首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An antiserum against the catalytic subunit C of cyclic AMP-dependent protein kinase, isolated from bovine heart type II protein kinase, was produced in rabbits. Reaction of the catalytic subunit with antiserum and separation of the immunoglobulin G fraction by Protein A-Sepharose quantitatively removed the enzyme from solutions. Comparative immunotitration of protein kinases showed that the amount of antiserum required to eliminate 50% of the enzymic activity was identical for pure catalytic subunit, and for holoenzymes type I and type II. The reactivity of the holoenzymes with the antiserum was identical in the absence or the presence of dissociating concentrations of cyclic AMP. Most of the holoenzyme (type II) remains intact when bound to the antibodies as shown by quantification of the regulatory subunit in the supernatant of the immunoprecipitate. Titration with the antibodies also revealed the presence of a cyclic AMP-independent histone kinase in bovine heart protein kinase I preparations obtained by DEAE-cellulose chromatography. Cyclic AMP-dependent protein kinase purified from the particulate fraction of bovine heart reacted with the antiserum to the same degree as the soluble enzyme, whereas two cyclic AMP-independent kinases separated from the particle fraction neither reacted with the antiserum nor influenced the reaction of the antibodies with the cyclic AMP-dependent protein kinase. Immunotitration of the protein kinase catalytic subunit C from rat liver revealed that the antibodies had rather similar reactivities towards the rat liver and the bovine heart enzyme. This points to a relatively high degree of homology of the catalytic subunit in mammalian tissues and species. Broad applicability of the antiserum to problems related to cyclic AMP-dependent protein kinases is thus indicated.  相似文献   

2.
We have shown that nuclei isolated by two methods contain grossly different amounts of cyclic AMP-dependent histone kinase activity. Repeated washing of the isolated nuclei with a low ionic strength buffer removed the majority of the cyclic AMP-dependent histone kinase and cyclic AMP binding activity. Nuclear cyclic AMP-dependent histone kinase activity accounted for only 0.42% of the total cytoplasmic enzyme activity. Similarly, the lactate dehydrogenase activity associated with liver nuclei represented only 0.07% of the total cytoplasmic activity. The isolated liver nuclei contained only 0.27% of the total homogenate glutamate dehydrogenase activity and 1.7%of the total homogenate glucose-6-phosphatase activity. The cyclic AMP-dependent histone kinase behaves as a cytoplasmic rather than a nuclear enzyme. We have also shown that using crude extracts, one can achieve separation of the two nuclear casein kinases, NI and NII, on sucrose density gradients in the presence of 0.5M NaCl. Nuclear casein kinases NI and NII had sedimentation coefficients of 3.0 and 593 S, respectively, in the presence of 0.5 M NaCl. Under conditions of low ionic strength, all of the casein kinase activity in the crude nuclear extract sedimented as one peak with a seminentation coefficient of 7.3 S. The aggregation-disaggregation which occurred in the crude extract was reversible and was mainly due to the aggregative and disaggregative properties of casein kinase NII. The two nuclear casein kinases have different affinities for chromatin. When nuclei were disrupted in a hypotonic solution and extracted with a buffercontaining 0.14 M NaCl, casein kinase NII could be completely extracted from the viscous nuclear material. Although a significant amount of casein kinase NI was extracted by the buffer containing 0.14 M NaCl, re-extraction of the nuclear material with a buffer containing 0.5 M NaCl yielded substantial amounts of casein kinase NI, and a final extraction with a buffer containing 1.0 M NaCl yielded measurable amounts of casein kinase NI. No casein kinase NII activity could be detected in the 0.5 M and 1.0M NaCl extracts.  相似文献   

3.
A thermostable inhibition of ATP-protein phosphotransferase (EC 2.7.1.37) (protein kinase) which is present in crude tissue extracts has been resolved by gel chromatography (Sephadex G-100) into two molecular forms. These two forms will be referred to as type I and type II inhibitor. The type I inhibitor (Mr approximately or equal to 24,000) is specific for cAMP-dependent protein kinase and corresponds to the inhibitor described earlier (Walsh, D. A., Ashby, C. D., Gonzalez, C., Calkins, D., Fisher, E. H., and Krebs, E. G. (1971) J. Biol. Chem. 246, 1977-1985). The type II inhibitor (Mr approximately or equal to 15,000) competes for the enzyme with various substrate proteins (histone, alpha-casein, and Leu-Arg-Arg-Ala-Ser-Leu-Gly (kemptide). The type II inhibitor blocks protein phosphorylation catalyzed by several types of protein kinases (cAMP- and cGMP-dependent or cyclic nucleotide-independent protein kinases). The type II inhibitor from rat brain has been purified 1500-fold; this protein is thermostable, has acidic characteristics, and does not require Ca2+ ions for its activity. Different ratios and concentrations of type I and type II inhibitors of protein kinase are found in rat skeletal muscle, pancreas, cerebellum and corpus striatum, and in lobster tail muscle.  相似文献   

