首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Richard Malkin  Alan J. Bearden 《BBA》1975,396(2):250-259
Electron paramagnetic resonance studies of the primary reactants of Photosystems I and II have been conducted at cryogenic temperatures after laser-flash activation with monochromatic light.P-700 photooxidation occurs irreversibly in chloroplasts and in Photosystem I fragments after activation with a 730 nm laser flash at a temperature of 35 °;K. Flash activation of chloroplasts or Photosystem II chloroplast fragments with 660 nm light results in the production of a free-radical signal (g = 2.002, linewidth ~ 8 gauss) which decays with a half-time of 5.0 ms at 35 °;K. The half-time of decay is independent of temperature in the range of 10–77 °;K. This reversible signal can be eliminated by preillumination of the sample at 35 °;K with 660 nm light (but not by 730 nm light), by preillumination with 660 nm light at room temperature in the presence of 3-(3′, 4′-dichlorophenyl)-1,1′-dimethylurea (DCMU) plus hydroxylamine, or by adjustment of the oxidation-reduction potential of the chloroplasts to — 150 mV prior to freezing. In the presence of ferricyanide (20–50 mM), two free-radical signals are photoinduced during a 660 nm flash at 35 °;K. One signal decays with a half-time of 5 ms, whereas the second signal is formed irreversibly. These results are discussed in terms of a current model for the Photosystem II primary reaction at low temperature which postulates a back-reaction between P-680+ and the primary electron acceptor.  相似文献   

2.
P. Gast  T. Swarthoff  F.C.R. Ebskamp  A.J. Hoff 《BBA》1983,722(1):163-175
The yield of the triplet state of the primary electron donor of Photosystem I of photosynthesis (PT-700) and the characteristic parameters (g value, line shape, saturation behavior) of the ESR signal of the photoaccumulated intermediary acceptor A have been measured for two types of Photosystem I subchloroplast particles: Triton particles (TSF 1, about 100 chlorophyll molecules per P-700) that contain the iron-sulfur acceptors FX, FB and FA, and lithium dodecyl sulfate (LDS) particles (about 40 chlorophyll molecules per P-700) that lack these iron-sulfur acceptors. The results are: (i) In Triton particles the yield of PT-700 upon illumination is independent of the redox state of A and of FX,B,A and is maximally about 5% of the active reaction centers at 5 K. The molecular sublevel decay rates are kx = 1100 s?1 ± 10%, ky = 1300 s?1 ± 10% and kz = 83 s?1 ± 20%. In LDS particles the triplet yield decreases linearly with concentration of reduced intermediary acceptors, the maximal yield being about 4% at 5 K assuming full P-700 activity. (ii) In Triton particles the acceptor complex A consists of two acceptors A0 and A1, with A0 preceding A1. In LDS particles at temperatures below ?30°C only A0 is photoactive. (iii) The spin-polarized ESR signal found in the time-resolved ESR experiments with Triton particles is attributed to a polarized P-700-A?1 spectrum. The decay kinetics are complex and are influenced by transient nutation effects, even at low microwave power. It is concluded that the lifetime at 5 K of P-700A0A?1 must exceed 5 ms. We conclude that PT-700 originates from charge recombination of P-700A?0, and that in Triton particles A0 and A1 are both photoaccumulated upon cooling at low redox potential in the light. Since the state P-700AF?X does not give rise to triplet formation the 5% triplet yield in Triton particles is probably due to centers with damaged electron transport.  相似文献   

3.
N. K. Boardman 《BBA》1972,283(3):469-482
1. The Photosystem II fraction (D-10) obtained by incubation of spinach chloroplasts with digitonin was further purified by incubation with Triton X-100. The resulting Photosystem II subchloroplast fragment (DT-10) contained 1 mole of cytochrome b-559 per 170 moles of chlorophyll. It lacked cytochrome f and cytochrome b6 and its content of P700 was low.

