首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
8-Azidoadenine and 8-azidoadenosine, two photoactivatable derivatives of adenine and adenosine, are competitive inhibitors of diphtheria toxin of similar potency with respect to their parent compounds. On irradiation, the two tritium-labeled photoactivatable azidoadenines bind covalently and specifically to an enzymic fragment of diphtheria toxin that is known to bind to NAD. This photolabeling is protected by the enzyme substrate NAD. The radiolabeled protein was fragmented, and the radioactive fragments were sequenced. Tyr-65 is labeled specifically by both photoreagents, and its labeling was reduced strongly when NAD was present during irradiation. Labeling is also reduced strongly by adenine, adenosine, and nicotinamide. These results suggest that Tyr-65 is at the NAD binding site of diphtheria toxin and that the competitive inhibitors adenine, adenosine, and nicotinamide bind to the same portion of the catalytic center of the toxin.  相似文献   

2.
Plasma membrane vesicles were isolated from a subline of L929 mouse fibroblasts grown on defined medium in the absence of serum. These vesicles were not significantly contaminated by mitochondria or endoplasmic reticulum. The isolation procedure, a modification of that originally developed by McKeel and Jarett (McKeel, D.W., and Jarett, L. (1970) J. Cell Biol. 44, 417-432) employs mechanical homogenization in isotonic medium followed by differential centrifugation. The resultant plasma membrane vesicles take up radioactivity when exposed to uniformly labeled nucleosides. Two subfractions of the plasma membrane were isolated, distinguished by their differing activity of 5'-nucleotidase and (Na+,K+)-stimulated ATPase, two well known plasma membrane enzyme markers. Uptake of nucleoside radioactivity was extensively studied in one subfraction; it was linear with time and membrane concentration over ranges used for the studies. Apparent Km values for uptake of radioactivity from adenosine, inosine, and uridine were 7.1 +/- 26 muM, respectively. Uptake of radioactivity from all three nucleosides exhibits a broad pH optimum from pH 7 to pH 9, but falls off rapidly at lower pH. N-Ethylmaleimide was an effective inhibitor of uptake of radioactivity from all three nucleosides; uptake of radioactivity from uridine is more sensitive than uptake of radioactivity from the purine nucleosides. Adenosine inhibited uptake of radioactivity from inosine more than from uridine. Inosine inhibited the uptake of radioactivity from adenosine, but uridine did not. Caffeine and 6-methylaminopurine riboside (6-N-methyladenosine differentially inhibit uptake of radioactivity from adenosine and inosine, and thus the vesicles apparently possess seperate transport systems for uptake of radioactivity from purine nucleosides and from uridine.  相似文献   

3.
Plasma membrane vesicles prepared from adipocytes incubated with insulin exhibited accelerated D-glucose transport activity characteristic of insulin action on intact fat cells. Both control and insulin-stimulated D-glucose transport activities were inhibited by cytochalasin B and thiol reagents. Extraction of plasma membranes with dimethylmaleic anhydride eluted 80% of the protein from plasma membrane vesicles. The two major glycoprotein bands (94,000 and 78,000 daltons) and small amounts of a 56,000-dalton band were retained in dodecyl sulfate gels of the extracted membranes. Both control and insulin-activated D-glucose transport activities were retained by plasma membrane vesicles extracted with dimethylmaleic anhydride. Cytochalasin B binding activity was also retained by extracted membrane vescles and D-glucose uptake into extracted vescles derived from untreated or insulin-treated fat cells was inhibited by cytochalasin B. These results suggest that the modification of the adipocyte hexose transport system elicited by insulin action is not altered by a major purification step which involves quantitative extraction of extrinsic membrane proteins.  相似文献   

