首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined aspects of the second catalytic activity of alcohol dehydrogenase from horse liver (LADH), which involves an apparent dismutation of an aldehyde substrate into alcohol and acid in the presence of LADH and NAD. Using the substrate p-trifluoromethylbenzaldehyde, we have observed various bound complexes by 19F NMR in an effort to further characterize the mechanism of the reaction. The mechanism appears to involve the catalytic activity of LADH · NAD · aldehyde complex which reacts to form an enzyme · NADH · acid complex. The affinity of the acid product for LADH · NADH is weak and the acid product readily desorbs from the ternary complex. The resulting LADH · NADH can then react with a second molecule of aldehyde to form NAD and the corresponding alcohol. The result is the conversion of two molecules of aldehyde to one each of acid and alcohol, with LADH and NAD acting catalytically. This sequence of reactions can also explain the slow formation of acid product observed when alcohol and NAD are incubated with the enzyme.  相似文献   

2.
Acetone was found to form a dead-end ternary complex with horse liver alcohol dehydrogenase and oxidized nicotinamide adenine dinucleotide (NAD+) when the reactants were incubated for a long time at relatively high concentrations. The complex formation was demonstrated by measuring the increase in absorbance at 320 nm, the quenching of protein fluorescence, and the loss of enzyme activity. Since acetone is a substrate of liver alcohol dehydrogenase, and the presence of acetaldehyde or pyrazole prevents acetone from forming the dead-end complex with liver alcohol dehydrogenase and NAD+, the acetone molecule in the complex may be bound to the substrate binding site of liver alcohol dehydrogenase. The dissociation of the complex was demonstrated by prolonged dialysis or by addition of reduced nicotinamide adenine dinucleotide (NADH) and iso-butyramide. A modified nicotinamide adenine dinucleotide was obtained as a main product from the dead-end complex after dissociation of the complex or denaturation of the apoenzyme. The modified nicotinamide adenine dinucleotide was found to exhibit an absorption spectrum similar to that of NADH; however, it was not oxidizable by liver alcohol dehydrogenase in the presence of acetaldehyde and exhibited no fluorescence.  相似文献   

3.
Four isoenzymes of aldehyde dehydrogenase were partially purified from rat liver mitochondria by hydroxylapatite chromatography and gel filtration. While three forms display low affinity for acetaldehyde, the fourth is active at extremely low aldehyde concentrations (Km less than or equal to 2 microM) and allows the oxidation of the acetaldehyde formed by catalysis of alcohol dehydrogenase at pH 7.4. Different models of alcohol dehydrogenase have been examined by analysis of progress curves of ethanol oxidation obtained in the presence of low-km aldehyde dehydrogenase. According to the only acceptable model, when the acetaldehyde concentration is kept low by the action of aldehyde dehydrogenase, NADH no longer binds to alcohol dehydrogenase, but acetaldehyde still competes with ethanol for the active site of the enzyme. The seven kinetic parameters of the two enzymes (four for alcohol dehydrogenase and three for aldehyde dehydrogenase) and the equilibrium constant of the reaction catalyzed by alcohol dehydrogenase have been determined by applying a new fitting procedure here described.  相似文献   

4.
Recrystallized alcohol dehydrogenase from horse liver was found to oxidize 17-hydroxystearic acid into 17-oxostearic acid, the 17-L-enantiomer faster than the 17-D-enantiomer. Alone at high pH or in combination with aldehyde dehydrogenase, the alcohol dehydrogenase also catalyzed conversion of 18-hydroxystearic acid into 1, 18-octadecadioic acid and 5β-cholestane-3α,7α,12α,26-tetrol into 3α,7α,12α-trihydroxy-5β-cholestanoic acid. All the activities as well as the ethanol dehydrogenase activity disappeared after specific carboxymethylation of a single cystein residue at the active site of alcohol dehydrogenase. These results conclusively show that alcohol dehydrogenase itself has ω-hydroxyfatty acid dehydrogenase activity and ω-hydroxysteroid dehydrogenase activity.  相似文献   

