroscopy and size exclusion chromatography. The designed peptides were dimeric and nearly 100% helical at 1 degree C, with melting temperatures from 69-72 degrees C, over 12 degrees C higher than GCN4-p1, whereas a random hydrophilic sequence at the surface positions produced a peptide that melted at 15 degrees C. Analysis of the designed sequences suggests that helix propensity is the key factor in sequence design for surface helical positions.  相似文献   

8.
J Reed  V Kinzel 《Biochemistry》1991,30(18):4521-4528
A 15-residue region within the CD4-binding domain of gp120 from HIV I was identified with use of folding algorithms as conserving the potential for forming a particular secondary structure throughout 11 sequenced HIV strains. The region chosen has a potential for forming both beta-sheet and alpha-helix; the helical form would be amphipathic with the five hydrophobic residues all totally or functionally conserved. Five peptides were synthesized corresponding to this region in strain LAV and the strain most highly divergent from it in primary structure (Z3) plus three additional peptides with critical substitutions in the LAV sequence. The conformation of these five peptides was examined under various conditions with circular dichroism, and the results were compared with the ability of each peptide to bind to a CD4-expressing strain of HeLa cells (HeLa T4). In solution, the unmodified peptides exhibit a bistable structure, existing as beta-sheet in dilute buffer and converting to alpha-helix under more apolar conditions. The transition is reversible and sharp, occurring at a particular point in the polar/apolar gradient with virtually no intermediate state. The ability to undergo this bistable flip is closely associated with binding ability, amino acid substitutions that eliminate binding ability also eliminating the switch, and vice versa. The transition thus may reflect conformational changes occurring in this region of gp120 as it binds to the CD4 receptor.  相似文献   

9.
As potential therapeutic agents, antimicrobial peptides with shorter length and simpler amino acid composition can be better candidates for clinical and commercial development. Here, we attempted de novo design of short (5- to 11-residue) antimicrobial peptides with three kinds of amino acids. Amphipathic helical properties were conferred by using leucines and lysines and two tryptophan residues were positioned at the critical amphipathic interface between the hydrophilic ending side and the hydrophobic starting side. According to this specified rule, 12 model peptides were generated and their helical propensity was confirmed by circular dichroism spectroscopy. Antimicrobial and hemolytic activities were compared with those of the known 12-residue peptide agent, omiganan, which is currently under therapeutic and commercial development. Antimicrobial activities against Gram-negative and Gram-positive bacteria, including a multi-drug resistant strain, were observed for certain 7- to 11-residue models. Among them, the most potent activity was found for a 9-residue peptide (L5K2W2), although it also had severe hemolytic activity. Alternatively, an 11-residue peptide (L4K5W2) with little hemolytic activity was potentially the most useful agent, as it showed higher antibacterial activity than omiganan. These results not only suggest useful candidates for novel antibiotic development, but also provide an efficient strategy to design such peptides.  相似文献   

10.
To identify the amino acid sequence of the precursor of the Gla-containing peptide, epsilon-TxIX, from the venom of the marine snail Conus textile, the cDNA encoding this peptide was cloned from a C. textile venom duct library. The cDNA of the precursor form of epsilon-TxIX encodes a 67 amino acid precursor peptide, including an N-terminal prepro-region, the mature peptide, and four residues posttranslationally cleaved from the C-terminus. To determine the role of the propeptide in gamma-carboxylation, peptides were designed and synthesized based on the propeptide sequence of the Gla-containing conotoxin epsilon-TxIX and used in assays with the vitamin K-dependent gamma-glutamyl carboxylase from C. textile venom ducts. The mature acarboxy peptide epsilon-TxIX was a high K(M) substrate for the gamma-carboxylase. Synthetic peptides based on the precursor epsilon-TxIX were low K(M) substrates (5 microM) if the peptides included at least 12 residues of propeptide sequence, from -12 to -1. Leucine-19, leucine-16, asparagine-13, leucine-12, leucine-8 and leucine-4 contribute to the interaction of the pro-conotoxin with carboxylase since their replacement by aspartic acid increased the K(M) of the substrate peptide. Although the Conus propeptide and the propeptides of the mammalian vitamin K-dependent proteins show no obvious sequence homology, synthetic peptides based upon the structure of pro-epsilon-TxIX were intermediate K(M) substrates for the bovine carboxylase. The propeptide of epsilon-TxIX contains significant alpha-helix, as estimated by measurement of the circular dichroism spectra, but the region of the propeptide that plays the dominant role in directing carboxylation does not contain evidence of helical structure. These results indicate that the gamma-carboxylation recognition site is defined by hydrophobic residues in the propeptide of this conotoxin precursor.  相似文献   