4.
The uptake of [32P]KH2PO4 by Percoll-purified human fibroblast lysosomes at pH 7.0 was investigated to determine if lysosomes contain a transport system recognizing phosphate. Lysosomal phosphate uptake was linear for the first 2 min, attained a steady state by 8-10 min at 37 degrees C, and was not Na+ or K+ dependent. Upon entering lysosomes, [32P]phosphate was rapidly metabolized to trichloroacetic acid-soluble and trichloroacetic acid-insoluble products. After 1-min incubations, 50% of the radioactivity recovered from lysosomes was in the form of inorganic phosphate; and after a 2.5-min incubation, 27% of the radioactivity was recovered as inorganic phosphate. When lysosomes are loaded with radioactivity by incubation with 0.03 mM [32P]KH2PO4 for 25 min and then washed at 4 degrees C, lysosomes fail to release the accumulated radioactivity during a subsequent incubation at 37 degrees C. Lysosomal phosphate uptake gave linear Arrhenius plots (Q10 = 1.8) and was inversely proportional to medium osmolarity. Phosphate uptake was maximal at pH 5-6, half-maximal at pH 7.1, with little transport activity at pH greater than 8, suggesting that the transport system recognizes the monobasic form of phosphate. Lysosomal phosphate uptake is saturable, displaying a Km of 5 microM at pH 7.0 and 37 degrees C. High specificity for phosphate is demonstrated since large concentrations of Na2SO4, NaHCO3, KCl, NaCl, 5'-AMP, or the anion transport inhibitor, 4,4'-diisothiocyanatostilbene-2,2'-disulfonate, have no effect on lysosomal phosphate transport. In contrast, the phosphate analog, arsenate, strongly inhibits lysosomal phosphate uptake in a competitive manner with a Ki of 7 microM. Pyridoxal phosphate, CTP, adenosine 5'-(beta,gamma-imino)triphosphate (AMP-PNP), and glucose 6-phosphate were found to be noncompetitive inhibitors of lysosomal phosphate uptake displaying Ki values of 80-250 microM. When lysosomes are incubated with [gamma-32P]ATP, the lysosomal membrane ATPase hydrolyzes the ATP to form inorganic phosphate which then enters lysosomes by this lysosomal phosphate transport route.  相似文献   

5.
A Y Woody  C R Vader  R W Woody  B E Haley 《Biochemistry》1984,23(13):2843-2848
A photoaffinity analogue of adenosine 5'-triphosphate (ATP), 8-azidoadenosine 5'-triphosphate (8-N3ATP), has been used to elucidate the role of the various subunits involved in forming the active site of Escherichia coli DNA-dependent RNA polymerase. 8-N3ATP was found to be a competitive inhibitor of the enzyme with respect to the incorporation of ATP with Ki = 42 microM, while uridine 5'-triphosphate (UTP) incorporation was not affected. UV irradiation of the reaction mixture containing RNA polymerase and [gamma-32P]-8-N3ATP induced covalent incorporation of radioactive label into the enzyme. Analysis by gel filtration and nitrocellulose filter binding indicated specific binding. Subunit analysis by sodium dodecyl sulfate and sodium tetradecyl sulfate gel electrophoresis and autoradiography of the labeled enzyme showed that the major incorporation of radioactive label was in beta' and sigma, with minor incorporation in beta and alpha. The same pattern was observed in both the presence and absence of poly[d(A-T)] and poly[d(A-T)] plus ApU. Incorporation of radioactive label in all bands was significantly reduced by 100-150 microM ATP, while 100-200 microM UTP did not show a noticeable effect. Our results indicate major involvement of the beta' and sigma subunits in the active site of RNA polymerase. The observation of a small extent of labeling of the beta and alpha subunits, which was prevented by saturating levels of ATP, suggests that these subunits are in close proximity to the catalytic site.  相似文献   