2. The DT-10 fragment showed only traces of photochemical activity with water as electron donor, but it was active in a Photosystem II reaction with 2,6-dichlorophenolindophenol as electron acceptor and diphenyl carbazide as donor. Photoreduction of NADP+ with diphenyl carbazide as donor was negligible. There was some photoreduction of NADP+ with ascorbate plus 2,6 dichlorophenolindophenol as donor but this activity could be accounted for by contamination with Photosystem I. These results are consistent with the Z-scheme of photosynthesis with Photosystems I and II operating in series for the reduction of NADP+ from water. DT-10 subchloroplast fragments showed a light-induced rise in fluorescence yield at 20 °C in the presence of diphenyl carbazide. A light-induced fluorescence increase also was observed at 77 °K.

3. During the preparation of the DT-10 fragment, the high potential form of cytochrome b-559 was largely converted to a form of lower potential and C-550 was converted to the reduced state. A photoreduction of C-550 was observed at liquidnitrogen temperature, provided the C-550 was oxidised with ferricyanide prior to cooling. Some photooxidation of cytochrome b-559 was obtained at 77 °K if the preparation was reduced prior to cooling, but the degree of photooxidation was variable with different preparations. C-550 does not appear to be identical with the primary fluorescence quencher, Q.

4. Photosystem I subchloroplast fragments (D-144) released by the action of digitonin were compared with Photosystem I fragments (DT-144) released from D-10 fragments by Triton X-100. There were no significant differences between D-144 and DT-144 fragments either in chlorophyll a/b ratio or in P700 content.  相似文献   


4.
Hans J. Rurainski  Gerhard Mader 《BBA》1977,461(3):489-499
Concurrent measurements of P-700 turnover and the reduction of K3Fe(CN)6 revealed an identical relative quantum yield for both reactions in isolated pea chloroplasts as well as chloroplast particles from wild type Scenedesmus. On the other hand, chloroplast particles of wild type Scenedesmus showed the same relative quantum yield for the Hill reaction as those of the P-700-free mutant No. 8, indicating that P-700 is not required for ferricyanide reduction.Several metal ions, such as Mg2+, Ca2+, Na+ and K+ stimulated the reduction of K3Fe(CN)6. In short wavelength light, the stimulation was a function of light intensity, varying in magnitude from an approximate doubling of the yield in low intensities to only a slight increase at light saturation. P-700 was totally unaffected by the cations.The effect of the metal salts was abolished in the presence of uncouplers of photophosphorylation.The data reconcile several divergent results concerning the effect of divalent cations on the reduction of ferricyanide which have been reported in the recent literature. On the whole the experiments suggest that the Hill acceptor can be reduced at two sites. The stimulation of the Hill reaction by metal ions is proposed to be due to an activation of Photosystem II and a more efficient utilization of quanta at the expense of radiationless de-excitation.  相似文献   

5.
The Photosystem I primary reaction, as measured by electron paramagnetic resonance changes of P-700 and a bound iron-sulfur center, has been studied at 15°K in P-700-chlorophyll a-protein complexes isolated from a blue-green alga. One complex, prepared with sodium dodecyl sulfate shows P-700 photooxidation only at 300°K, whereas a second complex, prepared with Triton X-100, is photochemically active at 15°K as well as at 300°K. Analysis of these two preparations shows that the absence of low-temperature photoactivity in the sodium dodecyl sulfate complex reflects a lack of bound iron-sulfur centers in this preparation and supports the assignment of an iron-sulfur center as the primary electron acceptor of Photosystem I.  相似文献   

6.
Reiko Ohki  Atusi Takamiya 《BBA》1970,197(2):240-249
By a combined use of digitonin treatment and subsequent centrifugation on a linear sucrose density gradient, the whole green material of the chloroplast lamellae was separated into System I and System II particle fractions, leaving no other fractions of intermediate properties at the final step of separation.

Each of these particle fractions obtained had properties characteristic of System I or System II with respect to the molar ratio of chlorophyll a/chlorophyll b, the content of P700, the fluorescence emission spectrum at −196°;, photoreduction activities with ferricyanide and NADP+, and induction of fluorescence.

About 40 and 50% of the total chlorophyll in the original chloroplasts were recovered in System I and System II particles, respectively. Only small amounts of total chlorophyll (less than 10%) were found as free chlorophyll detached from the lamellae through the digitonin treatment.