4.
Role of 3',5'-cyclic AMP in the control of nuclear protein kinase activity   总被引:1,自引:0,他引:1  
The role of cAMP in the regulation of nuclear protein kinase activity was investigated. Acidic nuclear proteins prepared from rat liver nuclei were separated by phosphocellulose chromatography into four peaks of protein kinase activity and two peaks of cAMP-binding activity. A fraction which bound cAMP also inhibited the most active nuclear protein kinase, K IV, and the inhibition was diminished in the presence of 5 μM cAMP. Further support for the regulation of nuclear kinases by cAMP was obtained using a regulatory subunit prepared from rabbit muscle protein kinase. The muscle regulatory subunit markedly inhibited liver nuclear kinase activities. The addition of cAMP partially restored the activities.  相似文献   

5.
Extracts of rat tissues contain kinases which catalyze the conversion of glycogen synthease from the glucose 6-phosphate-independent (I) form to the glucose 6-phosphatate-dependent (D) form. These kinases were stimulated by adenosine 3':5' monophosphate (cyclic AMP). The glycogen synthase kinase activity ratio (activity in the absence of cyclic AMP divided by activity in the presence of cyclic AMP) varied from 0.28 to 0.97. The activity ratio for histone kinase in the same extracts ranged from 0.11 to 0.29. The levels of glycogen synthase kinase varied by a factor of 80 in the following rat tissues (given in order of decreasing enzyme activity): kidney, liver, stomach mucosa, lung, brain, heart, skeletal muscle, and adipose tissue. In the same tissues the levels of histone kinase varied by only a factor of 6 and did not correlate with the levels of glycogen synthase kinase. A modification of the method of Walsh et al. ((1971) J. Biol. Chem. 246, 1977-1985) was developed for purification of the heat-stable inhibitor of cyclic AMP-dependent protein kinases (inhibitor). The modified procedure resulted in good yields of highly purified inhibitor and was much simpler than the previously described procedure. This inhibitor completely inhibited cyclic AMP-dependent histone kinase activity of the extracts but much of the glycogen synthase kinase activity was not inhibited. The portion of glycogen synthase kinase that was insensitive to the inhibitor was: stomach mucosa, 95%; brain, 90%; liver, 82%; kidney, 81%; lung, 68%; adipose tissue, 65%; skeletal muscle, 63%; and heart, 54%. This histone kinase activity in the extracts and hte ratio of glycogen synthase kinase to histone kinase activity of purified catalytic subunit of the cyclic AMP-dependent protein kinase was used to calculate for each extract the glycogen synthase kinase activity contributed by the cyclic AMP-dependent protein kinase. Based on these calculations, the portion of the glycogen synthase kinase which was due to kinases independent of cyclic AMP was: kidney, 97%; liver, 91%; lung, 89%; brain, 87%, heart, 85%; stomach mucosa, 84%; adipose tissue, 38%; and skeletal muscle, 33%. A significant portion of the glycogen synthase kinase activity, but virtually none of the cyclic AMP-dependent histone kinase activity, of these extracts could be adsorbed to phosphocellulose columns. Liver extracts contained, in addition, a form of glycogen synthase kinase which was not adsorbed to phosphocellulose and which could be separated from the cyclic AMP-dependent protein kinase by additional chromatography. These studies demonstrate that kinases independent of cyclic AMP account for most of the glycogen synthase kinase activity of many tissues. The widespread distribution and high concentrations of these enzymes suggest that they are of physiological importance.  相似文献   

6.
The inhibitory effect of gallic acid (3,4,5-trihydroxybenzoic acid), and its ester derivatives methyl, propyl, octyl and lauryl has been tested on the tyrosine kinase activity of affinity purified c-Src from human platelets, using the artificial substrate Poly (Glu,Na,Tyr) 4:1. When tested as inhibitor of the autophosphorylation of the enzyme and the phosphorylation of the protein tyrosine phosphatase SHP-1 by c-Src, lauryl gallate was found to be a more potent inhibitor than other widely used protein tyrosine kinase (PTK) inhibitors such as genistein and herbimycin A. However, lauryl gallate did not inhibit the activity of the serine threonine kinases protein kinase A (PKA) and casein kinase II (CKII) from rat brain.  相似文献   