6.
An N-hydroxysuccinimide ester of [3H]methotrexate has been employed to covalently label a specific binding protein that resides in the plasma membrane of L1210 cells. Incorporation of radioactivity into this protein accounted for 55% of total cellular labeling, was half-maximal at a reagent concentration of 27 nM, and was blocked either by prior exposure to unlabeled reagent or by the addition of excess methotrexate. A role for this protein in methotrexate transport was supported by the observations that: (a) similar concentrations of reagent were required for both labeling of the binding protein and irreversible inhibition of transport; (b) the amount of labeled binding protein was comparable to observed levels of transport protein; (c) protection against labeling was afforded by thiamin pyrophosphate, a potent competitive inhibitor of methotrexate transport; and (d) labeling of the binding protein was not observed in a subline of L1210 cells that has a defect in the ability to transport methotrexate. The binding protein could be solubilized from the membrane by various ionic and non-ionic detergents and the covalent bond between the incorporated [3H]methotrexate and the protein was stable to a variety of conditions, including high concentrations of mercaptoethanol and hydroxylamine and extremes of pH. The labeled protein fractionated as a nearly symmetrical peak on Sephacryl S-300 and it appeared as a single band (Mr = 36,000) after electrophoresis in polyacrylamide gel containing sodium dodecyl sulfate.  相似文献   

7.
Methotrexate transport in L1210 cells is mediated by a carrier protein that can bind organic and inorganic phosphate compounds in addition to the various folate substrates. The photoaffinity labeling agent, 8-azidoadenosine 5'-monophosphate (8-azido-AMP), also interactis (Ki = 140 microM) with the receptor site for this transport system, and upon irradiation with ultraviolet light, irreversibly inhibits methotrexate uptake. Protection against this inactivation is afforded by either a substrate (methotrexate) or a competitive inhibitor (inorganic phosphate). The light-induced reaction proceeds rapidly (t1/2 = 2 min at 23 degrees C under the conditions described) and produces half-maximal reduction in the transport rate when the 8-azido-AMP concentration is 65 microM. complete photoinactivation of methotrexate transport could not be obtained from a single exposure to 8-azido-AMP (up to 1.0 mM), but it could be achieved by the repetitive illumination of cells in a fresh medium. The phosphate and folate/adenine transport systems of L1210 cells are not affected by irradiation in the presence of 8-azido-AMP.  相似文献   

8.
The influence of chemical modification of functional amino acid side-chains in proteins on the H(+)-dependent uptake system for orally active alpha-amino-beta-lactam antibiotics and small peptides was investigated in brush-border membrane vesicles from rabbit small intestine. Neither a modification of cysteine residues by HgCl2, NEM, DTNB or PHMB and of vicinal thiol groups by PAO nor a modification of disulfide bonds by DTT showed any inhibition on the uptake of cephalexin, a substrate of the intestinal peptide transporter. In contrast, the Na(+)-dependent uptake systems for D-glucose and L-alanine were greatly inhibited by the thiol-modifying agents. With reagents for hydroxyl groups, carboxyl groups or arginine the transport activity for beta-lactam antibiotics also remained unchanged, whereas the uptake of D-glucose and L-alanine was inhibited by the carboxyl specific reagent DCCD. A modification of tyrosine residues with N-acetylimidazole inhibited the peptide transport system and did not affect the uptake systems for D-glucose and L-alanine. The involvement of histidine residues in the transport of orally active alpha-amino-beta-lactam antibiotics and small peptides (Kramer, W. et al. (1988) Biochim. Biophys. Acta 943, 288-296) was further substantiated by photoaffinity labeling studies using a new photoreactive derivative of the orally active cephalosporin cephalexin, 3-[phenyl-4-3H]azidocephalexin, which still carries the alpha-amino group being essential for oral activity. 3-Azidocephalexin competitively inhibited the uptake of cephalexin into brush-border membrane vesicles. The photoaffinity labeling of the 127 kDa binding protein for beta-lactam antibiotics with this photoprobe was decreased by the presence of cephalexin, benzylpenicillin or dipeptides. A modification of histidine residues in brush-border membrane vesicles with DEP led to a decreased labeling of the putative peptide transporter of Mr 127,000 compared to controls. This indicates a decrease in the affinity of the peptide transporter for alpha-amino-beta-lactam antibiotics by modification of histidine residues. The data presented demonstrate an involvement of tyrosine and histidine residues in the transport of orally active alpha-amino-beta-lactam antibiotics across the enterocyte brush-border membrane.  相似文献   