11.
Caveolin-1 has a segment of hydrophobic amino acids comprising approximately residues 103-122 that are anchored to the membrane with cholesterol-rich domains. Previously, we reported that changing the Pro(110) residue to Ala (the P110A mutant) prevents not only the localization of the protein into lipid rafts but also the formation and functioning of caveolae. The conformational state of caveolin-1 can be shifted toward the transmembrane arrangement by this single amino acid mutation. To model the conformation, and extent of membrane insertion of this segment into membrane-mimetic environments, we have prepared a peptide corresponding to this hydrophobic segment of caveolin-1 having the sequence KKKKLSTIFGIPMALIWGIYFAILKKKKK-amide and the mutated version, KKKKLSTIFGIAMALIWGIYFAILKKKKK-amide. These peptides contain flanking Lys residues to facilitate purification and handling of the peptide. Circular dichroism measurements demonstrated that the mutated peptide has increased helical content compared with the wild type both in the presence and absence of lipid. The fluorescence emission from the Trp residues in the peptide showed significant blue shifts in the presence of liposomes, however the presence of cholesterol in hydrated vesicle bilayers decreases its helical content. Our overall findings support our studies with the intact protein in cells and suggest that the peptide of WT caveolin-1 hydrophobic segment has an intrinsic preference not to maintain its conformation as a rigid transmembrane helix. Substituting the Pro residue with an Ala allows the peptide to exist in a more hydrophobic environment likely as a consequence of a change in its conformation to a straight hydrophobic helix that traverses the membrane.  相似文献   

12.
Sun X  Chen S  Li S  Yan H  Fan Y  Mi H 《Peptides》2005,26(3):369-375
In our previous paper it was shown that the two C-terminal Gln residues of a C-terminal 15-residue fragment, Mel(12-26) (GLPALISWIKRKRQQ-NH2), of melittin and a series of individual substituted analogues might not involved in the interaction with bacterial membranes. In this paper, peptides with one and two Gln residues deletion, respectively, Mel(12-25) and Mel(12-24), were synthesized and characterized. Both of the deletion peptides showed higher antimicrobial activities than the parent peptide, Mel(12-26). If both of the Gln residues of Mel(12-26) were respectively replaced by a hydrophilic amino acid Gly, the antimicrobial activity increased slightly. If the Gln residue of Mel(12-25) was replaced by a hydrophobic amino acid Leu, the antimicrobial activity changed little, although the substituted peptide possessed much higher hydrophobicity and higher alpha-helical conformation percentage in 1,1,1,3,3,3-hexafluoro-2-propanol/water determined by circular dichroism spectroscopy (CD) than the parent peptide. These results indicated that the two C-terminal residues might be indeed not involved in the binding to bacterial membranes. The antimicrobial activity increasing with the residue deletion may be caused by the decrease of the translational and rotational entropic cost of the binding of the peptides to bacterial membranes because of the lower molecular weights of the deletion peptides.  相似文献   

13.
Little information is available correlating the structural properties of peptides with their immunogenicity in terms of responses via cytotoxic T lymphocytes (CTLs). The TT-NP6 chimeric peptide, consisting of two copies of a promiscuous T-helper epitope (T: residues 288-302 from the fusion protein of the measles virus) linked to the NP6 T-cytotoxic epitope (NP6: residues 52-60 from the nucleoprotein of measles virus) was able to induce virus-specific CTL responses in the absence of any adjuvant and hydrophobic component. The present work was undertaken to gain insight into structural features of the TT-NP6 peptide that may be important in optimizing the CTL immunogenicity of the peptide. Circular dichroism data, obtained in a buffer of physiological ionic strength and pH, strongly suggest a self-associated state for the peptide, which was confirmed by a sedimentation velocity experiment. However, helix association is accompanied by loss of overall helical content. Thermal-dependence studies show that the unfolding of self-associated alpha-helices is significantly more pronounced than the unfolding of isolated alpha-helices. Circular dichroism data, together with tryptic limited proteolysis, suggest the presence of a charged amino acid within the hydrophobic core. This study should provide a basis for engineering more effective immunogenic peptides against the measles virus by increasing the stability of the TT-NP6 peptide.  相似文献   

