首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, specific PHO13 alkaline phosphatase from Saccharomyces cerevisiae was demonstrated to possess phosphoprotein phosphatase activity on the phosphoseryl proteins histone II-A and casein. The enzyme is a monomeric protein with molecular mass of 60 kDa and hydrolyzes p-nitrophenyl phosphate with maximal activity at pH 8.2 with strong dependence on Mg2+ ions and an apparent Km of 3.6×10−5 M. No other substrates tested except phosphorylated histone II-A and casein were hydrolyzed at any significant rate. These data suggest that the physiological role of the p-nitrophenyl phosphate-specific phosphatase may involve participation in reversible protein phosphorylation.  相似文献   

2.
The p-nitrophenyl phosphatase activity of muscle carbonic anhydrase   总被引:6,自引:0,他引:6  
Carbonic anhydrase III from rabbit muscle, a newly discovered major isoenzyme of carbonic anhydrase, has been found to be also a p-nitrophenyl phosphatase, an activity which is not associated with carbonic anhydrases I and II. The p-nitrophenyl phosphatase activity has been shown to chromatograph with the CO2 hydratase activity; both activities are associated with each of its sulfhydryl oxidation subforms; and both activities follow the same pattern of pH stability. This phosphomonoesterase activity of carbonic anhydrase III has an acidic pH optimum (<5.3); its true substrate appears to be the phosphomonoanion with a Km of 2.8 mm. It is competitively inhibited by the typical acid phosphatase inhibitors phosphate (Ki = 1.22 × 10?3M), arsenate (Ki = 1.17 × 10?3M), and molybdate (Ki = 1.34 × 10?7M), with these inhibitors having no effect on the CO2 hydratase or the p-nitrophenyl acetate esterase activities of carbonic anhydrase III. The p-nitrophenyl acetate esterase activity of carbonic anhydrase III, on the other hand, has the sigmoidal pH profile with an inflection at neutral pH, typical of carbonic anhydrases for all of their substrates, and is inhibitable by acetazolamide (a highly specific carbonic anhydrase inhibitor) to the same degree as the CO2 hydratase activity. The acid phosphatase-like activity of carbonic anhydrase III is slightly inhibited by acetazolamide at acidic pH, and inhibited to nearly the same degree at neutral pH. These data are taken to suggest that the phosphatase activity follows a mechanism different from that of the CO2 hydratase and p-nitrophenyl acetate esterase activities and that there is some overlap of the binding sites.  相似文献   

3.
A purification procedure, which included ethanol treatment as a step for dissociating the large molecular forms of type I phosphoprotein phosphatase, was employed for the studies of the alkaline phosphatase and phosphoprotein phosphatase activities in bovine brain, heart, spleen, kidney, and uterus, rabbit skeletal muscle and liver, and lobster tail muscle. The results indicate that the major phosphoprotein phosphatase (phosphorylase a as a substrate) and alkaline phosphatase (p-nitrophenyl phosphate as a substrate; Mg2+ and dithiothreitol as activators) activities in the extracts of all tissues studied were copurified as an entity of Mr = 35,000. The purified enzymes from different tissues exhibit similar physical and catalytic properties with respect to either the phosphoprotein phosphatase or the alkaline phosphatase activity. The present findings indicate that (a) the Mr = 35,000 species, which represents a catalytic entity of the large molecular forms of type I phosphoprotein phosphatase, is widespread in animal tissues, indicating that it is a multifunctional phosphatase; (b) the association of type I alkaline phosphatase activity with type I phosphoprotein phosphatase is a general phenomenon.  相似文献   

4.
《Theriogenology》2007,67(9):2152-2159
The fluid of boar epididymis is characterized by a high activity of acid phosphatase (AcP), which occurs in three molecular forms. An efficient procedure was developed for the purification of a molecular form of epididymal acid phosphatase from boar seminal plasma. We focused on the epididymal molecular form, which displayed the highest electrophoretic mobility. The purification procedure (dialysis, ion exchange chromatography, affinity chromatography and hydroxyapatite chromatography) used in this study gave more than 7000-fold purification of the enzyme with a yield of 50%. The purified enzyme was homogeneous by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The purified molecular form of the enzyme is a thermostable 50 kDa glycoprotein, with a pI value of 7.1 and was highly resistant to inhibitors of acid phosphatase when p-nitrophenyl phosphate was used as the substrate. Hydrolysis of p-nitrophenyl phosphate by the purified enzyme was maximally active at pH of 4.3; however, high catalytic activity of the enzyme was within the pH range of 3.5–7.0. Kinetic analysis revealed that the purified enzyme exhibited affinity for phosphotyrosine (Km = 2.1 × 10−3 M) and was inhibited, to some extent, by sodium orthovanadate, a phosphotyrosine phosphatase inhibitor. The N-terminal amino acid sequence of boar epididymal acid phosphatase is ELRFVTLVFR, which showed 90% homology with the sequence of human, mouse or rat prostatic acid phosphatase.The purification procedure described allows the identification of the specific biochemical properties of a molecular form of epididymal acid phosphatase, which plays an important role in the boar epididymis.  相似文献   

