共查询到20条相似文献,搜索用时 15 毫秒
1.
Main conclusion
MGDG leads to a dimerization of isolated, monomeric PSII core complexes. SQDG and PG induce a detachment of CP43 from the PSII core, thereby disturbing the intrinsic PSII electron transport. The influence of the four thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure and function of isolated monomeric photosystem (PS) II core complexes was investigated. Incubation with the negatively charged lipids SQDG and PG led to a loss of the long-wavelength 77 K fluorescence emission at 693 nm that is associated with the inner antenna proteins. The neutral galactolipids DGDG and MGDG had no or only minor effects on the fluorescence emission spectra of the PSII core complexes, respectively. Pigment analysis, absorption and 77 K fluorescence excitation spectroscopy showed that incubation with SQDG and PG led to an exposure of chlorophyll molecules to the surrounding medium followed by conversion to pheophytin under acidic conditions. Size-exclusion chromatography and polypeptide analysis corroborated the findings of the spectroscopic measurements and pigment analysis. They showed that the negatively charged lipid SQDG led to a dissociation of the inner antenna protein CP43 and the 27- and 25-kDa apoproteins of the light-harvesting complex II, that were also associated with a part of the PSII core complexes used in the present study. Incubation of PSII core complexes with MGDG, on the other hand, induced an almost complete dimerization of the monomeric PSII. Measurements of the fast PSII fluorescence induction demonstrated that MGDG and DGDG only had a minor influence on the reduction kinetics of plastoquinone QA and the artificial PSII electron acceptor 2,5-dimethyl-p-benzoquinone (DMBQ). SQDG and, to a lesser extent, PG perturbed the intrinsic PSII electron transport significantly. 相似文献2.
3.
A photosystem II core complex was purified with high yield from spinach by solubilization with beta-dodecylmaltoside. The complex consisted of polypeptides with molecular mass 47, 43, 34, 31, 9 and 4 kDa and some minor components, as detected by silver-staining of polyacrylamide gels. There was no indication for the chlorophyll-a/b-binding, light-harvesting complex polypeptides. The core complex revealed electron-transfer activity (1,5-diphenylcarbazide----2,6-dichloroindophenol) of about 30 mumol reduced 2,6-dichloroindophenol/mg chlorophyll/h. The structural integrity was analyzed by electron microscopy. The detergent-solubilized protein complex has the shape of a triangular disk with a maximum diameter of 13 nm and a maximum height of 6.8 nm. The shape of this core complex differs considerably from that of cyanobacterial photosystem II membrane fragments, which are elongated particles. The structural differences between both the complexes of higher plants and cyanobacteria are discussed with special emphasis on their association with the antenna apparatus in the photosynthetic membranes. 相似文献
4.
Eckardt NA 《The Plant cell》2001,13(6):1245-1248
5.
The latest crystallographic model of the cyanobacterial photosystem II (PS II) core complex added one transmembrane low molecular weight (LMW) component to the previous model, suggesting the presence of an unknown transmembrane LMW component in PS II. We have investigated the polypeptide composition in highly purified intact PS II core complexes from Thermosynechococcus elongatus, the species which yielded the PS II crystallographic models described above, to identify the unknown component. Using an electrophoresis system specialized for separation of LMW hydrophobic proteins, a novel protein of ∼ 5 kDa was identified as a PS II component. Its N-terminal amino acid sequence was identical to that of Ycf12. The corresponding gene is known as one of the ycf (hypothetical chloroplast reading frame) genes, ycf12, and is widely conserved in chloroplast and cyanobacterial genomes. Nonetheless, the localization and function of the gene product have never been assigned. Our finding shows, for the first time, that ycf12 is actually expressed as a component of the PS II complex in the cell, revealing that a previously unidentified transmembrane protein exists in the PS II core complex. 相似文献
6.