5.
The transient-state kinetics of enzymic reduction of acetaldehyde and benzaldehyde by NADH, catalyzed by horse liver alcohol dehydrogenase, have been examined under single-turnover conditions, obtained by carrying out reactions either with limiting amounts of enzyme in the presence of 20 mM pyrazole or with limiting amounts of substrate. Analysis of the variation with substrate, coenzyme, and enzyme concentrations of amplitudes and time constants for the exponential transients observed at 328 nm and 300 nm shows that the kinetics of enzymic aldehyde reduction are qualitatively and quantitatively consistent with the relationships derived in the preceding paper for an ordered ternary-complex mechanism involving identical and independent catalytic sites. It is concluded that there is no evidence whatsoever for the kinetic significance of a half-of-the-sites reactivity or any other kind of subunit interaction in the liver alcohol dehydrogenase system. The biphasic transients observed at 328 nm for the reduction of aromatic aldehydes such as benzaldehyde are a normal kinetic characteristic of the ordered ternary-complex mechanism, being attributable to accumulation of the ternary enzyme-NAD-product complex when product dissociation from this complex is slow in comparison to its formation by ternary-complex interconversion.  相似文献   

6.
The transient kinetics of aldehyde reduction by NADH catalyzed by liver alcohol dehydrogenase consist of two kinetic processes. This biphasic rate behavior is consistent with a model in which one of the two identical subunits in the enzyme is inactive during the reaction at the adjacent protomer. Alternatively, enzyme heterogeneity could result in such biphasic behavior. We have prepared liver alcohol dehydrogenase containing a single major isozyme; and the transient kinetics of this purified enzyme are biphasic.Addition of two [14C]carboxymethyl groups per dimer to the two “reactive” sulfhydryl groups (Cys46) yields enzyme which is catalytically inactive toward alcohol oxidation. Alkylated enzyme, as initially isolated by gel filtration chromatography at pH 7·5, forms an NAD+-pyrazole complex. However, the ability to bind NAD+-pyrazole is rapidly lost in pH 8·75 buffer; therefore, our alkylated preparations, as isolated by chromatography at pH 8·75, are inactive toward NAD+-pyrazole complex formation. We have prepared partially inactivated enzyme by allowing iodoacetic acid to react with liver alcohol dehydrogenase until 50% of the NAD+-pyrazole binding capacity remains; under these reaction conditions one [14C]carboxymethyl group is added per dimer. This partially alkylated enzyme preparation is isolated by gel filtration and has been aged sufficiently to lose NAD+-pyrazole binding ability at alkylated subunits. When solutions of native liver alcohol dehydrogenase and partially alkylated liver alcohol dehydrogenase containing the same number of unmodified active sites are allowed to react with substrate under single turnover conditions, partially alkylated enzyme is only half as reactive as native enzyme. This indicates that some molecular species in partially alkylated liver alcohol dehydrogenase that react with pyrazole and NAD+ during the active site titration do not react with substrate. These data are consistent with a model in which a subunit adjacent to an alkylated protomer in the dimeric enzyme is inactive toward substrate. In addition, NAD+-pyrazole binding at the protomers adjacent to alkylated subunits is slowly lost so that 75% of the enzyme-NAD+-pyrazole binding capacity is lost in 50% alkylated enzyme. These data supply strong evidence for subunit interactions in liver alcohol dehydrogenase.Binding experiments performed on partially alkylated liver alcohol dehydrogenase indicate that coenzyme binding is normal at a subunit adjacent to an alkylated protomer even though active ternary complexes cannot be formed. One hypothesis consistent with these results is the unavailability of zinc for substrate binding at the active site in subunits adjacent to alkylated protomers in monoalkylated dimer.  相似文献   

