首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A column-switching method was developed for the determination of total 3-methoxy-4-hydroxy-phenylethyleneglycol (MHPG) in urine. This was performed by first treating samples with β-glucuronidase, followed by extraction with ethyl acetate. The reconstituted extracts with injected onto an HPLC system containing an amperometric detector and tandem Nucleosil C18 and C8 reversed-phase columns connected by a switching valve. The total analysis time for MHPG was 12 min. The limit of detection was 0.18 ng, or 9 μg/l for 20-μl injections of a 1.0-ml reconstituted extract prepared from 1.0 ml of urine. The linear range extended up to 80 mg/l. The within-day precision for a urine sample containing 170 μg/l total MHPG was ±6% and the day-to-day precision was ±15%. The average levels determined by this method for total MHPG in normal subjects showed good agreement with previous literature values. This approach could be modified for the determination of free MHPG by using only ethyl acetate extraction for sample pretreatment.  相似文献   

2.
A method is described for the quantitative analysis of (3-methoxy-4-sulphoxyphenyl)-ethylene glycol (MHPG sulphate) in human urine, based on selected ion monitoring gas chromatography—mass spectrometry and using a specifically deuterium-labelled analogue of MHPG sulphate as internal standard. The procedure involves extraction of the urine sample on Amberlite XAD-2, followed by isolation of MHPG sulphate by column chromatography on Sephadex LH-20. Cleavage of the sulphate conjugate and formation of the MHPG tris(trifluoroscetate) derivative are carried out in a one-step reaction, without recourse to enzymic hydrolysis.  相似文献   

3.
J L Izzo  D Horwitz  H R Keiser 《Life sciences》1979,24(15):1403-1406
The norepinephrine metabolites methoxyhydroxyphenyl glycol (MHPG) and vanillylmandelic acid (VMA) were measured in the urine of hypertensive subjects before and during adminstration of guanethidine, a peripheral sympatholytic agent which does not cross the blood-brain barrier or deplete adrenal catecholamines. Dosages of guanethidine (1.2 mg/kg/day) sufficient to cause at least a 20 torr reduction in standing systolic blood pressure caused a mean 63% (maximum of 68%) reduction in urinary MHPG excretion (p=0.01) while only causing a mean 37% (maximum of 44%) reduction (p<0.005) in excretion of VMA. These results indicate that MHPG in human urine, as in lower animals, is predominantly the product of peripheral sympathetic nervous system, rather than central nervous system nonrepinephrine metabolism. Urinary MHPG is more sensitive to specific sympatholytic therapy than is urinary VMA, and may be a useful index of sympathetic nervous activity.  相似文献   

4.
The aim of this study was to develop an analytical method for free and conjugated 3-methoxy-4-hydroxy-phenylethyleneglycol (MHPG) in urine. After hydrolysis of the conjugated forms, the urinary MHPG was purified by solid-phase extraction on anion exchanger and eluted with a water-methanol (1:1, v/v) mixture. After addition of ethyl acetate to the eluate and back-extraction into acetic acid, the aqueous phase was separated on a C18 column by HPLC and detected amperometrically. The results obtained from forty healthy human subjects were compared with the literature values. The precision and accuracy of the assay were studied using 4-methoxy-3-hydroxyphenylethyleneglycol (iso-MHPG) as internal standard.  相似文献   

5.
A high-performance liquid chromatographic method with electrochemical detection for the quantitation of total 3-methoxy-4-hydroxyphenylglycol (MHPG) in human urine is described. Existing methods for deconjugation and extraction have been optimized. The present method is simpler than existing methods with a high precision. Urinary MHPG is deconjugated enzymatically and subsequently extracted with ethyl acetate. The organic layer is extracted with acetic acid and a sample of the aqueous layer is injected into a reversed-phase column. In one run 90 samples can be processed. The critical parameters of deconjugation, extraction and chromatography are described. Data for reproducibility and selectivity are presented.  相似文献   