5.
Chromatography of cardiac muscle and brain extracts on DEAE-cellulose resolved phosphotyrosyl-protein phosphatase activity into three fractions, termed Y-1, Y-2 and Y-3. These were eluted at 0.05, 0.15 and 0.3 m KCl, representing about 33, 55 and 12%, respectively, of the enzymatic activity recovered from the resin. Comparative studies demonstrated that the properties of phosphatases Y-1, Y-2 and Y-3 were distinctly different from those of previously identified phosphoseryl-protein phosphatases-1, -2, -3, and -4. Phosphatases Y-1, Y-2 and Y-3 were stimulated by EDTA and exhibited optimal activity at neutral pH. These properties were different from those of the two minor phosphotyrosyl-protein phosphatase activities associated with phosphoseryl-protein phosphatases-3, and -4, which were divalent cation dependent and exhibited optimal activity at alkaline pH. Further purification of phosphatase Y-2 from bovine heart has been carried out. The enzyme had a Mr = 65,000 (Stokes radius = 3.8 nm; s20,w0 = 4.1). Its activity was stimulated by 5- to 10-fold in the presence of EDTA (Ka = 15 μM) and was strongly inhibited by micromolar concentrations of vanadate. Phosphatase Y-2 was highly specific for phosphotyrosyl-IgG and -casein, and showed little activity toward phosphoseryl-casein, -phosphorylase a, phosphothreonyl-inhibitor-1 and p-nitrophenyl phosphate. The present studies indicate that phosphotyrosyl-protein phosphatase activity in animal tissues exists in multiple forms. The major active species are specific for phosphotyrosyl proteins and represent enzymes different from the known phosphoseryl-protein phosphatases and p-nitrophenyl phosphatases.  相似文献   

6.
The K+-dependent p-nitrophenylphosphatase activity catalyzed by purified (Na+ + K+)-ATPase from pig kidney shows substrate inhibition (Ki about 9.5 mM at 2.1 mM Mg2+). Potassium antagonizes and sodium favours this inhibition. In addition, K+ reduces the apparent affinity for substrate activation, whereas p-nitrophenyl phosphate reduces the apparent affinity for K+ activation. In the absence of Mg2+, p-nitrophenyl phosphate, as well as ATP, accelerates the release of Rb+ from the Rb+ occluded unphosphorylated enzyme. With no Mg2+ and with 0.5 mM KCl, trypsin inactivation of (Na+ + K+)-ATPase as a function of time follows a single exponential but is transformed into a double exponential when 1 mM ATP or 5 mM p-nitrophenyl phosphate are also present. In the presence of 3 mM MgCl2, 5 mM p-nitrophenyl phosphate and without KCl the trypsin inactivation pattern is that described for the E1 enzyme form; the addition of 10 mM KCl changes the pattern which, after about 6 min delay, follows a single exponential. These results suggest that (i) the shifting of the enzyme toward the E1 state is the basis for substrate inhibition of the p-nitrophenulphosphatase acitivy of (Na+ + K+)-ATPase, and (ii) the substrate site during phosphatase activity is distinct from the low-affinity ATP site.  相似文献   