7.
1. Cellulose acetate zymograms of alcohol dehydrogenase (ADH), aldehyde dehydrogenase, sorbitol dehydrogenase, aldehyde oxidase, "phenazine" oxidase and xanthine oxidase extracted from tissues of inbred mice were examined. 2. ADH isozymes were differentially distributed in mouse tissues: A2--liver, kidney, adrenals and intestine; B2--all tissues examined; C2--stomach, adrenals, epididymis, ovary, uterus, lung. 3. Two NAD+-specific aldehyde dehydrogenase isozymes were observed in liver and kidney and differentially distributed in other tissues. Alcohol dehydrogenase, aldehyde oxidase, "phenazine" oxidase and xanthine oxidase were also stained when aldehyde dehydrogenase was being examined. 4. Two aldehyde oxidase isozymes exhibited highest activities in liver. 5. "Phenazine oxidase" was widely distributed in mouse tissues whereas xanthine oxidase exhibited highest activity in intestine and liver extracts. 6. Genetic variants for ADH-C2 established its identity with a second form of sorbitol dehydrogenase observed in stomach and other tissues. The major sorbitol dehydrogenase was found in high activity in liver, kidney, pancreas and male reproductive tissues.  相似文献   

8.
Liver alcohol dehydrogenase (LADH; E.C. 1.1.1.1) provides an excellent system for probing the role of binding interactions with NAD(+) and alcohols as well as with NADH and the corresponding aldehydes. The enzyme catalyzes the transfer of hydride ion from an alcohol substrate to the NAD(+) cofactor, yielding the corresponding aldehyde and the reduced cofactor, NADH. The enzyme is also an excellent catalyst for the reverse reaction. X-ray crystallography has shown that the NAD(+) binds in an extended conformation with a distance of 15 A between the buried reacting carbon of the nicotinamide ring and the adenine ring near the surface of the horse liver enzyme. A major criticism of X-ray crystallographic studies of enzymes is that they do not provide dynamic information. Such data provide time-averaged and space-averaged models. Significantly, entries in the protein data bank contain both coordinates as well as temperature factors. However, enzyme function involves both dynamics and motion. The motions can be as large as a domain closure such as observed with liver alcohol dehydrogenase or as small as the vibrations of certain atoms in the active site where reactions take place. Ternary complexes produced during the reaction of the enzyme binary entity, E-NAD(+), with retinol (vitamin A alcohol) lead to retinal (vitamin A aldehyde) release and the enzyme binary entity E-NADH. Retinal is further metabolized via the E-NAD(+)-retinal ternary complex to retinoic acid (vitamin A acid). To unravel the mechanistic aspects of these transformations, the kinetics and energetics of interconversion between various ternary complexes are characterized. Proton transfers along hydrogen bond bridges and NADH hydride transfers along hydrophobic entities are considered in some detail. Secondary kinetic isotope effects with retinol are not particularly large with the wild-type form of alcohol dehydrogenase from horse liver. We analyze alcohol dehydrogenase catalysis through a re-examination of the reaction coordinates. The ground states of the binary and ternary complexes are shown to be related to the corresponding transition states through topology and free energy acting along the reaction path.  相似文献   

9.
Liver alcohol dehydrogenase (LADH; E.C. 1.1.1.1) provides an excellent system for probing the role of binding interactions with NAD+ and alcohols as well as with NADH and the corresponding aldehydes. The enzyme catalyzes the transfer of hydride ion from an alcohol substrate to the NAD+ cofactor, yielding the corresponding aldehyde and the reduced cofactor, NADH. The enzyme is also an excellent catalyst for the reverse reaction. X-ray crystallography has shown that the NAD+ binds in an extended conformation with a distance of 15 Å between the buried reacting carbon of the nicotinamide ring and the adenine ring near the surface of the horse liver enzyme. A major criticism of X-ray crystallographic studies of enzymes is that they do not provide dynamic information. Such data provide time-averaged and space-averaged models. Significantly, entries in the protein data bank contain both coordinates as well as temperature factors. However, enzyme function involves both dynamics and motion. The motions can be as large as a domain closure such as observed with liver alcohol dehydrogenase or as small as the vibrations of certain atoms in the active site where reactions take place. Ternary complexes produced during the reaction of the enzyme binary entity, E-NAD+, with retinol (vitamin A alcohol) lead to retinal (vitamin A aldehyde) release and the enzyme binary entity E-NADH. Retinal is further metabolized via the E-NAD+-retinal ternary complex to retinoic acid (vitamin A acid). To unravel the mechanistic aspects of these transformations, the kinetics and energetics of interconversion between various ternary complexes are characterized. Proton transfers along hydrogen bond bridges and NADH hydride transfers along hydrophobic entities are considered in some detail. Secondary kinetic isotope effects with retinol are not particularly large with the wild-type form of alcohol dehydrogenase from horse liver. We analyze alcohol dehydrogenase catalysis through a re-examination of the reaction coordinates. The ground states of the binary and ternary complexes are shown to be related to the corresponding transition states through topology and free energy acting along the reaction path.  相似文献   