6.
To simultaneously measure 3-methoxy-4-hydroxyphenylglycol (MHPG), 5-hydroxyindoleacetic acid (5HIAA), and homovanillic acid (HVA) in human cerebrospinal fluid (CSF), we used an acetonitrile protein precipitation, reversed-phase high-perforamance liquid chromatography with coulometric detection, and 3-methoxy-4-hydroxyphenyllactic acid (MHPLA) as an internal standard for all three metabolites. MHPG, 5HIAA, HVA, and MHPLA were stable for one month when stored in CSF at −70°C. Three determinations were made in triplicate for each of seven subjects over a 30-day storage period and the coefficients of variation within subject for these determinations ranged from 0.075 to 0.165 for MHPG, 0.045 to 0.148 for 5HIAA and 0.053 to 0.181 for HVA. Means and standard deviations fo CSF concentrations were 10.7 ± 3.0 ng/ml for MHPG, 22.4 ± 9.9 ng/ml for 5HIAA, and 39.9 ± 21.4 ng/ml for HVA. This method provides simple sample preparation, sensitivity, and cost advantages, as well as simultaneous extraction and quantitation of MHPG, 5HIAA, and HVA using an internal standard.  相似文献   

7.
A high-performance liquid chromatography with electrochemical detection (HPLC-ED) method is described for determination of 3-methoxy-4-hydroxyphenylglycol (MHPG) in microdialysate from the skeletal muscle interstitial space. Using a microdialysis technique, we sampled 30 microl dialysate from the skeletal muscle interstitial space and injected dialysate directly into HPLC-ED system. The control MHPG concentration of dialysate was 213+/-18 pg/ml. The MHPG concentrations were reduced by entacapone (catechol-O-methyltransferase inhibitor, COMT), augmented by local infusion of dihydroxyphenylglycol. This system offers a new possibility for simple, rapid monitoring of MHPG as an index of COMT activity in skeletal muscle.  相似文献   

8.
We have previously reported a method for the determination of total 3-methoxy-4-hydroxy phenylethylene glycol (MHPG) in brain, based on a simple acid-catalyzed hydrolysis. Now we extend this procedure to the determination of plasma total MHPG. The method involves the deproteinization of plasma with perchloric acid, followed by 3 minutes of an acid-catalyzed step. The hydrolysates are injected into the HPLC system, using a formic acid/methanol eluent with fluorimetric detection. Sample detection limit is below 1 ng MHPG/mL of plasma. This procedure has been used for the determination of plasma total MHPG from 109 healthy individuals of both sexes. Mean value was: 5.4 + 2.3 ng total MHPG/mL of plasma (means +/- S.D., N = 109). No sex differences were observed, and a slight correlation with age (r = 0.24, p less than 0.02) has been found. Plasma-free MHPG was also determined in a subgroup of 15 randomly chosen individuals (3.0 +/- 1.2 ng free MHPG/mL plasma, means +/- S.D.). A significant correlation was obtained with plasma total MHPG (r = 0.77, p less than 0.001, N = 15). The main advantage of the present method lays in its simplicity, since no enzymatic hydrolysis or extraction procedures are needed, being its reliability fully proven through 109 plasma total MHPG determinations.  相似文献   

9.

Background

The Kato-Katz is the most common diagnostic method for Schistosoma mansoni infection. However, the day-to-day variability in host egg-excretion and its low detection sensitivity are major limits for its use in low transmission zones and after widespread chemotherapy. We evaluated the accuracy of circulating cathodic antigen (CCA) urine-assay as a diagnostic tool of S. mansoni. In comparison, a low sensitive CCA test (CCA-L) was assessed.

Methodology

The study was conducted in three settings: two foci with single S. mansoni infections (settings A and B), and one mixed S. mansoni – S. haematobium focus (setting C). Stool and urine samples were collected from school-children on three consecutive days. Triplicate Kato-Katz readings were performed per stool sample. Each urine sample was tested with one CCA and only the first urine sample was subjected to CCA-L. Urine samples were also examined for S. haematobium eggs using the filtration method and for microhaematuria using urine reagent strips. Overall, 625 children provided three stool and three urine samples.

Principal Findings

Considering nine Kato-Katz thick smears as ‘reference’ diagnostic test, the prevalence of S. mansoni was 36.2%, 71.8% and 64.0% in settings A, B and C, respectively. The prevalence of S. haematobium in setting C was 12.0%. The sensitivities of single Kato-Katz, CCA and CCA-L from the first stool or urine samples were 58%, 82% and 46% in setting A, 56.8%, 82.4% and 68.8% in setting B, and 49.0%, 87.7% and 55.5% in setting C. The respective specificities were 100%, 64.7% and 100%; 100%, 62.3% and 91.3%; and 100%, 42.5% and 92.0%. Mixed infection with S. haematobium did not influence the CCA test results for S. mansoni diagnosis.