7.
The effect of Ca2+-binding protein regucalcin on protein kinase activity in the nuclei of normal and regenerating rat livers was investigated. Protein kinase activity in the nuclei isolated from normal rat liver was significantly increased by addition of Ca2+ (500 μM) and calmodulin (10 μg/ml) in the enzyme reaction mixture. Nuclear protein kinase activity was significantly decreased in the presence of EGTA (1.0 mM), trifluoperazine (TFP; 20 μM), dibucaine (10−4 M), or staurosporine (10−7 M), indicating that Ca2+-dependent protein kinases are present in the nuclei. Protein kinase activity was significantly elevated in the liver nuclei obtained at 6 to 48 h after a partial hepatectomy. Hepatectomy-increased nuclear protein kinase activity was significantly decreased in the presence of EGTA (1.0 mM), TFP (20 μM), or staurosporine (10−7 M) in the enzyme reaction mixture. The presence of regucalcin (0.1–0.5 μM) caused a significant decrease in protein kinase activity in the nuclei obtained from normal and regenerating rat livers. Meanwhile, the nuclear protein kinase activity from normal and regenerating livers was significantly elevated in the presence of anti-regucalcin monoclonal antibody (50–200 ng/ml). The present study suggests that regucalcin plays a role in the regulation of protein kinase activity in the nuclei of proliferative liver cells. J. Cell. Biochem. 71:569–576, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
A cDNA for branched-chain alpha-ketoacid dehydrogenase kinase was cloned from a rat heart cDNA library. The cDNA had an open reading frame encoding a protein of 382 amino acid residues with a calculated molecular weight of 43,280. The clone codes for the branched-chain alpha-ketoacid dehydrogenase kinase based on the following: 1) the deduced amino acid sequence contained the partial sequence of the kinase determined by direct sequencing; 2) expression of the cDNA in Escherichia coli resulted in synthesis of a 43,000-Da protein that was recognized specifically by kinase antibodies; and 3) enzyme activity that phosphorylated and inactivated the branched-chain alpha-ketoacid dehydrogenase complex was found in extracts of E. coli expressing the protein. Northern blot analysis indicated the mRNA for the branched-chain alpha-ketoacid dehydrogenase kinase was more abundant in rat heart than in rat liver, as expected from the relative amounts of kinase activity expressed in these tissues. The deduced sequence of the kinase aligned with a high degree of similarity within subdomains characteristic of procaryotic histidine protein kinases. This first mitochondrial protein kinase to be cloned appears more closely related in sequence to procaryotic histidine protein kinases than to eucaryotic serine/threonine protein kinases.  相似文献   

9.
We have measured nuclear protein kinase activity during the prereplicative phase of rat liver regeneration. Total nuclear protein kinase activity increased significantly 15-18 h after partial hepatectomy, with the peak of activity occurring at 16 h. DEAE-Sephacel chromatography resolved nuclear protein kinase activity into two cAMP-independent (Ib and II) and two cAMP-dependent (Ia and III) protein kinases. Sixteen h after partial hepatectomy, there was a marked increase in the activities of the nuclear cAMP-dependent protein kinases and a decrease in the activity of nuclear cAMP-independent protein kinase II. Characterization of the two nuclear cAMP-dependent protein kinases revealed them to be identical with the cytosolic type I and II isozymes. Immunotitration of nuclear catalytic subunit and densitometric analysis of autoradiographs from 8-azido-[32P]cAMP-labeled nuclear RI revealed increases in both subunits 16 h afer partial hepatectomy. Concomitantly with the observed increase in nuclear protein kinase activity, we have observed an increase in the phosphorylation of histone H1 subspecies. Administration of the beta-adrenergic antagonist DL-propranolol, which has been shown to cause delays of equal duration in both the second phase of increased intracellular cAMP levels and the initiation of DNA synthesis (MacManus, J. P., Braceland, B. M., Youdale, T., and Whitfield, J. F. (1973) J. Cell. Physiol. 82, 157-164), results in an equivalent delay of increased nuclear protein kinase activity. Colchicine, which has previously been shown to prevent the onset of DNA synthesis (Walker, P. R., and Whitfield, J. F. (1978) Proc. Natl. Acad. Sci. U. S. A. 75, 1394-1398), also prevents the increased protein kinase activity normally observed 16 h after partial hepatectomy. We conclude that the onset of DNA synthesis in the regenerating rat liver is preceded by a cAMP-mediated translocation of type I and type II cAMP-dependent protein kinase to the nucleus and phosphorylative modification of histone H1 subspecies. The inhibitory effects of propranolol and colchicine suggest a common cAMP-mediated, colchicine-sensitive link between protein kinase translocation and the initiation of DNA synthesis.  相似文献   