10.
We investigated by stopped-flow techniques the oxidation of benzyl alcohol catalyzed by horse liver alcohol dehydrogenase varying the concentration of the reagents, pH and temperature. The course of the reaction under enzymelimiting conditions is biphasic and the measured amplitude of the initial step corresponds under saturation conditions to half of the total enzyme concentration (half-burst). The fast initial step (with a maximum rate of 20 s?1 at pH 7.0) shows an isotope effect of approximately 2, which indicates that this rate contains a contribution from a hydrogen transfer. It is also shown that this rate differs by at least one order of magnitude with respect to that of the hydrogen transfer during benzaldehyde reduction. The half-of-the-sites reactivity of alcohol dehydrogenase in the initial transient process is obtained independent of reagent concentration, pH and/or temperature. It is obtained also when coenzyme analogues are substituted for NAD, and when different alcohols are substituted for benzyl alcohol. These data are taken to demonstrate unequivocally that the half-of-the-sites reactivity of alcohol dehydrogenase cannot be due to an interplay of rate constants (as proposed by various authors) and must rather be ascribed to a kinetic non-equivalence of the two subunits when active ternary complexes are being formed. When oxidation of benzyl alcohol is carried out in the presence of 0.1 m-isobutyramide (which makes a very tight complex with NADH at the enzyme active site), reaction stops after formation of an amount of NADH product that is equivalent to one half of the enzyme active site concentration.This is considered in the light of the pyrazole experiment designed by McFarland &; Bernhard (1972), in which reduction of benzaldehyde is carried out in the presence of pyrazole (which forms a very tight ternary complex with NAD at the enzyme active site). In this case, reaction stops after formation of an amount of NAD-product which is equivalent to the total enzyme active site concentration. It is shown that accommodation of these two seemingly contradictory sets of data poses severe restrictions on the alcohol dehydrogenase mechanism. In particular, it is shown that the only mechanism that adheres to such requirements is one in which the two subunits have distinct and alternating functions in each enzyme cycle. These two functions are the triggering of the chemical transformation and the chemical transformation itself. It is also shown that binding of NAD-substrate to one subunit triggers chemical reactivity in the other NAD-alcohol-containing subunit, whereas on aldehyde reduction, the triggering event is desorption of alcohol product from the first reacted subunit.  相似文献   

11.
The alcohol dehydrogenase from horse liver is able to catalyze the oxidation of a number of 1,2-diols and α-aminoalcohols enantioselectively to l-α-hydroxyaldehydes and l-α-amino aldehydes. A decrease of enantioselectivity was found in reactions with 1,3-diols and substrates with hydrophobic substituent at position 3. α-Aminoalcohols are not substrates for yeast alcohol dehydrogenase, but the enzyme can catalyze the oxidation of most of the diols to l-hydroxyaldehydes. New methods for determination of the optical purity of α-hydroxy-and α-aminoaldehydes via converting them in situ to the corresponding acids, catalyzed by the aldehyde dehydrogenase from yeast, have been developed. The coupled alcohol dehydrogenase/aldehyde dehydrogenase has been extended to preparatory scale synthesis of optically pure l-α-hydroxyacids in the presence of a cofactor regeneration system. The active-site cubic-space section model has been shown not to be applicable to all substrates.  相似文献   