9.
Bovine and equine erythrocytes have been studied by three different surface modification techniques to investigate the accessibility of the surface components to the external medium. Lactoperoxidase labeling of equine erythrocytes results in a significant labeling of only one membrane component, a 100 000-mol.wt polypeptide corresponding to the membrane-spanning Component III of human erythrocytes. The major sialoglycoprotein of the equine erythrocyte is not labeled. This is in contradistinction to the situation for human and bovine cells, where both components are labeled. The equine membrane sialoglycoprotein is also not markedly affected by pronase, chymotrypsin or trypsin treatment of whole cells under the treatment conditions used, although it can be cleaved by pronase in isolated membranes. Experiments with the isolated glycoprotein show that its cleavage by trypsin is quite selective, whereas cleavage by pronase and chymotrypsin is much more extensive. Labelling of bovine red cells by galactose oxidase treatment followed by reduction with 3H-labeled borohydride yields radioactivity in only one major peak, that corresponding to the glycoprotein. Pretreatment of the cells with neuraminidase causes a dramatic increase in the labeling. Equine erythrocytes do not show significant labeling by this technique unless a neuraminidase pretreatment has been performed. Then only the major glycoprotein is labeled. Thus the equine glycoprotein is apparently inaccessible to the cell surface by standard surface modification methods, although it is clearly a surface component. These experiments point out some of the limitations of surface labeling and proteolysis methods in probing the accessibility of membrane components. The results suggest that the apparent inaccessibility of the equine glycoprotein is due partially to its structure and partially to its localization in the membrane.  相似文献   

10.
The reactive intermediate produced upon photolysis of 8-azidoadenosine was studied by chemical trapping studies, laser flash photolysis with UV-vis and IR detection, and modern computational chemistry. It is concluded that photolysis of 8-azidoadenosine in aqueous solution releases the corresponding singlet nitrene which rapidly tautomerizes to form a closed adenosine diazaquinodimethane in less than 400 fs. A perbenzoylated derivative of 8-azidoadenosine cannot undergo this tautomerization, and instead, it fragments upon photolysis to form an opened adenosine diazaquinodimethane. The singlet nitrene is too short-lived to be observed and, thus, to relax to the lowest triplet state or to become covalently attached to targeted biological macromolecules. The pivotal closed adenosine diazaquinodimethane, the product of nitrene tautomerization, has a lifetime of ca. 1 min or longer in water and in HEPES buffer at ambient temperature. However, this intermediate reacts rapidly with good nucleophiles such as amines, thiols, and phenolates, and significantly more slowly with weak nucleophiles such as alcohols and water. On the basis of these studies, it is clear that the closed adenosine diazaquinodimethane, and not the singlet or triplet nitrene, is the pivotal reactive intermediate involved in photolabeling and cross-linking studies using the 8-azidoadenosine family of photoaffinity labeling reagents.  相似文献   

11.
32P-labeled photoaffinity analogs of bis(5'-adenosyl)-tetraphosphate and bis(5'-adenosyl)triphosphate which contain a single photoreactive 8-azidoadenosine group distal to the radiolabel have been synthesized from commercially available components using a combination of chemical and enzymatic procedures including a water-soluble carbodiimide. The method is simple, rapid, and produces yields of high specific activity products of around 60%. The analog of bis(5'-adenosyl)-tetraphosphate is very similar to the parent compound in its inhibition of rat liver adenosine kinase and its efficiency as a substrate for the bis(5'-nucleosidyl)tetraphosphate pyrophosphohydrolase from Artemia embryos. In the latter case, ATP and 8-azidoAMP are the preferred products. As would be expected, this analog is a much more effective photoprobe for both adenosine and adenylate kinases than the corresponding analog of bis(5'-adenosyl)triphosphate. Both compounds have been used to photoaffinity label crude extracts of Artemia, Vero cells, and Clostridium acetobutylicum and preferential specific labeling of different polypeptides by each analog has been shown. In extracts of C. acetobutylicum, the labeling of a polypeptide of Mr 48,500 by the bis(5'-adenosyl)tetraphosphate analog was totally dependent on the presence of Co2+ ions. These compounds should therefore prove valuable both for the active site labeling of purified binding proteins and for the detection and identification of new target proteins for these nucleotides.  相似文献   