Ycf12 is a core subunit in the photosystem II complex 总被引:1,自引:0,他引:1
Kashino Y Takahashi T Inoue-Kashino N Ban A Ikeda Y Satoh K Sugiura M 《Biochimica et biophysica acta》2007,1767(11):1269-1275
The latest crystallographic model of the cyanobacterial photosystem II (PS II) core complex added one transmembrane low molecular weight (LMW) component to the previous model, suggesting the presence of an unknown transmembrane LMW component in PS II. We have investigated the polypeptide composition in highly purified intact PS II core complexes from Thermosynechococcus elongatus, the species which yielded the PS II crystallographic models described above, to identify the unknown component. Using an electrophoresis system specialized for separation of LMW hydrophobic proteins, a novel protein of approximately 5 kDa was identified as a PS II component. Its N-terminal amino acid sequence was identical to that of Ycf12. The corresponding gene is known as one of the ycf (hypothetical chloroplast reading frame) genes, ycf12, and is widely conserved in chloroplast and cyanobacterial genomes. Nonetheless, the localization and function of the gene product have never been assigned. Our finding shows, for the first time, that ycf12 is actually expressed as a component of the PS II complex in the cell, revealing that a previously unidentified transmembrane protein exists in the PS II core complex. 相似文献
7.
Photosynthetic gas exchange, modulated chlorophyll fluorescence, rapid fluorescence induction kinetics, and the polyphasic fluorescence transients were used to evaluate PSII photochemistry in the halophyte Suaeda salsa exposed to a combination of high salinity (100-400 mM NaCl) and heat stress (35-47.5 degrees C, air temperature). CO(2) assimilation rate increased slightly with increasing salt concentration up to 300 mM NaCl and showed no decrease even at 400 mM NaCl. Salinity treatment showed neither effects on the maximal efficiency of PSII photochemistry (F(v)/F(m)), the rapid fluorescence induction kinetics, and the polyphasic fluorescence transients in dark-adapted leaves, nor effects on the efficiency of excitation energy capture by open PSII reaction centres (F(v)'/F(m)') and the actual PSII effciency (Phi(PSII)), photochemical quenching (q(P)), and non-photochemical quenching (q(N)) in light-adapted leaves. The results indicate that high salinity had no effects on PSII photochemistry either in a dark-adapted state or in a light-adapted state. With increasing temperature, CO(2) assimilation rate decreased significantly and no net CO(2) assimilation was observed at 47.5 degrees C. Salinity treatment had no effect on the response of CO(2) assimilation to high temperature when temperature was below 40 degrees C. At 45 degrees C, CO(2) assimilation rate in control plants decreased to zero, but the salt-adapted plants still maintained some CO(2) assimilation capacity. On the other hand, the responses of PSII photochemistry to heat stress was modified by salinity treatment. When temperature was above 35 degrees C, the declines in F(v)/F(m), Phi(PSII), F(v)'/F(m)', and q(P) were smaller in salt-adapted leaves compared to control leaves. This increased thermostability was independent of the degree of salinity, since no significant changes in the above-described fluorescence parameters were observed among the plants treated with different concentrations of NaCl. During heat stress, a very clear K step as a specific indicator of damage to the O(2)-evolving complex in the polyphasic fluorescence transients appeared in control plants, but did not get pronounced in salt-adapted plants. In addition, a greater increase in the ratio (F(i)-F(o))/(F(p)-F(o)) which is an expression of the proportion of the Q(B)-non-reducing PSII centres was observed in control plants rather than in salt-adapted plants. The results suggest that the increased thermostability of PSII seems to be associated with the increased resistance of the O(2)-evolving complex and the reaction centres of PSII to high temperature. 相似文献
8.