12.
Ethanol oxidation by the soluble fraction of a rat hepatoma was compared to that of the liver. Ethanol oxidation by the hepatoma was NAD+-dependent and sensitive to pyrazole, suggesting the presence of alcohol dehydrogenase. At low concentrations of ethanol (10.8 mm) the alcohol dehydrogenase activities of hepatoma and liver supernatant fractions were comparable. When the concentration of ethanol was raised to 108 mm, the activity of the liver enzyme decreased, whereas the activity in hepatoma supernatant fractions was strikingly elevated. m-Nitrobenzaldehyde-reducing activity was also conspicuously higher in hepatoma supernatant fractions. By contrast the ability to metabolize steroids and cyclohexanone was less than that in supernatant fractions of the liver.Electrophoresis of the liver supernatant fractions on ionagar at pH 7.0 revealed only one component that oxidized ethanol. On the other hand, hepatoma supernatant fractions contained two components with alcohol dehydrogenase activity; one with the same electrophoretic mobility as the liver enzyme, the other showing a slower rate of migration. The latter component, which is absent in the liver, is referred to as hepatoma alcohol dehydrogenase. By electrophoresis on starch gels at pH 8.5, it could be demonstrated that the liver and hepatoma enzymes moved in opposite directions.The liver and hepatoma enzymes differ in electrophoretic mobility, susceptibility to heat treatment, pH activity optimum and some catalytic properties. The substrate specificity of the hepatoma enzyme is narrower than that of liver alcohol dehydrogenase; cyclohexanone or 3β-hydroxysteroids of A/B cis configuration and the corresponding 3-ketones are not substrates for the hepatoma enzyme. The overall substrate specificity characteristics are, however, similar to those of the liver enzyme in that the effectiveness of substrates increases with an increase in chain length and introduction of unsaturation or an aromatic group. Both liver and hepatoma alcohol dehydrogenase cross-react with antibody to horse liver alcohol dehydrogenase EE. The Michaelis constant for ethanol with the hepatoma enzyme is 223 mm, compared to 0.3 mm for liver alcohol dehydrogenase; at 1.0 m ethanol the hepatoma enzyme is not fully saturated with substrate. The Michaelis constant for 2-hexene-1-ol is 0.3 mm, indicating that the hepatoma enzyme is better suited for dehydrogenation of longer chain alcohols. Stomach alcohol dehydrogenase has kinetic properties comparable to those of the hepatoma enzyme, as well as similar electrophoretic mobility. The hepatoma enzyme can be detected in the serum of rats bearing hepatomas.  相似文献   

13.
Active site substituted Cd(II) horse liver alcohol dehydrogenase has been studied by Perturbed Angular Correlation of Gamma rays Spectroscopy during turnover conditions for benzaldehyde and 4-trans-(N,N-dimethylamino)cinnamaldehyde. The ternary complex between alcohol dehydrogenase NAD+ and Cl, and the binary complex between alcohol dehydrogenase and orthophenanthroline have also been studied. The Nuclear Quadrupole Interaction parameters have been interpreted in terms of different coordination geometries for Cd(II) in the catalytic zinc site of the enzyme. Calculation of the nuclear quadrupole interaction for cadmium in the catalytic site of the enzyme with and without coenzyme, based upon the four coordinated geometries determined from X-ray diffraction, agrees with the experimentally determined values. The ternary complexes between enzyme, NAD+ and either Cl or trifluoroethanol and the binary complex between enzyme and orthophenanthroline have almost identical spectral parameters which are not consistent with a four coordinated geometry, but are consistent with a five coordinated geometry. The nonprotein ligands for the ternary complex with trifluoroethanol are suggested to be an alkoxide group and a water molecule. The Nuclear Quadrupole Interaction parameters for the productive ternary complex between enzyme, NADH and an aldehyde is consistent with the four coordinated geometry predicted from X-ray diffraction data having the carbonyl group of the aldehyde substituting the water molecule as ligand to the metal.Abbreviations LADH Horse liver alcohol dehydrogenase - H4Zn2LADH derivative of LADH free of zinc in the catalytic site - 111CdZn2LADH derivative of LADH with 111Cd (carrier free) in the catalytic site - Cd2Zn2LADH derivative of LDH with 2 mole of Cd(II) per mole LADH in the catalytic site - PAC pertubed angular correlation of gamma rays - NQI Nuclear quadrupole interaction - AOM Angular overlap model - trifluoroethanol 2,2,2-trifluoroethanol - DACA trans-4-(N,N-dimethylamino)cinnamaldehyde - NAD+ and NADH oxidized and reduced nicotinamide adenine dinucleotide - NADH2 reduced 1,4,5,6-tetrahydronicotinamide adenine dinucleotide The experimental work was carried out at the Niels Bohr Institute Risø, 4000 Roskilde and Blegdamsvej 19, 2100 Copenhagen, Denmark Offprint requests to: R. Bauer  相似文献   