These results support the view that the lamellae of chloroplasts are composed of about equal amounts of System I and System II particles on a chlorophyll basis.  相似文献   


7.
Stable and well coupled Photosystem (PS) I-enriched vesicles, mainly derived from the chloroplast stroma lamellae, have been obtained by mild digitonin treatment of spinach chloroplasts. Optimal conditions for chloroplast solubilization are established at a digitonin/chlorophyll ratio of 1 (ww) and a chlorophyll concentration of 0.2 mM, resulting in little loss of native components. In particular, plastocyanin is easily released at higher digitonin/chlorophyll ratios. On the basis of chlorophyll content, the vesicles show a 2-fold enrichment in ATPase, chlorophyll-protein Complex I, P-700, plastocyanin and ribulose-1,5-bisphosphate carboxylase as compared to chloroplasts, in line with the increased activities of cyclic photophosphorylation and PS I-associated electron transfer as shown previously (Peters, A.L.J., Dokter, P., Kooij, T. and Kraayenhof, R. (1981) in Photosynthesis I (Akoyunoglou, G., ed.), pp. 691–700, Balaban International Science Services, Philadelphia). The vesicles have a low content of the light-harvesting chlorophyll-protein complex and show no PS II-associated electron transfer. Characterization of cytochromes in PS I-enriched vesicles and chloroplasts at 25°C and 77 K is performed using an analytical method combining potentiometric analysis and spectrum deconvolution. In PS I-enriched vesicles three cytochromes are distinguished: c-554 (E0 = 335 mV), b-559LP (E0 = 32 mV) and b-563 (E0 = ? 123 mV); no b-559HP is present (LP, low-potential; HP, high-potential). Comparative data from PS I vesicles and chloroplasts are consistent with an even distribution of the cytochrome b-563- cytochrome c-554 redox complex in the lateral plane of exposed and appressed thylakoid membranes, an exclusive location of plastocyanin in the exposed membranes and a dominant location of plastoquinone in the appressed membranes. The results are discussed in view of the lateral heterogeneity of redox components in chloroplast membranes.  相似文献   

8.
The oxidation-reduction potential of the reaction-centre chlorophyll of Photosystem I (P700) in spinach chloroplasts was determined by using the ability of the reaction centre to photoreduce the bound ferredoxin and to photo-oxidize P700 on illumination at 20K as an indicator of the oxidation state of P700. This procedure shows that P700 is oxidized with Em (pH8.0)(mid-point redox potential at pH8.0)congruent to +375mV. Further oxidation of the chloroplast preparations by high concentrations of K3Fe(CN)6(10mM) in the presence of mediating dyes leads to the appearance of a large radical signal with an apparent Em congruent to +470mVA second, light-inducible, radical also appears over the same potential range. We propose that these signals are due to bulk chlorophyll oxidation and not, as was previously thought [Knaff & Malkin (1973) Arch. Biochem. Biophys. 159, 555-562], to reaction-centre oxidation. A number of optical techniques were used to determine Em of P700. Dual-wavelength spectroscopy (697-720nm) indicates Em congruent to +460-+480mV. The spectrum of the sample during the titration showed a large contribution to the signal by bulk chlorophyll oxidation, in agreement with the electron-paramagnetic-resonance results and those of Ke, Sugahara & Shaw [(1975) Biochim. Biophys. Acta 408, 12-25]. The light-induced absorbance change at 435 nm, usually attributed to P700, showed a potential dependence similar to that of bulk chlorophyll oxidation. Determination of Em of P700 on the basis of the appearance of the P700 signal in oxidized-versus-reduced difference spectra showed Em (pH8.0) congruent to +360mV. Measurements of the effect of potential on the irreversible photo-oxidation of P700 at 77K showed that P700 became oxidized in this potential range. We conclude that the reaction-centre chlorophyll of Photosystem I has Em (pH8.0) congruent to +375mV.  相似文献   