Cyanobacterial cells have two autonomous internal membrane systems, plasma membrane and thylakoid membrane. In these oxygenic photosynthetic organisms the assembly of the large membrane protein complex photosystem II (PSII) is an intricate process that requires the recruitment of numerous protein subunits and cofactors involved in excitation and electron transfer processes. Precise control of this assembly process is necessary because electron transfer reactions in partially assembled PSII can lead to oxidative damage and degradation of the protein complex. In this communication we demonstrate that the activation of PSII electron transfer reactions in the cyanobacterium Synechocystis sp. PCC 6803 takes place sequentially. In this organism partially assembled PSII complexes can be detected in the plasma membrane. We have determined that such PSII complexes can undergo light-induced charge separation and contain a functional electron acceptor side but not an assembled donor side. In contrast, PSII complexes in thylakoid membrane are fully assembled and capable of multiple turnovers. We conclude that PSII reaction center cores assembled in the plasma membrane are photochemically competent and can catalyze single turnovers. We propose that upon transfer of such PSII core complexes to the thylakoid membrane, additional proteins are incorporated followed by binding and activation of various donor side cofactors. Such a stepwise process protects cyanobacterial cells from potentially harmful consequences of performing water oxidation in a partially assembled PSII complex before it reaches its final destination in the thylakoid membrane. 相似文献
9.
The iron-quinone electron-acceptor complex of photosystem II 总被引:1,自引:0,他引:1
The iron quinone-complex of the reaction centers of photosystem II and the purple non-sulphur photosynthetic bacteria contains two quinones, QA and QB connected in series with respect to electron transfer, and separated by a non-heme iron coordinated by amino acid residues. It is the site of inhibition of many of the common photosynthetic herbicides, which act by displacing QB from the center. The complex is responsible for reducing QB to QB H2 in two successive one-electron photo acts. OB H2 dissociates from the center, to be replaced by a new QB molecule and reduces the following membrane-bound electron-transfer complex (cytochrome b6/for b/c1) . The energetic, kinetics and mechanism of complex function are reviewed here. Recent crystallographic, spectroscopic and molecular biological evidence has produced a considerable quantity of structural information on this complex. These data have given a less formal and more molecular view of how the complex functions. They have also revealed fundamental differences between the photo system II and bacterial complexes, particularly with respect to the coordination of the iron and its chemistry. The comparative anatomy of the complexes is reviewed and its implications for function discussed. 相似文献
10.
Yun Zhang Nikki Magdaong Harry A. Frank James F. Rusling 《Photosynthesis research》2014,120(1-2):153-167
Direct protein film voltammetry (PFV) was used to investigate the redox properties of the photosystem II (PSII) core complex from spinach. The complex was isolated using an improved protocol not used previously for PFV. The PSII core complex had high oxygen-evolving capacity and was incorporated into thin lipid and polyion films. Three well-defined reversible pairs of reduction and oxidation voltammetry peaks were observed at 4 °C in the dark. Results were similar in both types of films, indicating that the environment of the PSII-bound cofactors was not influenced by film type. Based on comparison with various control samples including Mn-depleted PSII, peaks were assigned to chlorophyll a (Chl a) (E m = ?0.47 V, all vs. NHE, at pH 6), quinones (?0.12 V), and the manganese (Mn) cluster (E m = 0.18 V). PFV of purified iron heme protein cytochrome b-559 (Cyt b-559), a component of PSII, gave a partly reversible peak pair at 0.004 V that did not have a potential similar to any peaks observed from the intact PSII core complex. The closest peak in PSII to 0.004 V is the 0.18 V peak that was found to be associated with a two-electron process, and thus is inconsistent with iron heme protein voltammetry. The ?0.47 V peak had a peak potential and peak potential-pH dependence similar to that found for purified Chl a incorporated into DMPC films. The midpoint potentials reported here may differ to various extents from previously reported redox titration data due to the influence of electrode double-layer effects. Heterogeneous electron transfer (hET) rate constants were estimated by theoretical fitting and digital simulations for the ?0.47 and 0.18 V peaks. Data for the Chl a peaks were best fit to a one-electron model, while the peak assigned to the Mn cluster was best fit by a two-electron/one-proton model. 相似文献
11.
Polarization-modulated infrared spectroscopy and x-ray reflectivity of photosystem II core complex at the gas-water interface.