12.
Glucocorticoids are known to rapidly inhibit glucose transport when added to isolated rat adipocytes. To determine whether this inhibition of transport persists following isolation of the plasma membranes, adipocytes were incubated in the absence or presence of a maximally inhibitory concentration of dexamethasone, a synthetic glucocorticoid, and plasma membrane vesicles were prepared. D-Glucose uptake into vesicles from steroid-treated cells was inhibited by an average of 40%. The ability of dexamethasone to inhibit transport depended upon pretreatment of cells with hormone prior to membrane isolation. Furthermore, the decreased rate of transport was prevented by the simultaneous addition to the cell of actinomycin D or cycloheximide with dexamethasone, indicating a requirement for RNA and protein synthesis. The effect of dexamethasone on glucose transport was further investigated using our recently developed cytochalasin B affinity-labeling protocol to identify the transporter on sodium dodecyl sulfate-polyacrylamide gels. A peak of radioactivity having Mr = 54,000 was identified which exhibited the properties expected for the glucose transporter, in that label incorporation was prevented by D-glucose and unlabeled cytochalasin B, but not by D-sorbitol or unlabeled cytochalasins A, D, or E. Dexamethasone was found to cause a significant (average 33%) decrease in the amount of labeled transporter in the plasma membrane which was prevented by the simultaneous addition of actinomycin D with dexamethasone to the cells. A similar percentage decrease was not found in a microsomal membrane fraction nor in a total cellular membrane fraction. These results suggest that glucocorticoids may decrease glucose transport in rat adipocytes by selectively decreasing the number of transporters in the plasma membrane.  相似文献   

13.
14.
E M Price  J H Freisheim 《Biochemistry》1987,26(15):4757-4763
A membrane-derived component of the methotrexate/one-carbon-reduced folate transport system in murine L1210 cells has been identified by using a photoaffinity analogue of methotrexate. The compound, a radioiodinated 4-azidosalicylyl derivative of the lysine analogue of methotrexate, is transported into murine L1210 cells in a temperature-dependent, sulfhydryl reagent inhibitable manner with a Kt of 506 +/- 79 nM and a Vmax of 17.9 +/- 4.2 pmol min-1 (mg of total cellular protein)-1. Uptake of the iodinated compound at 200 nM is inhibited by low amounts of methotrexate (I50 = 1.0 microM). The parent compounds of the iodinated photoprobe inhibit [3H]methotrexate uptake, with the uniodinated 4-azidosalicylyl derivative exhibiting a Ki of 66 +/- 21 nM. UV irradiation, at 4 degrees C, of a cell suspension that had been incubated with the probe results in the covalent modification of a 46K-48K protein. This can be demonstrated when the plasma membranes from the labeled cells are analyzed via sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Labeling of this protein occurs half-maximally at a reagent concentration that correlates with the Kt for transport of the iodinated compound. Protection against labeling of this protein by increasing amounts of methotrexate parallels the concentration dependence of inhibition of photoprobe uptake by methotrexate. In addition, no labeling occurs when a cell line that has a defective methotrexate transport system is similarly treated. Evidence that, in the absence of irradiation and at 37 degrees C, the iodinated probe is actually internalized is demonstrated by the labeling of two soluble proteins (Mr 38K and 21K) derived from the cell homogenate supernatant.  相似文献   