7.
Abstract : Alkaline phosphatase, one of the enzymes responsible for the conversion of phosphocholine into choline, was purified from bovine brain membrane, where the phosphatase is bound as glycosylphosphatidylinositollinked protein, and subjected to oxidative inactivation. The phosphatase activity, based on the hydrolysis of p-nitrophenyl phosphate and phosphocholine, decreased slightly after the exposure to H2O2. Inclusion of Cu2+ in the incubation with 1 mM H2O2 led to a rapid decrease of activity in a time- and concentration-dependent manner. In comparison, the H2O2/Cu2+ system was much more effective than the H2O2/Fe2+ system in inactivating brain phosphatase. In a further study, it was observed that the hydroxy radical scavengers mannitol, ethanol, or benzoate failed to prevent against H2O2/Cu2+-induced inactivation of the phosphatase, excluding the involvement of extraneous hydroxy radicals in metalcatalyzed oxidation. In addition, it was found that both substrates, p-nitrophenyl phosphate and phosphocholine, and an inhibitor, phosphate ion, at their saturating concentrations exhibited a remarkable, although incomplete, protection against the inactivating action of H2O2/Cu2+. A similar protection was also expressed by divalent metal ions such as Mg2+ or Mn2+. Separately, it was found that H2O2/Fe2+-induced inactivation was prevented by p-nitrophenyl phosphate or Mg2+ but not phosphate ions. Thus, it is implied that phosphocholine-hydrolyzing alkaline phosphatase in brain membrane might be one of enzymes susceptible to metal-catalyzed oxidation.  相似文献   

8.
A repressible extracellular alkaline phosphatase (with activity increasing steadily even up to pH 10.5) was purified from cultures of the wild-type strain 74A of Neurospora crassa, after growth on acetate and under limiting amounts of inorganic phosphate for 72 hr at 30°. The enzyme was homogeneous on polyacrylamide gel electrophoresis (PAGE) with or without sodium dodecyl sulphate (SDS). The MW was ca 172 000 and 82 000 as determined by Sephadex G-200 gel filtration and SDS-PAGE, respectively. The enzyme contained 23.6% neutral sugars, cations were not required for activity, and it was not inactivated by 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) at pH 8. Kinetic data showed Michaelian behaviour for the enzymatic hydrolysis of 4-nitrophenyl disodium orthophosphate (PNP-P) at pH 9 (the Km value and Hill coefficient were 2.2 × 10?4 M and 0.95, respectively). It was also shown that, at pH 9, the apparent number of Pi bound per dimer molecule equalled one, with a Ki value of 7.0 × 10?4 M. The secreted enzyme showed half-lives of 23.5, 49.0 and 23.5 min at, pH 5.4, 7.4 and 9.0, respectively, after thermal inactivation at 60°. At pH 5.4, the half-life value was quite similar, while the others were respectively 2 and 4 times greater than those previously described for the repressible alkaline phosphatase retained by the mycelium at pH 5.6 or secreted by ‘slime’ cells.  相似文献   

9.
The p-nitrophenyl phosphatase activity of leukocyte membranes is dependent on the origin of the p-nitrophenyl phosphate used as substrate. Commercial samples contain stable inhibitors and recrystalized material contains an inhibitor that is decomposed by water. The (Mg2+-K+)-p-nitrophenyl phosphatase of nerve membranes is not dependent on the origin of the substrate.  相似文献   

10.
《Phytochemistry》1987,26(5):1293-1297
About a 16-fold rise in acid phosphatase (EC 3.1.3.2) activity was observed during the early stages of germination of cotton embryos. Administration of cyclobeximide to the germinating embryos significantly blocked the enhancement of acid phosphatase activity. This indicated that translational activity was essential for the induction of enzyme activity. Conclusive proof for the de novo synthesis of the enzyme was obtained by showing the incorporation of 35S from 35SO2−4 into the cysteine residues of the purified acid phosphatase. The enzyme was purified (1046-fold) to electrophoretic homogeneity by ammonium sulphate fractionation, CM-Sephadex C-50 and affinity chromatography on concanavalin A-Agarose. PAGE gave two isozyme bands. The M, of the phosphatase was 200 k as determined by molecular sieving on Sephadex G-200. SDS-PAGE of acid phosphatase revealed a single band of M 55 k. Thus the native enzyme is a tetramer of four identical subunits. The Km of the enzyme with p-nitrophenyl phosphate was 0.5 mM. Optimal enzyme activity was observed at pH 5.0, using p-nitrophenyl phosphate as substrate. The enzyme activity remained linear for 105 min at 37° and was proportional to the concentration of protein within the range 0.6–2.4 μg.  相似文献   