14.
Using horse liver alcohol dehydrogenase, stereospecifically tritiated (R)- and (S)-(γ-3H)-coniferyl alcohol was synthesized. Using both of these substrates it was demonstrated that cinnamyl alcohol dehydrogenase from lignifying Forsythia tissue specifically removes the pro-R-hydrogen atom of coniferyl alcohol in the oxidation to the aldehyde. This also means that in the reverse reaction the A-hydrogen of NADPH is transferred to the Re-site of coniferyl aldehyde.  相似文献   

15.
In this study we have examined the roles of alcohol dehydrogenase, aldehyde oxidase, and aldehyde dehydrogenase in the adaptation of Drosophila melanogaster to alcohol environments. Fifteen strains were characterized for genetic variation at the above loci by protein electrophoresis. Levels of in vitro enzyme activity were also determined. The strains examined showed considerable variation in enzyme activity for all three gene-enzyme systems. Each enzyme was also characterized for coenzyme requirements, effect of inhibitors, subcellular location, and tissue specific expression. A subset of the strains was chosen to assess the physiological role of each gene-enzyme system in alcohol and aldehyde metabolism. These strains were characterized for both the ability to utilize alcohols and aldehydes as carbon sources as well as the capacity to detoxify such substrates. The results of the above analyses demonstrate the importance of both alcohol dehydrogenase and aldehyde dehydrogenase in the in vivo metabolism of alcohols and aldehydes.  相似文献   

16.
The effects of ovariectomy and administration of estradiol on the activity of liver alcohol dehydrogenase and on the rate of ethanol elimination were determined in female Sprague-Dawley rats. The activity of the enzyme and the rates of ethanol elimination in the female sham-operated animals were higher than obtained previously in male rats of the same age. Ovariectomy had no effect on liver alcohol dehydrogenase and on rates of ethanol elimination. Estradiol administration resulted in an increase in liver weight and in total liver alcohol dehydrogenase activity per animal in sham-operated but not in ovariectomized animals. The increase in enzyme activity after estradiol administration in sham-operated animals was not associated with a significant increase in the rate of ethanol elimination, suggesting that the enzyme activity in female rats is not rate-limiting in in vivo ethanol oxidation.  相似文献   

17.
Different metal binding inhibitors of horse liver alcohol dehydrogenase, similarly affect the Drosophila melanogaster AdhS and AdhUF alleloenzymes. However, binding is generally weaker and the experiments show that the alleloenzymes although not zinc metalloenzymes, behave to the metal binding reagents very much as if they were. The metal-directed, affinity-labelling, imidazole derivative BrImPpOH reversibly inhibits, but does not inactivate the alleolenzymes. This confirms there is no active site metal atom with cysteine as a metal ligand, as found in zinc alcohol dehydrogenases. Pyrazole is a strong ethanol-competitive inhibitor of AdhS and AdhUF alleloenzymes. Formation of the ternary enzyme-NAD-pyrazole complex gives an absorption increase between 295-330 nm. This enables an active site titration to be performed and the determination of epsilon (305 nm) of 15.8 . 10(3) M-1 . cm-1. Inhibition experiments with imidazole confirm that with secondary alcohols such as propan-2-ol, a Theorell-Chance mechanism predominates, but with ethanol and primary alcohols, interconversion of the ternary complexes is rate limiting. Salicylate is a coenzyme competitive inhibitor and KEI suggests that the coenzyme adenosine binding region is similar is Drosophila and horse liver alcohol dehydrogenase. Drosophila alcohol dehydrogenase is found not to form a ternary complex with NADH and isobutyramide. In this and other properties it is like carboxymethyl liver alcohol dehydrogenase. Both Drosophila and carboxymethyl alcohol dehydrogenase bind coenzyme in a similar manner to native horse liver alcohol dehydrogenase, but substrate binding differs between each. Inhibition by Cibacrone blue, indicates that amino acid 192 which is lysine in AdhS and threonine in AdhUF, is located in the coenzyme-binding region. Proteolytic activity present in preparations of alcohol dehydrogenase from D. melanogaster, is considered due to a metalloprotease, for which BrImPpOH is a potent inactivator.  相似文献   