9.
V.A. Shuvalov 《BBA》1976,430(1):113-121
The dependence of the delayed luminescence of Photosystem I on the state of the reaction centers has been studied. Light flash induces a charge separation in the centers: P-700 · P-430 P-700+ · P-430?. Dark recombination of charges is accompanied by the recombination luminescence with τ12 ? 20 ms.If the centers are in the P-700 · P-430? state or if P-430 is inactivated by heat, then flashing of Photosystem I generates the triplet state chlorophyll with τ12 ? 0.5 ms. The triplet state has been measured by the delayed fluorescence of chlorophyll at 20 °C and 77 °K and by the chlorophyll phosphorescence at 77 °K. The delayed fluorescence at 20 °C arises from the thermal activation of the triplet state up to the excited singlet level of chlorophyll and at 77 °K it is due to triplet-triplet annihilation. The quantum yield of the triplet formation, estimated by a comparison of the light saturation curves of delayed fluorescence at 20 °C and of P-700 photooxidation under the same experimental (optical) conditions, is ≈ 0.9 of the P-700+ yield. Only one triplet of chlorophyll can be generated per P-700. Under heat inactivation of P-430 the triplet formation is not observed when P-700 is oxidized.It is assumed that the triplet-triplet annihilation at 77 °K is related with the strong interaction between the chlorophyll molecules in the pigment complex of Photosystem I. The possibility of a triplet participation in the primary processes of photosynthesis is discussed.  相似文献   

10.
Photosystem I particles prepared from spinach chloroplast using Triton X-100 were frozen in the dark with the bound iron-sulphur Centre A reduced. Illumination at cryogenic temperatures of such samples demonstrated the photoreduction of the second bound iron-sulphur Centre B. Due to electron spin-electron spin interaction between these two bound iron-sulphur centres, it was not possible to quantify amounts of Centre B relative to the other components of the Photosystem I reaction centre by simulating the line-shape of its EPR spectrum. However, by deleting the free radical signal I from the EPR spectra of reduced Centre A alone or both Centres A plus B reduced, it was possible to double integrate these spectra to demonstrate that Centre B is present in the Photosystem I reaction centre in amounts comparable to those of Centre A and thus also signal I (P-700) and X. Oxidation-reduction potential titrations confirmed that Centre A had Em congruent to -550 mV, Centre B had Em congruent to -585 mV. These results, and those presented for the photoreduction of Centre B, place Centre B before Centre A in the sequence of electron transport in Photosystem I particles at cryogenic temperatures. When both A and B are reduced, P-700 photooxidation is reversible at low temperature and coupled to the reduction of the component X. The change from irreversible to reversible P-700 photooxidation and the photoreduction of X showed the same potential dependence as the reduction of Centre B with Em congruent to -585 mV, substantiating the identification of X as the primary electron acceptor of Photosystem I.  相似文献   

11.
A chemical assay for P-700 was developed using 0.36 mM potassium ferricyanide as oxidant and 1.6 mM sodium ascorbate as reductant. The major difference from other chemical assays for P-700 is procedural. The method is designed to take advantage of the availability of microprocessor-linked spectrophotometers to obtain greater accuracy by minimizing the spectral changes due to irreversibly oxidized antenna chlorophyll molecules. The value measured for the P-700 concentration in a sample of chloroplasts was not changed by the presence of EDTA, Mg2+ or sucrose in the assayed solution. Similarly, half of the detergents tested (Triton X-100, Nonidet P-40, digitonin, Deriphat 160, Miranol S2M-SF and Miranol M2M) did not alter the value when added to the chloroplasts. The remainder of the detergents examined caused a significant decrease or increase in the value for P-700 content. Sodium dodecyl sulfate, of particular interest due to its widespread use, caused a doubling in the amount of apparent P-700. This effect may be due to this detergent and some others enabling an additional long wavelength form of chlorophyll, possibly an intermediary electron acceptor in Photosystem I, to be chemically oxidized and reduced under the assay conditions.  相似文献   

12.
Arthur C. Ley  Warren L. Butler 《BBA》1977,462(2):290-294
Rates of photooxidation of P-700 by green (560 nm) or blue (438 nm) light were measured in whole cells of Porphyridium cruentum which had been frozen to ?196 °C under conditions in which the Photosystem II reaction centers were either all open (dark adapted cells) or all closed (preilluminated cells). The rate of photooxidation of P-700 at ?196 °C by green actinic light was approx. 80% faster in the preilluminated cells than in the dark-adapted cells. With blue actinic light, the rates of P-700 photooxidation in the dark-adapted and preilluminated cells were not significantly different. These results are in excellent agreement with predictions based on our previous estimates of energy distribution in the photosynthetic apparatus of Porphyridium cruentum including the yield of energy transfer from Photosystem II to Photosystem I determined from low temperature fluorescence measurements.  相似文献   