11.
Optimal activity was recorded at pH 4.5–5 and pH 9.0–9.5 and specific activity was seen to be 0.013 μmoles of p-nitrophenyl phosphate/min/mg protein at 37 C at pH 4.5 and 0.00169 μmoles at pH 9.0. The ratio of acid to alkaline phosphatase was 7.7:1.0. The Km for acid phosphatase (EC 3.1.3.2) was 0.5 mM with a Vmax of 0.0128 units/mg protein and 0.2mM for alkaline phosphatase (EC 3.1.3.1) with a Vmax of 0.00175 units/mg protein. Acid phosphatase activity was optimal at 60 C and alkaline at 37 C. Linearity of enzyme activity was observed with time after the first 15 min of incubation and with homogenate concentration. KCN at 20 mM inhibited 82% of activity at pH 9.0 but also 91.5% activity at pH 4.5. NaF at 10?2M inhibited 92% of activity at pH 4.5 but had no effect at pH 9.0. The two flukicides rafoxanide and nitroxynil at 20mM had little effect on activity at pH 9.0 and pH 4.5. Enzyme activity at pH 4.5 was found to be greatest in the microsomal fraction with high activity in the lysosomal and soluble fractions. Histochemically, alkaline phosphatase was restricted to the excretory system, vitellaria, and uterus while acid phosphatase was found in the integument and gastrodermis.  相似文献   

12.
We characterized the activities of the Myxococcus xanthus ApaH-like phosphatases PrpA and ApaH, which share homologies with both phosphoprotein phosphatases and diadenosine tetraphosphate (Ap4A) hydrolases. PrpA exhibited a phosphatase activity towards p-nitrophenyl phosphate (pNPP), tyrosine phosphopeptide and tyrosine-phosphorylated protein, and a weak hydrolase activity towards ApnA and ATP. In the presence of Mn2+, PrpA hydrolyzed Ap4A into AMP and ATP, whereas in the presence of Co2+ PrpA hydrolyzed Ap4A into two molecules of ADP. ApaH exhibited high phosphatase activity towards pNPP, and hydrolase activity towards ApnA and ATP. Mn2+ was required for ApaH-mediated pNPP dephosphorylation and ATP hydrolysis, whereas Co2+ was required for ApnA hydrolysis. Thus, PrpA and ApaH may function mainly as a tyrosine protein phosphatase and an ApnA hydrolase, respectively.  相似文献   

13.
An acid phosphatase from Trichoderma harzianum was purified in a single step using a phenyl-Sepharose chromatography column. A typical procedure showed 22-fold purification with 56% yield. The purified enzyme showed as a single band on SDS-PAGE with an apparent molecular weight of 57.8 kDa. The pH optimum was 4.8 and maximum activity was obtained at 55°C. The enzyme retained 60% of its activity after incubation at 55°C for 60 min. The K m and V max values for p-nitrophenyl phosphate (p-NPP) as a substrate were 165 nM and 237 nM min?1, respectively. The enzyme was partially inhibited by inorganic phosphate and strongly inhibited by tungstate. Broad substrate specificity was observed with significant activities for p-NPP, ATP, ADP, AMP, fructose 6-phosphate, glucose 1-phosphate and phenyl phosphate.  相似文献   

14.
Plasma membrane extracts from Herpes simplex virus type 1 transformed hamster embryo fibroblasts were chromatographed on Lens culinaris lectin coupled to Sepharose (LcH-Sepharose) and analysed by dodecyl sulphate polyacrylamide gel electrophoresis. Coomassie blue-staining revealed two major protein bands with apparent molecular weights of 125 000 and of about 75 000–90 000. In plasma membranes isolated from these tumor cells prior labeled with [3H]fucose or [3H]glucosamine these bands contained the highest amounts of incorporated radioactivity. Separation by LeH-Sepharose-affinity chromatography as well as metabolic labeling clearly demonstrates their glycoprotein character. The 125 000 protein coincides with alkaline phosphodiesterase I activity with a Km of 6 · 10?4 M for TMP p-nitrophenyl ester and is competitively inhibited by UDP-N-acetylglucosamine. This enzymatic activity is also present in normal hamster embryo fibroblasts. Gel electrophoresis of the Lens culinaris lectin-binding glycoproteins from plasma membranes of normal hamster embryo fibroblasts additionally revealed a strong alkaline phosphatase activity represented by an apparent molecular weight of 150 000, while HSV1 hamster tumor cells contain only a very weak activity of this enzyme activity. HSV-lytically infected cells, however, have unchanged levels of alkaline phosphatase activity, whereas alkaline phosphodiesterase activity increases slightly.  相似文献   