18.
  • 1.1. In vivo metabolism of a secondary alcohol in Drosophila melanogaster and its effects on alcohol dehydrogenase (ADH) have been studied.
  • 2.2. ADH-mediated breakdown of the secondary alcohol, propan-2-ol, was the main source of the acetone produced.
  • 3.3. Acetone formation declined and stopped ultimately, suggesting inhibition of ADH activity in vivo which has been confirmed in in vitro studies.
  • 4.4. A powerful ketone-trapping agent, semicarbazide, did not restore the ADH activity in vitro, whereas aldehyde substrates of ADH did restore activity.
  • 5.5. The final formation of a dead-end ADH:NAD-acetone ternary complex has been proposed and its consequences discussed.
  相似文献   

19.
The objective of this study was to determine the effect of chronic maternal administration of moderate-dose ethanol on alcohol dehydrogenase, low Km aldehyde dehydrogenase, and high Km aldehyde dehydrogenase activities in the guinea pig at near-term pregnancy. The activity of each enzyme in the maternal liver, fetal liver, and placenta of the guinea pig at 59 days of gestation (term, 66 days) was determined spectrophotometrically following chronic daily oral administration of two doses of 1 g ethanol/kg maternal body weight or isocaloric sucrose solution. There was no experimental evidence of ethanol-induced malnutrition in the mother or growth retardation in the fetus. There was a statistically significant increase (65%) in the microsomal cytochrome P-450 content of the maternal liver for the ethanol treatment compared with the sucrose treatment. The alcohol dehydrogenase, low Km aldehyde dehydrogenase, and high Km aldehyde dehydrogenase activities in the maternal liver, fetal liver, and placenta were not statistically different for the ethanol-treated compared with the sucrose-treated animals. This also was the case for the maternal blood and fetal blood ethanol and acetaldehyde concentrations, determined at 2h after maternal administration of 1 g ethanol/kg maternal body weight. These data demonstrate that the ethanol- and acetaldehyde-oxidizing enzyme activities in the maternal-placental-fetal unit of the guinea pig at near-term pregnancy were not changed by chronic administration of moderate-dose ethanol.  相似文献   

20.
The overall reaction catalyzed by the pyruvate dehydrogenase complex from rat epididymal fat tissue is inhibited by glyoxylate at concentrations greater than 10 μm. The inhibition is competitive with respect to pyruvate; Ki was found to be 80 μm. Qualitatively similar results were observed using pyruvate dehydrogenase from rat liver, kidney, and heart. Glyoxylate also inhibits the pyruvate dehydrogenase phosphate phosphatase from rat epididymal fat, with the inhibition being readily detectable using 50 μm glyoxylate. These effects of glyoxylate are largely reversed by millimolar concentrations of thiols (especially cysteine) because such compounds form relatively stable adducts with glyoxylate. Presumably these inhibitions by low levels of glyoxylate had not been previously observed, because others have used high concentrations of thiols in pyruvate dehydrogenase assays. Since the inhibitory effects are seen with suspected physiological concentrations, it seems likely that glyoxylate partially controls the activity of pyruvate dehydrogenase in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号