Conclusions/Significance

Urine CCA revealed higher sensitivity than CCA-L and triplicate Kato-Katz, and produced similar prevalence as nine Kato-Katz. It seems an attractive method for S. mansoni diagnosis.  相似文献   

10.
A sensitive and specific high-performance liquid chromatographic–tandem mass spectrometric (HPLC–MS–MS) method was developed for the determination of 3-hydroxypropylmercapturic acid (3-HPMA) in human urine. Samples were extracted using ENV+ cartridges and then injected onto a C8 Superspher Select B column with acetonitrile and formic acid as eluent (5:95, v/v). N-Acetylcysteine was used as internal standard for HPLC–MS–MS. Linearity was given in the tested range of 50–5000 ng/ml urine. The limit of quantification was 50 ng/ml. Precision, as C.V., in the tested range of 50–5000 ng/ml was 1.47–6.04%. Accuracy ranged from 87 to 114%. 3-HPMA was stable in human urine at 37°C for 24 h. The method was able to quantify 3-HPMA in urine of non-smokers and smokers.  相似文献   

11.
An improved high-performance liquid chromatographic method with electrochemical detection (HPLC-EC) for the simultaneous determination of 3-methoxy-4-hydroxyphenylglycol (MHPG), 5-hydroxyindoleacetic acid (5-HIAA), and homovanillic acid (HVA) in cerebrospinal fluid (CSF) of humans and nonhuman primates is described. Quantitation is based on the use of an internal standard, 5-fluoro-HVA. Sample preparation consists of mixing an aliquot of CSF with a solution of the internal standard followed by ultrafiltration. The precision of the method is high, with within-run and between-run coefficients of variation of 2-6% and less than 10%, respectively, in the concentration ranges of the metabolites encountered in human lumbar CSF. Accuracy was tested by comparing the present HPLC method with specific gas chromatographic-mass spectrometric (GS-MS) assays for MHPG and HVA and a GC-MS-validated HPLC assay for 5-HIAA: the correlations obtained were 0.968 for MHPG, 0.989 for 5-HIAA, and 0.999 for HVA, with no systematic bias between the methods. The use of ascorbate as a preserving agent for monoamine metabolites in CSF was not found to be necessary when proper care was exercised in sample handling and storage. The analysis of samples with up to 2% ascorbic acid was possible as well, but MHPG had to be assayed separately using an extraction procedure and an alternative internal standard, 3-ethoxy-4-hydroxyphenylglycol.  相似文献   

12.
A reversed-phase high-performance liquid chromatographic method has been used for the quantitative determination of 3-methoxy-4-hydroxyphenylglycol (MHPG) in urine. After incubation with glusulase, free MHPG is extracted into ethyl acetate and further isolated by a combination of thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). The addition of amperometric detection provides increased sensitivity to a highly specific assay.  相似文献   

13.
A new sensitive high-performance liquid chromatographic (HPLC) method with fluorescence detection was developed for the determination of 2-phenylethylamine (PEA) in human urine. The analytical procedure involved a simple extraction of the analyte from urine, followed by precolumn derivatisation of the sample with o-phthalaldehyde. The HPLC separation was performed under isocratic conditions using an Erbasil S C18 (250 × 4.0 mm I.D., particle size 3 μm) reversed-phase column. The limit of quantification was 0.5 ng of PEA/ml of urine. The method showed good linearity, accuracy and precision data in the concentration range 0.5–200 ng/ml of urine. The method was successfully applied to the determination of PEA urinary excretion in Parkinsonian patients after oral administration of the monoamine oxidase B (MAO-B) inhibitor, selegiline.  相似文献   