15.
Calf brain membranes have been shown to enzymatically dephosphorylate endogenous and partially purified, exogenous dolichyl [32P]monophosphate. The properties and specificity of the dolichyl monophosphatase activity have been studied by following the release of [32P]phosphate from exogenous dolichyl [32P]monophosphate added in a dispersion with Triton X-100. The calf brain phosphatase (1) is inhibited by Mn2+, Mg2+, Ca2+, fluoride, and phosphate; (2) exhibits a neutral pH optimum; and (3) has an apparent Km of 200 μm for dolichyl monophosphate. Dolichyl monophosphatase activity can be distinguished from phosphatidate phosphatase on the basis of their responses to fluoride and phosphate. Based on differential thermolability and the effects of divalent cations and EDTA, the calf brain dolichyl monophosphatase can also be discriminated from the general phosphatase activity assayed with p-nitrophenyl phosphate. Dolichyl monophosphatase activity can be solubilized by treating microsomes with Triton X-100. The enzymatic dephosphorylation of exogenous dolichyl [32P]monophosphate catalyzed by particulate and detergent-solubilized preparations is negligibly affected by equimolar concentrations of ATP and an assortment of phosphomonoesters, including phosphatidic acid and hexadecyl phosphate. A reduction of approximately 40% in dolichyl monophosphatase activity is observed in the presence of equimolar amounts of retinyl monophosphate. Overall, these results represent good evidence for the presence of a neutral polyisoprenyl monophosphatase in central nervous tissue.  相似文献   

16.
The aim of this work was to investigate whether an alkaline ecto-phosphatase activity is present in the surface of Trypanosoma rangeli. Intact short epimastigote forms were assayed for ecto-phosphatase activity to study kinetics and modulators using β-glycerophosphate (β-GP) and p-nitrophenyl phosphate (pNPP) as substrates. Its role in parasite development and differentiation was also studied. Competition assays using different proportions of β-GP and pNPP evidenced the existence of independent and non-interacting alkaline and acid phosphatases. Hydrolysis of β-GP increased progressively with pH, whereas the opposite was evident using pNPP. The alkaline enzyme was inhibited by levamisole in a non-competitive fashion. The Ca2+ present in the reaction medium was enough for full activity. Pretreatment with PI-PLC decreased the alkaline but not the acid phosphatase evidence that the former is catalyzed by a GPI-anchored enzyme, with potential intracellular signaling ability. β-GP supported the growth and differentiation of T. rangeli to the same extent as high orthophosphate (Pi). Levamisole at the IC50 spared significantly parasite growth when β-GP was the sole source of Pi and stopped it in the absence of β-GP, indicating that the alkaline enzyme can utilize phosphate monoesters present in serum. These results demonstrate the existence of an alkaline ecto-phosphatase in T. rangeli with selective requirements and sensitivity to inhibitors that participates in key metabolic processes in the parasite life cycle.  相似文献   

17.
The effect of the hydrolysis product Pi and the artificial substrate p-nitrophenyl phosphate (p-nitrophenyl-P) on ouabain binding to (Na+ + K+)-activated ATPase was investigated.The hypothesis that (Mg2+ + p-nitrophenyl-P)-supported ouabain binding might be due to Pi release and thus (Mg2+ + Pi)-supported could not be confirmed.The enzyme · ouabain complexes obtained with different substrates were characterized according to their dissociation rates after removal of the ligands facilitating binding. The character of the enzyme · ouabain complex is determined primarily by the monovalent ion present during ouabain binding, but, qualitatively at least, it is immaterial whether binding was obtained with p-nitrophenyl phosphate or Pi.The presence or absence of Na+ during binding has a special influence upon the character of the enzyme · ouabain complex. Without Na+ and in the presence of Tris ions the complex obtained with (Mg2+ + Pi) and that obtained with (Mg2+ + p-nitrophenyl-P) behaved in a nearly identical manner, both exhibiting a slow decay. High Na+ concentration diminished the level of Pi-supported ouabain binding, having almost no effect on p-nitrophenyl phosphate-supported binding. Both enzyme · ouabain complexes, however, now resembled the form obtained with (Na+ + ATP), as judged from their dissociation rates and the K+ sensitivity of their decay. The complexes obtained at a high Na+ concentration underwent a very fast decay which could be slowed considerably after adding a low concentration of K+ to the resuspension medium. The most stable enzyme · ouabain complex was obtained in the presence of Tris ions only, irrespective of whether p-nitrophenyl phosphate or Pi facilitated complex formation. The presence of K+ gave rise to a complex whose dissociation rate was intermediate between those of the complexes obtained in the presence of Tris and a high Na+ concentration.It is proposed that the different ouabain dissociation rates reflect different reactive state of the enzyme. The resemblance between the observations obtained in phosphorylation and ouabain binding experiments is pointed out.  相似文献   