14.
P D Hoeprich  T E Hugli 《Biochemistry》1986,25(8):1945-1950
Human C3a, a 77-residue fragment released during complement activation, is a potent spasmogen that contracts smooth muscle, enhances vascular permeability, and suppresses humoral immune responses. Studies with synthetic peptides have shown that the active site of this anaphylatoxin resides in the COOH-terminal portion of C3a; the minimal peptide structure capable of expressing activity contains residues 73-77, Leu-Gly-Leu-Ala-Arg (C3a-73-77). Longer synthetic C3a analogue peptides, e.g., C3a-57-77 containing the 21 COOH-terminal amino acids, exhibit activity nearly equivalent to that of intact C3a. Circular dichroism spectra of peptide C3a-57-77 in aqueous buffer containing 25% (v/v) trifluoroethanol indicated helical structure (41% helix), and analysis of the sequence suggested an amphipathic surface. We have synthesized several 21-residue peptide analogues of the natural C3a sequence containing residues 57-77 that were designed to enhance helix and to accentuate amphipathy. Syntheses were designed to include strategic placement of the helix-promoting residues 2-aminobutyric acid (beta-methylalanine) and 2-aminoisobutyric acid (alpha-methylalanine). Two 21-residue C3a analogue peptides that were designed to enhance helical content were shown to exhibit greater biological activity than either the native factor C3a or C3a-57-77. Moreover, activity was abrogated by the appropriate placement of helix-breaking residues, e.g., proline, suggesting that a conformational requirement for activity is genuine. These observations suggest that a helical conformation is requisite for optimal C3a activity and that in intact C3a the NH2-terminal portion (residues 1-21) and the disulfide-linked core (residues 22-57) function primarily to stabilize ordered conformation at the COOH-terminal region of the molecule.  相似文献   

15.
H I Magazine  H M Johnson 《Biochemistry》1991,30(23):5784-5789
A receptor binding region of mouse interferon gamma (IFN gamma) has previously been localized to the N-terminal 39 amino acids of the molecule by use of synthetic peptides and monoclonal antibodies. In this report, a detailed analysis of the synthetic peptide corresponding to this region, IFN gamma (1-39), is presented. Circular dichroism (CD) spectroscopy indicated that the peptide has stable secondary structure under aqueous conditions and adopts a combination of alpha-helical and random structure. A peptide lacking two N-terminal amino acids, IFN gamma (3-39), had similar secondary structure and equivalent ability to compete for receptor binding, while peptides lacking four or more N-terminal residues had reduced alpha-helical structure and did not inhibit 125I-IFN gamma binding. Substitution of proline, a helix-destabilizing amino acid, for leucine (residue 8) of a predicted amphipathic alpha-helix (residues 3-12), IFN gamma (1-39) [Pro]8, resulted in a substantial reduction in the helical content of the peptide, supporting the presence of helical structure in this region. However, destabilization of the helix did not reduce the competitive ability of the peptide. A peptide lacking eight C-terminal residues, IFN gamma (1-31), did not block 125I-IFN gamma binding and had no detectable alpha-helical structure, suggesting a requirement of the predicted second alpha-helix (residues 20-34) for receptor interaction and helix stabilization. Substitution of phenylalanine for tyrosine at position 14, IFN gamma (1-39) [Phe]14, a central location of a predicted omega-loop structure, did not affect the secondary structure associated with the region yet resulted in a 30-fold increase in receptor competition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The structures of peptide A, and six other 7-20 amino acid peptides corresponding to sequences in the A region (Thr671- Leu690) of the skeletal muscle dihydropyridine receptor II-III loop have been examined, and are correlated with the ability of the peptides to activate or inhibit skeletal ryanodine receptor calcium release channels. The peptides adopted either random coil or nascent helix-like structures, which depended upon the polarity of the terminal residues as well as the presence and ionisation state of two glutamate residues. Enhanced activation of Ca2+ release from sarcoplasmic reticulum, and activation of current flow through single ryanodine receptor channels (at -40 mV), was seen with peptides containing the basic residues 681Arg Lys Arg Arg Lys685, and was strongest when the residues were a part of an alpha-helix. Inhibition of channels (at +40 mV) was also seen with peptides containing the five positively charged residues, but was not enhanced in helical peptides. These results confirm the hypothesis that activation of ryanodine receptor channels by the II-III loop peptides requires both the basic residues and their participation in helical structure, and show for the first time that inhibition requires the basic residues, but is not structure-dependent. These findings imply that activation and inhibition result from peptide binding to separate sites on the ryanodine receptor.  相似文献   

17.
Several VIP analogues have been designed on the basis of the hypothesis that the region from residue 6 to residue 28 forms a pi-helical structure when bound to membrane receptors. An empirical approach for the design and construction of analogues based upon distribution frequency and structural homology with several sequence-related peptides is presented. Five peptides were designed, synthesized, and analyzed. One analogue, model 5, containing the native hydrophobic and an altered hydrophilic surface, was an effective VIP agonist in both binding to rat lung membrane receptors (KD1 = 11 +/- 8 pM, KD2 = 6.4 +/- 0.2 nM; VIP KD1 = 21 +/- 13 pM, KD2 = 1.8 +/- 0.6 nM) and stimulation of amylase release from guinea pig pancreatic acini (ED50 = 90 pM; VIP ED50 = 27 pM). The four other analogues were considerably less potent than VIP, yet retained full intrinsic activity. Our results showed that the hydrophobic surface of this helical domain (residues 6-28) contains amino acids important for interaction with receptors, whereas amino acid residues on the hydrophilic surface do not seem to participate strongly in receptor binding or signal transduction. Furthermore, on the basis of high-affinity binding, the stimulation of amylase release in pancreatic acini appears to be coupled to the higher affinity receptors. These results suggest that an approach based on the construction of putative pi-helical structures can be applied to the design of biologically active analogues of VIP. Thus, we have identified several residues within the VIP sequence that are critical for receptor binding using this approach.  相似文献   