13.
A. Telfer  J. Barber  P. Heathcote  M.C.W. Evans 《BBA》1978,504(1):153-164
1. Photosystem I particles enriched in P-700 prepared by Triton X-100 treatment of chloroplasts show a light-induced increase in fluorescence yield of more than 100% in the presence of dithionite but not in its absence.2. Steady state light maintains the P-700, of these particles, in the oxidised state when ascorbate is present but in the presence of dithionite only a transient oxidation occurs.3. EPR data show that, in these particles, the primary electron acceptor (X) is maintained in the reduced state by light at room temperature only when the dithionite is also present. In contrast, the secondary electron acceptors are reduced in the dark by dithionite.4. Fluorescence emission and excitation spectra and fluorescence lifetime measurements for the constant and variable fluorescence indicate a heterogeneity of the chlorophyll in these particles.5. It is concluded that the variable fluorescence comes from those chlorophylls which can transfer their energy to the reaction centre and that the states PX and P+X are more effective quenchers of chlorophyll fluorescence than PX?, where P is P-700.  相似文献   

14.
The photochemical oxidation and reduction of P-700 were studied in digitonin- and in sodium dodecyl sulphate (SDS)-Photosystem I (PS I) particles in the presence of ascorbate. In digitonin-PS I particles, reduction of P-700+ occurs by the bound iron-sulphur protein (P-430) and by ascorbate. The relative contribution of these back reactions depends on the length of the exposure to light and on the temperature and pH of the reaction medium. Experiments performed under anaerobic conditions demonstrate that some endogenous component may serve as the electron acceptor of P-430?. The rate of the latter reaction is also dependent upon the temperature and pH of the sample. At pH 9 and lower temperatures the rate of this reaction is so much reduced that the reduction of P-700+ by ascorbate, which increases rapidly at high pH, can be observed even during illumination. The effects of secondary electron acceptors and of the presence of SDS on the absorption changes due to P-700 are also reported. Low concentrations of SDS are shown to retard the back reaction of P-700+ with P-430?. Studies with SDS-PS I particles (CPI) confirm the absence of the iron-sulphur centres in this preparation. Three larger P-700-chlorophylla-protein complexes prepared by mild electrophoresis in the presence of SDS plus Triton X-100, however, still contain P-430.  相似文献   

15.
Hans J. Rurainski  Hans J. Hoppe 《BBA》1976,430(1):105-112
The heterotrophically grown, P-700-free mutant No. 8 of Scenedesmus obliquus is unable to carry out photosynthesis. Yet, chloroplast particles isolated from the alga reduced ferricyanide. They also reduced methyl viologen in the presence of the artificial donor reduced 2,6-dichlorophenol indophenol with a low yield but an appreciable saturation rate. NADP reduction or P-700 turn-over could not be detected.When grown mixotrophically, the mutant showed increasing P-700 activity with a concomitant increase in the rate of photosynthesis. Both activities were lost again when the algae were returned to darkness. Isolated chloroplast particles showed a good P-700 turn-over and reasonable rates of NADP reduction.The data suggest that the mutation occurred at a site preceding the formation of the pigment. The results on the photochemical activities are discussed in the light of reports concerning the involvement of P-700 in linear electron transport.  相似文献   

16.
The heterotrophically grown, P-700-free mutant No. 8 of Scenedesmus obliquus is unable to carry out photosynthesis. Yet, chloroplast particles isolated from the alga reduced ferricyanide. They also reduced methyl viologen in the presence of the artificial donor reduced 2,6-dichlorophenol indophenol with a low yield but an appreciable saturation rate. NADP reduction or P-700 turn-over could not be detected. When grown mixotrophically, the mutant showed increasing P-700 activity with a concomitant increase in the rate of photosynthesis. Both activities were lost again when the algae were returned to darkness. Isolated chloroplast particles showed a good P-700 turn-over and reasonable rates of NADP reduction. The data suggest that the mutation occurred at a site preceding the formation of the pigment. The results on the photochemical activities are discussed in the light of reports concerning the involvement of P-700 in linear electron transport.  相似文献   