18.
Abstract A strontium capture method, using p-nitrophenyl phosphate as substrate, was used to determine the subcellular localization of (Na+ + K+)-ATPase activity in Malpighian tubules of Locusta migratoria L. Ultrastructural studies revealed that (Na+ + K+)-ATPase activity was restricted to the basolateral plasma membranes with little evidence of activity associated with the apical microvilli. In contrast, alkaline phosphatase activity was specifically associated with the apical cell membrane. Biochemical assays of fixed and non-fixed tubule homogenates were used to evaluate the p-nitrophenyl phosphate-strontium procedure for localization of the phosphatase component of (Na+ + K+)-ATPase. No significant potassium-dependent, ouabain-sensitive p-nitrophenyl phosphatase activity was demonstrated in homogenates under conditions necessary for the cytochemical procedure, viz fixation, pH 9.0 and the presence of strontium. The significance of the biochemical results are discussed in relation to the validity of such cytochemical techniques for (Na+ + K+)-ATPase localization.  相似文献   

19.
1. Phosphatase synthesis was studied in Klebsiella aerogenes grown in a wide range of continuous-culture systems. 2. Maximum acid phosphatase synthesis was associated with nutrient-limited, particularly carbohydrate-limited, growth at a relatively low rate, glucose-limited cells exhibiting the highest activity. Compared with glucose as the carbon-limiting growth material, other sugars not only altered the activity but also changed the pH–activity profile of the enzyme(s). 3. The affinity of the acid phosphatase in glucose-limited cells towards p-nitrophenyl phosphate (Km 0.25–0.43mm) was similar to that of staphylococcal acid phosphatase but was ten times greater than that of the Escherichia coli enzyme. 4. PO43−-limitation derepressed alkaline phosphatase synthesis but the amounts of activity were largely independent of the carbon source used for growth. 5. The enzymes were further differentiated by the effect of adding inhibitors (F, PO43−) and sugars to the reaction mixture during the assays. In particular, it was shown that adding glucose, but not other sugars, stimulated the rate of hydrolysis of p-nitrophenyl phosphate by the acid phosphatase in carbohydrate-limited cells at low pH values (<4.6) but inhibited it at high pH values (>4.6). Alkaline phosphatase activity was unaffected. 6. The function of phosphatases in general is discussed and possible mechanisms for the glucose effect are outlined.  相似文献   

20.
Burst titration experiments conducted on a highly purified isoenzyme of wheat germ acid phosphatase under conditions where [S]o > Km indicate that there is one titratable active site per molecule of enzyme of molecular weight 59,000. The enzyme is labeled to only a small extent with inorganic [32P]phosphate ion. Incubation of wheat germ acid phosphatase with 32P-labeled substrates such as p-nitrophenyl phosphate or inorganic pyrophosphate followed by quenching in alkali results in the stoichiometric trapping of a base-stable, acid-labile phosphorylated protein. The extent of 32P incorporation parallels the degree of purity of the enzyme and corresponds to the incorporation of 1 mol of phosphate per mole of enzyme. The incorporation is eliminated by the simultaneous presence of excess unlabeled phosphate ion (a competitive inhibitor) and is not observed when a noncatalytic protein (such as bovine serum albumin) is substituted for the enzyme. Complete alkaline hydrolysis of the labeled protein results in the recovery of an 85% yield of τ-phosphohistidine, identified by ion-exchange chromatography, high-voltage paper electrophoresis, and comparison with a synthetic sample. A 32P-labeled tryptic tetradecapeptide was isolated following hydrolysis of the labeled, reduced, and carboxymethylated protein with trypsin at pH 8.3, separation of the labeled peptide, and purification by two methods including a novel variant of a diagonal electrophoresis technique. The end groups and composition of the peptide are reported. The data are consistent with the interpretation that a phosphohistidine-enzyme intermediate is formed as an obligatory intermediate in the catalytic reaction involving this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号