18.
Eisenberg's helical hydrophobic moment (less than mu H greater than) algorithm was applied to the analysis of the primary structure of amphipathic alpha-helical peptide hormones and an optimal method for identifying other peptides of this class determined. We quantitate and compare known amphipathic helical peptide hormones with a second group of peptides with proven nonamphipathic properties and determine the best method of distinguishing between them. The respective means of the maximum 11 residue less than mu H greater than for the amphipathic helical and control peptides were 0.46 (+/-/-0.07) and 0.33 (0.07) (P + 0.004). To better reflect the amphipathic potential of the entire peptide, the percent of 11 residue segments in each peptide above a particular less than mu H greater than was plotted vs less than mu H greater than. The resulting curves are referred to as HM-C. The mean HM-C (of the two groups) was highly significantly different such that the HM-C method was superior to others in its ability to distinguish amphipathic from nonamphipathic peptides. Several potential new members of this structural class were identified using this approach. Molecular modeling of a portion of one of these, prolactin inhibitory factor, reveals a strongly amphipathic alpha helix at residues 4-21. This computer-based method may enable rapid identification of peptides of the amphipathic alpha-helix class.  相似文献   

19.
Restoration of chloride conductance via the introduction of an anion selective pore, formed by a channel-forming peptide, has been hypothesized as a novel treatment modality for patients with cystic fibrosis (CF). Delivery of these peptide sequences to airway cells from an aqueous environment in the absence of organic solvents is paramount. New highly soluble COOH- and NH(2)-terminal truncated peptides, derived from the second transmembrane segment of the glycine receptor alpha-subunit (M2GlyR), were generated, with decreasing numbers of amino acid residues. NH(2)-terminal lysyl-adducted truncated peptides with lengths of 22, 25, and 27 amino acid residues are equally able to stimulate short circuit current (I(SC)). Peptides with as few as 16 amino acid residues are able to stimulate I(SC), although to a lesser degree. In contrast, COOH-terminal truncated peptides show greatly reduced induced I(SC) values for all peptides fewer than 27 residues in length and show no measurable activity for peptides fewer than 21 residues in length. CD spectra for both the NH(2)- and COOH-truncated peptides have random structure in aqueous solution, and those sequences that stimulated the highest maximal I(SC) are predominantly helical in 40% trifluoroethanol. Peptides with a decreased propensity to form helical structures in TFE also failed to stimulate I(SC). Palindromic peptide sequences based on both the NH(2)- and COOH-terminal halves of M2GlyR were synthesized to test roles of the COOH- and NH(2)-terminal halves of the molecule in solution aggregation and channel forming ability. On the basis of the study presented here, there are distinct, nonoverlapping regions of the M2GlyR sequence that define solution aggregation and membrane channel assembly. Peptides that eliminate solution aggregation with complete retention of channel forming activity were generated.  相似文献   

20.
To define the minimal peptide length needed for gene delivery into mammalian cells, we synthesized several peptides with shortened chain lengths from the amino-termini of the original amphiphilic peptides (4(6), Ac-LARL-LARL-LARL-LRAL-LRAL-LRAL-NH( 2,) and Hel 11-7, KLLK-LLLK-LWKK-LLKL-LK), which have been known to have gene transfer abilities into cells. Each synthetic peptide was studied for its ability to bind and aggregate with plasmid DNA and the structural change of the peptide caused by binding with the DNA to establish a relative in vitro gene transfection efficiency in COS-7 cells. As a result, the deletion of eight amino acid residues of 4(6) had little influence on their ability, whereas that of 12 amino acid residues remarkably reduced the abilities to make aggregates and transfer the DNA into the cell. In the case of the Hel 11-7 series peptides, deletion of amino acid residues caused a considerable reduction in abilities to bind and form aggregates with DNA and to transfer the DNA into cell in due order. In summary, 16 and 17 amino acid residues were sufficient to form aggregates with the DNA and transfer the DNA into the cells in the deletion series of 4(6) and Hel 11-7, respectively. Furthermore, it was indicated that reduction of membrane perturbation activity of the peptide-DNA complex due to deletion of the peptide chain length caused suppression of the transfection efficiency even if the complex was incorporated into the cells. Transfer of the complex to cytosol mediated by membrane perturbation activity of the peptide is an important step for efficient protein expression from its cDNA. The results of this study will make it easy to design and synthesize a functional gene carrier molecule such as a carbohydrate-modified peptide used in targeted gene delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号