14.
24-h urinary sodium excretion is the gold standard for evaluating dietary sodium intake, but it is often not feasible in large epidemiological studies due to high participant burden and cost. Three methods—Kawasaki, INTERSALT, and Tanaka—have been proposed to estimate 24-h urinary sodium excretion from a spot urine sample, but these methods have not been validated in the general Chinese population. This aim of this study was to assess the validity of three methods for estimating 24-h urinary sodium excretion using spot urine samples against measured 24-h urinary sodium excretion in a Chinese sample population. Data are from a substudy of the Prospective Urban Rural Epidemiology (PURE) study that enrolled 120 participants aged 35 to 70 years and collected their morning fasting urine and 24-h urine specimens. Bias calculations (estimated values minus measured values) and Bland-Altman plots were used to assess the validity of the three estimation methods. 116 participants were included in the final analysis. Mean bias for the Kawasaki method was -740 mg/day (95% CI: -1219, 262 mg/day), and was the lowest among the three methods. Mean bias for the Tanaka method was -2305 mg/day (95% CI: -2735, 1875 mg/day). Mean bias for the INTERSALT method was -2797 mg/day (95% CI: -3245, 2349 mg/day), and was the highest of the three methods. Bland-Altman plots indicated that all three methods underestimated 24-h urinary sodium excretion. The Kawasaki, INTERSALT and Tanaka methods for estimation of 24-h urinary sodium excretion using spot urines all underestimated true 24-h urinary sodium excretion in this sample of Chinese adults. Among the three methods, the Kawasaki method was least biased, but was still relatively inaccurate. A more accurate method is needed to estimate the 24-h urinary sodium excretion from spot urine for assessment of dietary sodium intake in China.  相似文献   

15.
A new high-performance liquid chromatographic method with column switching has been developed for the simultaneous determination of metampicillin and its metabolite ampicillin in biological fluids. The plasma, urine and bile samples were injected onto a precolumn packed with LiChrosorb RP-8 (25–40 μm) after simple dilution with an internal standard solution in 0.05 M phosphate buffer (pH 7.0). The polar plasma components were washed out using 0.05 M phosphate buffer (pH 7.0). After valve switching, the concentrated drugs were eluted in the back-flush mode and separated by an Ultracarb 5 ODS-30 column with a gradient system of acetonitrile-0.02 M phosphate buffer (pH 7.0) as the mobile phase. The method showed excellent precision, accuracy and speed with a detection limit of 0.1 μg/ml. The total analysis time per sample was less than 40 min and the coefficients of variation for intra- and inter-assay were less than 5.1%. This method has been successfully applied to plasma, urine and bile samples from rats after intravenous injection of metampicillin.  相似文献   

16.
An appropriate and controlled supply of thyroid hormones is vital for proper body function. In turn, an appropriate synthesis of T3 and T4 in the thyroid gland is dependent on a sufficient and balanced iodide concentration in blood serum. Due to widespread iodine deficiency or some cases of iodine over exposure, iodide biomonitoring in serum is important and it is that biomonitoring approach being closest to the bioavailable I supply for the thyroid gland. Therefore, this paper describes a biomonitoring method for iodide determination in serum based on ion chromatography–inductively coupled plasma mass spectrometry (IC–ICP-MS). Since in literature only very few data are available on iodide in serum but many in urine the method is also extended to I monitoring in urine. The method was additionally designed to have short analysis time (8 min) for increased sample throughput, good precision in serial measurement (serum: 4.86%; urine: 1.4%), and day-to-day determination (serum: 5.7%; urine: 2.28%), high accuracy (serum: 105%; urine: 101%) and good recovery (serum: 102%; urine: 99%) even in matrix-rich samples at low I concentration. Also, investigations were performed to elucidate whether internal standardization during chromatography, sample preparation for protein-matrix removal or matrix-matched calibration are advantageous for analytical performance. Finally, limits of detection (3σ) of 0.12 μg/L or 0.05 μg/L (serum or urine) and limit of quantification (10σ) of 0.39 μg/L or 0.17 μg/L (serum or urine) were achieved.  相似文献   

17.
Abstract: To assess the postmortem stability of brain 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG) and 3,4-dihydroxyphenylethyleneglycol (DHPG) levels, groups of rats and mice were killed by cervical dislocation and left at either 21° or 4°C for intervals of up to 24 h until removal and freezing of whole brain. Whole brain free and total MHPG and DHPG levels were determined simultaneously by gas chromatography-mass fragmentography (GC-MF). By 2 h after death, statistically significant decrements occurred in rat brain free DHPG (20%), total MHPG (21%), and total DHPG (11%) at 4°C, but free MHPG increased significantly (50%) compared with controls. At 21°C, rat brain total MHPG increased compared with controls at 2 h (15%) but decreased at 4 h (15%) and 8 h (15%), whereas free MHPG levels were increased at these times. Although brain total and conjugated DHPG levels showed little change, free DHPG levels were reduced at all times. In mouse brain no significant changes occurred in free MHPG and DHPG by 24 h at 4°C. At 21°C, mouse brain DHPG levels decreased whereas MHPG concentrations increased over the 8-h period of study. These findings demonstrate the occurrence of significant postmortem time- and temperature-dependent changes in brain MHPG and DHPG concentrations and indicate caution in the interpretation of changes in these metabolites in studies employing human postmortem brain tissue.  相似文献   