10.
A cyclic-AMP-independent nuclear protein kinase has been purified from Dictyostelium discoideum amoebae. The purification procedure involves chromatography of DEAE-Sephadex, phosphocellulose and heparin-Sepharose. The purified enzyme phosphorylates threonine and serine of acidic proteins as casein and phosvitin. Phosphorylation of casein is stimulated by spermine. The kinase requires Mg2+ and can utilize both ATP and GTP as phosphoryl donors. Heparin is a potent inhibitor of the enzyme, being the protein kinase activity fully inhibited at concentrations of 0.5 micrograms/ml. One polypeptide of molecular mass 38 kDa was the major protein band present in the purified kinase preparation as estimated by NaDodSO4 denaturing polyacrylamide gel electrophoresis. This band belongs to the protein kinase because it is the only one that is observed associated with the protein kinase activity when the enzyme preparation is centrifuged in glycerol gradients. The 38-kDa polypeptide is also the major product of autophosphorylation of the enzyme preparation. The enzymatic properties allow to classify the enzyme as a type-II casein kinase. However, its structural properties are different from the mammalian type-II casein kinases and make the D. discoideum enzyme more similar to the plants type-II casein kinases.  相似文献   

11.
DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg(2+)-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants.  相似文献   

12.
A calmodulin-dependent protein kinase has been purified extensively from a Rous sarcoma virus-transformed rat cell line (RR1022) and from normal rat liver. The calmodulin-dependent protein kinase activity was manifested by in vitro phosphorylation of a single Mr 57 000 endogenous phosphoprotein (pp57) present in both the virally transformed cells and normal rat liver. The calmodulin-dependent protein kinase from transformed cells fractionated with the viral src gene product, pp60v-src, through a 650-fold purification of the oncogene product. However, purification of the calmodulin-dependent protein kinase from normal liver demonstrated that the calmodulin-dependent kinase was distinct from pp60v-src. Phosphorylation of pp57 by the kinase purified from the transformed cell line required Ca2+ and calmodulin, was inhibited by EDTA and was unaffected by cAMP or the heat- and acid-stable protein inhibitor of cAMP-dependent protein kinase. Troponin C did not substitute for calmodulin. A virtually identical calmodulin-dependent protein kinase activity was purified from rat liver by affinity chromatography on calmodulin-Sepharose. Phosphorylation of pp57 by the affinity-purified liver protein kinase was also observed, and required Ca2+ and calmodulin. EGTA and trifluoroperazine inhibited pp57 phosphorylation. The calmodulin-dependent protein kinase reported here did not phosphorylate substrates of known calmodulin-dependent protein kinases in vitro (myosin light chain, phosphorylase b, glycogen synthase, microtubule-associated proteins, tubulin, alpha-casein). Because none of these proteins served as substrates in vitro and pp57 was the only endogenous substrate found, the properties of this enzyme appear to be different from any previously described calmodulin-dependent protein kinase.  相似文献   

13.
Pyruvate kinase (ATP:pyruvate 2-O-phosphotransferase, EC 2.7.1.40) type L was partly purified from rat kidney. During the last two purification steps, the incorporation of [32P]phosphate into protein on incubation with [32P]ATP and cyclic 3',5'-AMP-dependent protein kinase was found to parallel the pyruvate kinase activity. After phosphorylation of the enzyme, a major radioactive band with a molecular weight of 57 000 was found on polyacrylamide gel electrophoresis [32P]Phosphorylserine was isolated from the kidney pyruvate kinase. Immunological identity was found between the liver and kidney pyruvate kinases type L. By autoradiography of high-voltage electropherograms after partial acid hydrolysis of the phosphorylated rat liver and kidney pyruvate kinases type L, identical results were obtained. The affinity for phosphoenolpyruvate was found to be decreased by phosphorylation of the enzyme with a change in the apparent Km from 0.15 mM to 0.35 mM. After incubation of the phosphorylated kidney pyruvate kinase with phosphatase the phosphoenolpyruvate saturation curve was found to be identical to that for the unphosphorylated enzyme. Thus, the activity of the rat kidney pyruvate kinase type L is with all probability regulated by a reversible phosphorylation-dephosphorylation reaction, thereby indicating that hormonal regulation of gluconeogenesis via cyclic AMP may be of importance in the renal cortex.  相似文献   