下载免费PDF全文

The state of photosystem II core complex (PS II CC) in monolayer at the gas-water interface was investigated using in situ polarization-modulated infrared reflection absorption spectroscopy and x-ray reflectivity techniques. Two approaches for preparing and manipulating the monolayers were examined and compared. In the first, PS II CC was compressed immediately after spreading at an initial surface pressure of 5.7 mN/m, whereas in the second, the monolayer was incubated for 30 min at an initial surface pressure of 0.6 mN/m before compression. In the first approach, the protein complex maintained its native alpha-helical conformation upon compression, and the secondary structure of PS II CC was found to be stable for 2 h. The second approach resulted in films showing stable surface pressure below 30 mN/m and the presence of large amounts of beta-sheets, which indicated denaturation of PS II CC. Above 30 mN/m, those films suffered surface pressure instability, which had to be compensated by continuous compression. This instability was correlated with the formation of new alpha-helices in the film. Measurements at 4 degreesC strongly reduced denaturation of PS II CC. The x-ray reflectivity studies indicated that the spread film consists of a single protein layer at the gas-water interface. Altogether, this study provides direct structural and molecular information on membrane proteins when spread in monolayers at the gas-water interface. 相似文献
12.
Here we present cryoelectron crystallographic analysis of an isolated dimeric oxygen-evolving complex of photosystem II (at a resolution of approximately 0.9 nm), revealing that the D1-D2 reaction center (RC) proteins are centrally located between the chlorophyll-binding proteins, CP43 and CP47. This conclusion supports the hypothesis that photosystems I and II have similar structural features and share a common evolutionary origin. Additional density connecting the two halves of the dimer, which was not observed in a recently described CP47-RC complex that did not include CP43, may be attributed to the small subunits that are involved in regulating secondary electron transfer, such as PsbH. These subunits are possibly also required for stabilization of the dimeric photosystem II complex. This complex, containing at least 29 transmembrane helices in its asymmetric unit, represents one of the largest membrane protein complexes studied at this resolution. 相似文献
13.
14.
Analyses of CO2 exchange and chlorophyll fluorescence were carried out to
assess photosynthetic performance during senescence of maize leaves.
Senescent leaves displayed a significant decrease in CO2 assimilatory
capacity accompanied by a decrease in stomatal conductance and an increase
in intercellular CO2 concentration. The analyses of fluorescence quenching
under steady-state photosynthesis showed that senescence resulted in an
increase in non-photochemical quenching and a decrease in photo-chemical
quenching. It also resulted in a decrease in the efficiency of excitation
energy capture by open PSII reaction centres and the quantum yield of PSII
electron transport, but had very little effect on the maximal efficiency of
PSII photochemistry. The results determined from the fast fluorescence
induction kinetics indicated an increase in the proportion of
QB-non-reducing PSII reaction centres and a decrease in the rate of QA
reduction in senescent leaves. Theoretical analyses of fluorescence
parameters under steady-state photosynthesis suggest that the increase in
the non-photochemical quenching was due to an increase in the rate constant
to thermal dissipation of excitation energy by PSII and that the decrease
in the quantum yield of PSII electron transport was associated with a
decrease in the rate constant of PSII photochemistry. Based on these
results, it is suggested that the decrease in the quantum yield of PSII
electron transport in senescent leaves was down-regulated by an increase in
the proportion of QB-non-reducing PSII reaction centres and in the
non-photochemical quenching. The photosynthetic electron transport would
thus match the decreased demand for ATP and NADPH in carbon assimilation
which was inhibited significantly in senescent leaves.Key words:
Chlorophyll fluorescence, gas exchange, maize (Zea
mays L.), photochemical and non-photochemical quenching,
photosystem II photochemistry.
相似文献
15.