15.
The study examined the subcellular distribution of [3H]glucosamine-labeled glycoconjugates undergoing axonal transport in 100,000 x g soluble and two membranous subfractions of the garfish olfactory nerve. Analysis was made of intact glycoconjugates and of glycopeptides and glycosaminoglycans derived from these molecules by limit protease digestion. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed labeling of a variety of high-molecular-weight molecules with a lower molecular weight distribution in the soluble fraction than in the membranous fractions. Following protease digestion, nearly two-thirds of transported radioactivity in glycopeptides was recovered in the plasma membrane-enriched subfraction, with the remainder equally divided between soluble and higher density membrane fraction. Comparison of the distribution of glycopeptide radioactivity and chemically assayed hexosamine revealed transport labeling of a large variety of different-sized neutral and acidic glycopeptides in all subfractions. Transport labeling of most glycoprotein carbohydrate chains was in proportion of their hexosamine content. Transported glycosaminoglycan label was most heavily concentrated in the plasma membrane fraction, whereas hexosamine was most concentrated in the higher density membrane fraction. The labeling pattern suggested both transported and nontransported pools of these molecules. The specific glycosaminoglycans chondroitin sulfate and heparan sulfate were recovered in all subfractions, whereas hyaluronic acid was confined to the soluble fraction.  相似文献   

16.
The uptake of a photolabile derivative of the orally effective cephalosporin cephalexin, N-(4-azidobenzoyl)cephalexin, was investigated in brush-border membrane vesicles. The compound was taken up into the intravesicular space and inhibited the active uptake of cephalexin in a concentration-dependent manner. Therefore, this probe interacts with the transport system shared by alpha-aminocephalosporins and dipeptides. Photoaffinity labeling of brush-border membrane vesicles from rat small intestine with N-(4-azido[3,5-3H]benzoyl) derivatives of the cephalosporin cephalexin and the dipeptide glycyl-L-proline resulted in the covalent incorporation of radioactivity into membrane polypeptides with apparent molecular weights of 127,000, 100,000, 94,000 and 86,000, the polypeptide of molecular weight 127,000 being predominantly labeled. The specificity of labeling was demonstrated by a decrease in the labeling of the polypeptide of apparent molecular weight 127,000 in the presence of beta-lactam antibiotics and dipeptides, whereas glucose, taurocholate or amino acids had no effect on the labeling pattern. These data demonstrate an interaction of cephalosporins and dipeptides with a common membrane protein of molecular weight 127,000, which could be a component of the intestinal transport system(s) responsible for the uptake of orally effective cephalosporins and dipeptides.  相似文献   

17.
Summary Sulfo-N-succinimidyl derivatives of the long-chain fatty acids, oleic and myristic, were synthesized and covalently reacted with isolated rat adipocytes. The plasma membrane proteins labeled by these compounds and the effect of labeling on the transport of long-chain fatty acids were investigated. Sulfo-N-succinimidyl oleate (SSO) and myristate (SSM) inhibited the transport of fatty acids (by about 70%). Inhibition of fatty acid transport was not a result of alterations in cell integrity, as intracellular water volume was not changed. It did not reflect effects on fatty acid metabolism, since it was observed under conditions where greater than 90% of the fatty acid taken up was recovered in the free form. The inhibitory effect was specific to the fatty acid transport system, as the transport of glucose and the permeation of retinoic acid, a substance with structural similarities to long-chain fatty acids, were unaffected. Sulfosuccinimidyl oleate reacted exclusively with a plasma membrane protein with an apparent size of 85 kDa while sulfosuccinimidyl myristate also labeled a 75-kDa while sulfosuccinimidyl myristate also labeled a 75-kDa protein. These proteins were among the ones labeled by diisothiocyanodisulfonic acid (DIDS) which also inhibits fatty acid transport irreversibly. The data suggest that the 85-kDa protein, which is the only one labeled by all three inhibitors is involved in facilitating membrane permeation of long-chain fatty acids.  相似文献   