14.
In a previous report on the ontogeny of the ovarian adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase activity during prepubertal development of the rat, we concluded that the 4-fold decline in cAMP-dependent protein kinase activity observed in ovaries of 21- to 23-day-old rats was due to the presence of a heat-labile inhibitor in the ovarian extracts (Hunzicker-Dunn et al., 1984). We developed an assay for this ovarian kinase inhibitor activity that was based on the observation that ovarian cytosol added to an exogenous catalytic subunit of cAMP-dependent protein kinase caused a time-dependent and ovarian cytosol protein concentration-dependent inhibition of exogenous catalytic subunit phosphotransferase activity. The present studies were conducted to evaluate the basis for this catalytic subunit inhibitor present in soluble rat ovarian extracts of prepubertal-aged rats. This inhibitor activity was absent from cytosol extracts of rat corpora lutea, rat liver, rabbit follicles, and rabbit corpora lutea. Inhibitor activity present in rat ovarian cytosol was not attributable to insufficient levels of the phosphorylation substrate Kemptide. Inhibitor activity was also not related to the presence of the large amount of catalytic subunit-free regulatory subunit of the cAMP-dependent protein kinase present in ovarian extracts of late juvenile-aged rats. Inhibitor activity, however, did correlate with an endogenous adenosine triphosphatase (ATPase) activity that reduced assay ATP concentrations below levels needed to accurately measure phosphotransferase activity, despite the presence of sodium fluoride (an ATPase inhibitor) and ATP concentrations 5- to 15-fold greater than the Km of the kinase for ATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Partial hepatectomy (HPX), which proliferatively activates the remaining liver cells, triggered two transient prereplicative surges in the total activities of cytoplasmic types I and II cyclic AMP-dependent protein kinase holoenzymes, and of nuclear catalytic subunits from cyclic AMP-dependent protein kinases. It also induced a transient prereplicative increase in the activities of a nuclear Ca2+-calmodulin-stimulable, protamine-phosphorylating protein kinase, and a nuclear poly(L-lysine)-phosphorylating, 105 kDa protein kinase. Thyroparathyroidectomy (TPTX) delayed and reduced the first surge and completely eliminated the second surge of both of the cytoplasmic cyclic AMP-dependent protein kinases, reduced the rises in the activity of nuclear catalytic subunits, and completely eliminated the surge of the Ca2+-calmodulin-stimulable protein kinase, but did not affect the surge of the nuclear 105 kDa protein kinase. The impairment of the responses of the two cyclic AMP-dependent protein kinases to HPX in TPTX rats was not accompanied by a rise in the level of heat-stable inhibitor of cyclic AMP-dependent protein kinase activity. One intraperitoneal injection of 1,25-dihydroxyvitamin D1 into TPTX rats immediately after HPX completely restored the post-HPX surges in the activity of type I cyclic AMP-dependent protein kinase, but the hormone, even in high doses, had little or not effect on the type II isoenzyme or the nuclear Ca2+-calmodulin-stimulable, protamine-phosphorylating enzyme.  相似文献   

16.
The crude protein kinase modulator preparations obtained from several rat tissues (aorta, brain, heart, liver, lung, skeletal muscle, small intestine and testis) were separated into their stimulatory and inhibitory modulator components by Sephadex G-100 gel filtration. The isolated stimulatory modulator augmented the activity of guanosine 3′:5′-monophosphate-dependent protein kinase of both mammalian and arthropod origins; it had no effect, however, on the activity of adenosine 3′:5′-monophosphate-dependent protein kinase. The isolated inhibitory modulator, on the other hand, depressed the activity of cyclic AMP-dependent protein kinase; it was without effect on the activity of cyclic GMP-dependent protein kinase. The present findings indicate that in the mammal, apparently in contrast to the arthropoda, separate proteins are responsible for the stimulatory and the inhibitory activities of protein kinase modulator, and that the two classes of cyclic nucleotide-dependent protein kinases are regulated in an opposing manner by these two types of modulators.  相似文献   