Photosystem II catalyzes the oxidation of water and the reduction of plastoquinone. The active site cycles among five oxidation states, which are called the S(n) states. PSII purification procedures include the use of the cosolvents, sucrose and/or glycerol, to stabilize water splitting activity and for cryoprotection. In this study, the effects of sucrose and glycerol on PSII were investigated. Sucrose addition was observed to stimulate the steady-state rate of oxygen evolution in the range from 0 to 1.35 M. Glycerol addition was observed to stimulate oxygen evolution in the range from 0 to 30%. Both cosolvents were observed to be inhibitory at higher concentrations. Sucrose addition was shown to have no effect on the rate of Q(A)(-) oxidation or on the K(M) for exogenous acceptor. PSII was then treated to remove extrinsic proteins. In these samples, sucrose addition stimulated activity, but glycerol addition was inhibitory at concentrations higher than approximately 0.5 M. This inhibitory effect of glycerol at relatively low concentrations is attributed to glycerol binding to the active site, when extrinsic subunits are not present. Reaction induced FTIR spectra, associated with the S(1) to S(2) transition of the water-oxidizing complex, exhibited significant differences throughout the 1,800-1,200 cm(-1) region, when glycerol- and sucrose-containing samples were compared. These measurements suggest a cosolvent-induced shift in the pK(A) of an aspartic or glutamic acid side chain, as well as structural changes at the active site. These structural alterations are attributed to a change in preferential hydration of the oxygen-evolving complex. 相似文献
16.
Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants 总被引:18,自引:1,他引:18
Modulated chlorophyll fluorescence, rapid fluorescence induction kinetics
and the polyphasic fluorescence transients (OJIP) were used to evaluate
PSII photochemistry in wheat plants exposed to water stress and/or heat
stress (25-45C). Water stress showed no
effects on the maximal quantum yield of PSII photochemistry
(Fv/Fm), the rapid fluorescence
induction kinetics, and the polyphasic fluorescence transients in
dark-adapted leaves, indicating that water stress had no effects on the
primary photochemistry of PSII. However, in light-adapted leaves, water
stress reduced the efficiency of excitation energycapture by open PSII
reaction centres (F'v/F'm) and
the quantum yield of PSII electron transport (PSII), increased
the non-photochemical quenching (qN) and showed no effects on the
photochemical quenching (qP). This suggests that water stress modified the
PSII photochemistry in the light-adapted leaves and such modifications may
be a mechanism to down-regulate the photosynthetic electron transport to
match a decreased CO2 assimilation. In addition, water stress also modified
the responses of PSII to heat stress. When temperature was above 35C, thermostability of PSII was strongly enhanced in
water-stressed leaves, which was reflected in a less decrease in
Fv/Fm, qP,
F'v/F'm, and PSII in
water-stressed leaves than in well-watered leaves. There were no
significant variations in the above fluorescence parameters between
moderately and severely water-stressed plants, indicating that the moderate
water-stressed plants, indicating that the moderate water stress treatment
caused the same effects on thermostability of PSII as the severe treatment.
It was found that increased thermostability of PSII may be associated with
an improvement of resistance of the O2-evolving complex and the reaction
centres in water-stressed plants to high temperature.Key
words: Chlorophyll fluorescence, heat stress, photosystem II
photochemistry, water stress, wheat (Tritium aestivum
L.).
相似文献
17.