18.
Abstract— Proteins undergoing rapid axonal transport in the garfish olfactory nerve were examined by sodium dodecyl sulphate gel electrophoresis. The distribution of polypeptides and the extent of their labeling by transported molecules was determined in several nerve subfractions including: total particulate, total membrane, mitochondrial and two membrane subfractions rich in axolemma. The polypeptide composition of the various fractions was found to be relatively similar, with each showing a major protein with an estimated MW of 58,000. Specific differences in the concentrations of certain proteins were noted between fractions, including differences between the lower and higher density axolemma rich subfractions. Axonally transported radioactivity was predominantly localized among high molecular weight proteins, with all fractions, except mitochondrial pellet, displaying a major peak of radioactivity centered at 126,000-MW. Several major proteins including the 58,000-MW band were labeled by rapid transport to a much smaller extent. Certain labeled peaks were found to be concentrated in individual fractions, particularly a polypeptide (MW 35,000) more predominantly found in the lower density axolemma rich fraction.
Systemic labeling of the nerve is found to give a general distribution of radioactivity on gels, which is clearly different from the pattern obtained after axonal transport labeling.  相似文献   

19.
B E Haley 《Biochemistry》1975,14(17):3852-3857
To identify and investigate the cAMP binding sites of human red cell membranes a photoaffinity analog of cAMP, 8-azidoadenosine 3',5'-cyclic monophosphate (8-N3cAMP), has been synthesized. This analog activates cAMP-dependent protein kinase(s) in the red cell membrane. It exhibits tight, but reversible binding to the membranes which is competitive with cAMP. Photolysis of [32P]-8-N3cAMP with red cell membranes results in covalent incorporation of radioactive label onto two specific membrane proteins. This incorporation requires activating light and is reduced to background levels with addition of low levels of cAMP. Prephotolysis of 8-N3cAMP completely abolished its ability to photolabel membrane proteins. Both the reversible and photocatalyzed binding of 8-N3cAMP show saturation kinetics. The molecular weights of the two primarily labeled proteins are approximately 49,000 and 55,000. The differential effects of cAMP, ATP, and adenosine on the photocatalyzed incorporation of [32P]-8-N3cAMP onto these two proteins suggest that they have biochemically different properties. The potential usefulness of this compound for investigating various molecular aspects of cAMP action is discussed.  相似文献   

20.
Direct photoaffinity labeling of liver plasma membrane subfractions enriched in sinusoidal and canalicular membranes using [35S]adenosine 5'-O-(thiotriphosphate) ([35S]ATP gamma S) allows the identification of ATP-binding proteins in these domains. Comparative photoaffinity labeling with [35S]ATP gamma S and with the photolabile bile salt derivative (7,7-azo-3 alpha, 12 alpha-dihydroxy-5 beta-[3 beta-3H]-cholan-24-oyl-2'- aminoethanesulfonate followed by immunoprecipitation with a monoclonal antibody (Be 9.2) revealed the identity of the ATP-binding and the bile salt-binding canalicular membrane glycoprotein with the apparent Mr of 110,000 (gp110). The isoelectric point of this glycoprotein was 3.7. Transport of bile salt was studied in vesicles enriched in canalicular and sinusoidal liver membranes. Incubation of canalicular membrane vesicles with [3H] taurocholate in the presence of ATP resulted in an uptake of the bile salt into the vesicles which was sensitive to vanadate. ATP-dependent taurocholate transport was also observed in membrane vesicles from mutant rats deficient in the ATP-dependent transport of cysteinyl leukotrienes and related amphiphilic anions. Substrates of the P-glycoprotein (gp170), such as verapamil and doxorubicin, did not interfere with the ATP-dependent transport of taurocholate. Reconstitution of purified gp110 into liposomes resulted in an ATP-dependent uptake of [3H]taurocholate. These results demonstrate that gp110 functions as carrier in the ATP-dependent transport of bile salts from the hepatocyte into bile. This export carrier is distinct from hitherto characterized ATP-dependent transport systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号