17.
New evidence is provided that rat liver choline kinase exists in several distinct forms (choline kinases I, II and III) which differ in isoelectric point, molecular size and antigenicity against anti-rat kidney choline kinase IgG. Remarkable and selective induction of the choline kinase II and choline kinase III forms of choline kinase was caused similarly by the administration of polycyclic aromatic hydrocarbon carcinogen, 3-methylcholanthrene or hepatotoxic carbon tetrachloride (CCl4). The immunochemical approach further indicated that the elevation in the activity of choline kinase in the 3-methylcholanthrene- or CCl4-treated rat liver was not accompanied by a parallel increase in the amount of choline kinase II enzyme protein, compatible with the induction of either a small amount of new enzyme protein(s) with very high specific activity or another enzyme which might catalyze post-translational modification of choline kinase.  相似文献   

18.
Two different phosphofructokinase-phosphorylating protein kinases were separated from extracts of Ascaris suum muscle by chromatography on DEAE-Fractogel. They were tentatively designated phosphofructokinase kinase I and phosphofructokinase kinase II. Phosphofructokinase kinase I eluted from the chromatography column at an ionic strength of 0.07 and contained about 25% of the phosphofructokinase-phosphorylating activity assayed in crude extracts. The protein kinase activity was not stimulated by the addition of either cAMP or cGMP. It was inhibited by the heat-stable protein kinase inhibitory protein from rabbit muscle (Walsh inhibitor), by the regulatory subunit of cAMP-dependent protein kinase from beef heart, and by the cAMP-binding protein from Ascaris muscle. These properties suggest that phosphofructokinase kinase I is homologous to the catalytic subunit of cAMP-dependent protein kinases from mammals. This assumption is supported by the estimation of the Mr of 40,000 for the purified phosphofructokinase kinase I under denaturing conditions and by the fact that the presence of cAMP eliminated the inhibition by the cAMP binding proteins. The isoelectric point of the enzyme was 8.7. Phosphofructokinase kinase II was eluted from the DEAE-Fractogel column at an ionic strength of 0.16 and contained approximately 75% of the phosphofructokinase kinase activity measured in the extracts. The molecular and kinetic properties were significantly different from those of phosphofructokinase kinase I. The enzyme was not inhibited by the heat-stable inhibitor protein nor by cAMP-binding proteins. The Mr of the native enzyme was estimated as 220,000 by molecular sieve chromatography. The isoelectric point of the enzyme was pH 5.45.  相似文献   

19.
Nimmo GA  Wilkins MB  Nimmo HG 《Planta》2001,213(2):250-257
The activity of phosphoenolpyruvate carboxylase (PEPCase) kinase in leaf extracts increased markedly on dilution. This was shown to be caused by the presence of a protein that inhibits the kinase. The inhibitor protein was separated from the kinase and purified partially. It inhibited the kinase reversibly, presumably by a direct interaction; it was neither a protease nor a protein phosphatase. The amounts of kinase and inhibitor in leaves were estimated following separation by hydrophobic chromatography. The amount of inhibitor in the crassulacean acid metabolism plant Kalanchoe fedtschenkoi Hamet et Perrier was sufficient to inhibit the basal level of kinase activity present during the light period and the early stages of the dark period. Similarly, the amount of inhibitor in the C4 plant Zea mays L. was sufficient to inhibit the low amount of kinase activity present in the dark and at moderate light intensity. Analogous to the role of the protein inhibitor of mammalian cyclic AMP-dependent protein kinase, the function of the PEPCase kinase inhibitor may be to inhibit the basal level of kinase present in conditions under which rapid flux through PEPCase is not required.  相似文献   

20.
The rat cerebellum contains a significant amount of cGMP-dependent protein kinase, cAMP-dependent and cyclic nucleotide-independent protein kinases, and a large concentration of protein kinase inhibitors. These inhibitors are thermostable proteins which can be separated by gel chromatography into two molecular forms: the type 1 and type 2 inhibitors of protein kinase (14). The type 1 inhibitor blocks the rat cerebellar cAMP-dependent protein kinase activity while the type 2 inhibitor blocks the cGMP-dependent protein kinase, the cAMP-dependent protein kinase, and the cyclic nucleotide-independent protein kinases. The activity of the type 2 inhibitor increased or decreased in opposite direction to changes of cerebellar cGMP content generated by injection of 10 mg/kg harmaline or 2.5 mg diazepam. No changes of type 1 inhibitor were observed under these conditions. The drug-induced shift of type 2 inhibitor of protein kinase was not mediated by changes in protein synthesis because it persisted after pretreatment with cycloheximide. These results are compatible with the hypothesis that cGMP modulates phosphorylation in cerebellum by changing the relationship between cGMP-dependent protein kinase and type 2 inhibitor content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号