Charge separation and energy transfer in the photosystem II core complex studied by femtosecond midinfrared spectroscopy 总被引:1,自引:0,他引:1
下载免费PDF全文

Pawlowicz NP Groot ML van Stokkum IH Breton J van Grondelle R 《Biophysical journal》2007,93(8):2732-2742
The core of photosystem II (PSII) of green plants contains the reaction center (RC) proteins D1D2-cytb559 and two core antennas CP43 and CP47. We have used time-resolved visible pump/midinfrared probe spectroscopy in the region between 1600 and 1800 cm(-1) to study the energy transfer and charge separation events within PSII cores. The absorption difference spectra in the region of the keto and ester chlorophyll modes show spectral evolution with time constants of 3 ps, 27 ps, 200 ps, and 2 ns. Comparison of infrared (IR) difference spectra obtained for the isolated antennas CP43 and CP47 and the D1D2-RC with those measured for the PSII core allowed us to identify the features specific for each of the PSII core components. From the presence of the CP43 and CP47 specific features in the spectra up to time delays of 20-30 ps, we conclude that the main part of the energy transfer from the antennas to the RC occurs on this timescale. Direct excitation of the pigments in the RC evolution associated difference spectra to radical pair formation of PD1+PheoD1- on the same timescale as multi-excitation annihilation and excited state equilibration within the antennas CP43 and CP47, which occur within approximately 1-3 ps. The formation of the earlier radical pair ChlD1+PheoD1-, as identified in isolated D1D2 complexes with time-resolved mid-IR spectroscopy is not observed in the current data, probably because of its relatively low concentration. Relaxation of the state PD1+PheoD1-, caused by a drop in free energy, occurs in 200 ps in closed cores. We conclude that the kinetic model proposed earlier for the energy and electron transfer dynamics within the D1D2-RC, plus two slowly energy-transferring antennas C43 and CP47 explain the complex excited state and charge separation dynamics in the PSII core very well. We further show that the time-resolved IR-difference spectrum of PD1+PheoD1- as observed in PSII cores is virtually identical to that observed in the isolated D1D2-RC complex of PSII, demonstrating that the local structure of the primary reactants has remained intact in the isolated D1D2 complex. 相似文献
18.
The COOH-termini of the 32 kDa D1 and 44 kDa CPa-2 were determined by protein sequencing of peptides from trypsinized photosystem II core complexes. COOH-terminal fragments were isolated by affinity chromatography using anhydrotrypsin-agarose. One peptide had a sequence corresponding to the segment from Asn at position 335 to Ala at position 344 of the sequence deduced from the psbA gene coding for D1. Nine amino acids may be cleaved from the COOH-terminus of pre-D1 during maturation. In contrast, CPa-2 was not modified at its COOH-terminus. 相似文献
19.
The effect of chromium (Cr) on photosystem II (PSII) electron transport and the change of proteins content within PSII complex were investigated. When Lemna gibba was exposed to Cr during 96 h, growth inhibition was found to be associated with an alteration of the PSII electron transport at both PSII oxidizing and reducing sides. Investigation of fluorescence yields at transients K, J, I, and P suggested for Cr inhibitory effect to be located at the oxygen-evolving complex and QA reduction. Those Cr-inhibitory effects were related to the change of the turnover of PSII D1 protein and the alteration of 24 and 33 kDa proteins of the oxygen-evolving complex. The inhibition of the PSII electron transport and the formation of reactive oxygen species induced by Cr were highly correlated with the decrease in the content of D1 protein and the amount of 24 and 33 kDa proteins. Therefore, functional alteration of PSII activity by Cr was closely related with the structural change within PSII complex. 相似文献
20.
PsbK is encoded by the chloroplast psbK gene and is one of the small polypeptides of photosystem II (PSII). This polypeptide is required for accumulation of the PSII complex. In the present study, we generated an antibody against recombinant mature PsbK of Chlamydomonas and used it in Western blots to localize PsbK in the PSII core complex. PsbK was found in the thylakoid membranes, and purification of the PSII core complex from detergent-solubilized thylakoid membranes showed that PsbK is tightly associated with the PSII core complex. We used potassium thiocyanate to separate PSII into subcore complexes, including the D1/D2/cytochrome b559 reaction center complex, CP47, and CP43, and we found that PsbK co-purifies with one of the core antenna complexes, CP43, during ion exchange chromatography. Subsequent gel filtration chromatography of the purified CP43 confirmed that PsbK is tightly associated with CP43. Steady-state levels of PsbK were also determined in Chlamydomonas mutants expressing various levels of PSII. Quantitative Western blotting revealed that the levels of PsbK in these mutants are approximately equal to those of CP43, suggesting that PsbK is stable only when associated with CP43 in the chloroplast. Together, our results indicate that PsbK is an integral part of the PSII complex and may participate in the assembly and stability of the PSII complex. 相似文献