17.
Nakamura A  Suzawa T  Kato Y  Watanabe T 《FEBS letters》2005,579(11):2273-2276
The redox potentials of P700, the primary electron donor of photosystem (PS) I, of spinach and Thermosynechococcus elongatus were determined by means of spectroelectrochemistry with an error range of +/-2-3 mV, to find that the redox potential of P700 in T. elongatus is lower by ca. 50 mV as compared with spinach. The shift in the P700 redox potential of PS I core particles prepared by harsh detergent treatments remained to within 10 mV for both organisms. These results show that the 50 mV difference in the P700 redox potential between the two organisms is not a detergent-induced artifact but reflects an intrinsic property of each PS I.  相似文献   

18.
Attempts have been made to identify intramembranous particles observed in freeze-fracture electron microscopy as specific functional components of the membrane. The intramembranous particles of the exoplasmic fracture (EF) face of freeze-fractured pea (Pisum sativum) chloroplast lamellae are nonuniformly distributed along the membrane. Approximately 20% of the particles are in unpaired membrane regions whereas 80% are localized in regions of stacked lamellae (grana partitions). The EF particles within the grana regions of the chloroplast membrane are of a larger average size than those in stroma lamellae.  相似文献   

19.
Alan J. Bearden  Richard Malkin 《BBA》1972,283(3):456-468
Quantitative electron paramagnetic resonance studies of the primary event associated with Photosystem I in chloroplasts have been carried out at 25 °K. After illumination of either whole chloroplasts or Photosystem I subchloroplast fragments (D-144) with 715-nm actinic light at 25 °K, equal spin concentrations of oxidized P700 and reduced bound iron-sulfur protein (bound ferredoxin) have been measured. Quantitative determination of the concentration of these two carriers by EPR spectroscopy after illumination at low temperature indicates that Photosystem I fragments are enriched in P700 and the bound iron-sulfur protein as compared with unfractionated chloroplasts. These results indicate that P700 and the bound iron-sulfur protein function as the donor-acceptor complex of chloroplast Photosystem I.  相似文献   

20.
Kimiyuki Satoh 《BBA》1974,333(1):107-126
1. Changes in the fluorescence emission spectrum of chloroplast, at 77 °K, induced by chaotropic reagents and 1,10-phenanthroline, were analyzed.2. Fourth-derivative analysis of the emission spectra identified the exact location of a new band (referred to as “F-700”) at 700 nm and showed that the conversion of F-695 into F-700 does not occur by a gradual red-shift of the F-695 band, but by the appearance of a new band at 700 nm at the expense of an intensity decrease in the F-695 emission.3. F-700 shows two distinct fluorescence characteristics, namely the wavelength of its emission maximum and its intensity, but still retains the principal properties of F-695 such as steep temperature dependence at low temperatures, transient phenomena at 77 °K, and an excitation spectrum of the Photosystem II type. Thus F-700 is concluded to be a modified state of F-695.4. In addition to the compounds of the urea-guanidine class, inorganic anions such as SCN?, I? and ClO4? were active in the transformation. The specificity and theorder of effectiveness of these reagents indicated that their action is that of chaotropic reagents. Transformation was inhibited by the presence of compounds such as sugars, salts, alcohols and dimethylsulfoxide which seem to affect the activity of water.5. 5-Methyl-1,10-phenanthroline partly substituted for the action of 1,10-phenanthroline, while the other six different derivatives of 1,10-phenanthroline and a few other bifunctional ligands were inactive. The structure-activity relations and the effective concentrations in the transformation differed greatly from those of the inhibition of the electron transport chain, suggesting that the action of 1,10-phenanthroline in the transformation is a yet unrecognized action of this reagent on Photosystem II.6. Transformation was generally observed in chloroplast preparations from 11 different higher plants and two species of algae tested. In Lolium sp. the transformation was partly attained by 1,10-phenanthroline alone.7. From these results, the state of F-695 in chloroplast membranes and the mechanism of transformation into F-700 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号