18.
We herein report the simultaneous determination of the levels of noradrenaline (NA), and 3-methoxy-4-hydroxyphenylglycol (MHPG), a major metabolite of NA. The sample was subjected to a Sep Pak C18 cartridge prior to the NA and MHPG assay by high-performance liquid chromatography with an electrochemical detector. The results correlated well with the established methods. The average percentage of recovery was 91.2 and 98.7% for NA and MHPG, respectively. The intraassay coefficients of variation were 3.7 and 4.6% for NA and MHPG. The interassay coefficients of variation were 3.5 and 7.5% for NA and MHPG, respectively.  相似文献   

19.
A reverse phase high performance liquid chromatographic method for determining levels of 4-hydroxy-3-methoxyphenylethylene glycol (MHPG) in human urine that is virtually free of all interfering peaks has been developed. After addition of a homologous internal standard, enzymatic hydrolysis is performed. Samples are then placed onto columns containing AG1-X8, and the MHPG is collected in a phosphate buffer wash of the column. After ethyl acetate extraction and evaporation of the organic solvent, the dry residue is redissolved in mobile phase, and injected onto a reverse phase column. Results obtained with this assay were almost identical (101±5.6%, mean±SD, n=6) with those obtained using a gas chromatography - mass spectrometry (GCMS) assay.  相似文献   

20.
A simple and fast HPLC method based on an isocratic, reversed-phased ion-pair with amperometric end-point detection for simultaneous measurement of noradrenergic (MHPG/NA and A), dopaminergic (DOPAC, HVA/DA) and serotonergic (5-HIAA/5-HT) compounds in mouse brain tissue was developed. In order to improve the chromatographic resolution (Rs) with an acceptable total analysis time, experimental designs for multivariate optimization of the experimental conditions were applied. The optimal conditions for the separation of the eight neurotransmitters and metabolites, as well as two internal standards, i.e., DHBA and 5-HMT, were obtained using a mixture of methanol–phosphate–citric buffer (pH 3.2, 50 mM) (9:91, v/v) containing 2 mM OSA as mobile phase at 32 °C on a microbore ALF-115 column (150 mm × 1.0 mm, 3 μm particle size) filled with porous C18 silica stationary phase. In this study, a two-level fractional factorial experimental design (½ 2K) was employed to optimize the separation and capacity factor (k′) of each molecule, leading to a good separation of all biogenic amines and their metabolites in brain tissue. A simple method for the preparation of different bio-analytical samples in phosphate–citric buffer was also developed. Results show that all molecules of interest were stabilized for at least 24 h in the matrix conditions without any antioxidants. The method was fully validated according to the requirements of SFSTP (Société Française des Sciences et Techniques Pharmaceutiques). The acceptance limits were set at ±15% of the nominal concentration. The method was found accurate over a concentration range of 4–2000 ng/ml for MHPG, 1–450 ng/ml for NA, 1–700 ng/ml for A, 1–300 ng/ml for DOPAC, 1–300 ng/ml for 5-HIAA, 1–700 ng/ml for DA, 4–2800 ng/ml for HVA and 1–350 ng/ml for 5-HT. The assay limits of detection for MHPG, NA, A, DOPAC, 5-HIAA, DA, HVA and 5-HT were 2.6, 2.8, 4.1, 0.7, 0.6, 0.8, 4.2 and 1.4 pg, respectively. It was found that the mean inter- and intra-assay relative standard deviations (RSDs) over the range of standard curve were less than 3%, the absolute and the relative recoveries were around 100%, demonstrating the high precision and accuracy, and reliability of the analytical method described to apply in routine analysis of biogenic amines and their metabolites in brain tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号