首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Homogenates of kidney from laying Japanese quail incubated in vitro with 25-hydroxy-[26,27-3H] vitamin D3 produce more 1,25-dihydroxy-[26,27-3H]vitamin D3 than do homogenates of kidney from mature nonlaying females or males maintained on the same diet and under identical conditions. Instead, the homogenates from male quail or nonlaying female quail convert 25-hydroxyvitamin D3 to 24,25-dihydroxyvitamin D3. The administration of 5 mg of estradiol to mature male quail 24 h prior to sacrifice suppressed the 25-hydroxyvitamin D3-24-hydroxylase and markedly stimulated 25-hydroxyvitamin D3-1-hydroxylase. The administration of estradiol to male quail caused hypercalcemia, which responded more slowly than did the 1-hydroxylase. As little as 0.1 mg of estradiol/quail was found effective in stimulating the 1-hydroxylase and suppressing the 24-hydroxylase. Other hormones such as follicle stimulating hormone (FSH), cortisone, testosterone, and progesterone, even at high dose levels, produced little or no change in the 25-hydroxyvitamin D3-1-hydroxylase. Testosterone did, however, suppress the 25-hydroxyvitamin D3-24-hydroxylase. The stimulation of the 25-hydroxyvitamin D3-1-hydroxylase by parathyroid hormone was of a smaller magnitude than that of the estradiol, and the effects of the two hormones were additive, suggesting that they function by a different mechanism.  相似文献   

4.
A sensitive and rapid in vitro assay of 25-hydroxyvitamin D3 [25-(OH)D3]-1 alpha- and 24-hydroxylase activities was developed using rat kidney homogenates. A potent inhibitor of the enzymes in rat plasma was removed by thoroughly perfusing rats with saline. Kidney homogenates prepared from vitamin D-deficient rats preferentially produced tritiated 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25(OH)2D3] from 25(OH) [3H]D3. Addition of 10 microliter or more of rat plasma to 3 ml of 10% kidney homogenates suppressed 1 alpha-hydroxylase activity dose-dependently. Thyroparathyroidectomy (TPTX) of vitamin D-deficient rats greatly abolished 1 alpha-hydroxylase activity. Administration of parathyroid hormone to the TPTX rats increased 1 alpha-hydroxylase activity and that of 1 alpha,25(OH)2D3 enhanced 24-hydroxylase markedly. Since this assay is technically simple, rapid and sensitive, it will be useful in studying the regulatory mechanism in the renal metabolism of 25(OH)D3 in mammals.  相似文献   

5.
Rat gastric mucosa was shown to contain a Mg2+-dependent ATPase which is stimulated by HCO3 at pH 8–9.Triton X-100 solubilizes this HCO3-stimulated, Mg2+-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3).The gastric mucosa was resolved into five subcellular fractions by differential centrifugation. A large granule fraction (Fraction M), 28 000 g · min, was characterized by cytochrome c oxidase (marker enzyme for mitochondria). A microsomal fraction (Fraction P), 2 760 000 g · min, was characterized by 5′-nucleotidase(5′-ribonucleotide phosphohydrolase, EC 3.1.3.5) (plasma membrane).The Mg2+-dependent ATPase was demonstrated to have a bimodal mitochondrial membranous localization: 24% of its activity is associated with cytochrome c oxidase, and 75% with 5′-nucleotidase(5′-ribonucleotide phosphohydrolase, EC 3.1.3.5) at pH 8.The HCO3 addition resulted in two opposite effects: (1) a strong stimulation (84%) in Fraction M; (2) a slight inhibition (12%) in Fraction P.Fraction M was subfractionated by equilibration on a sucrose gradient. It gave rise to a homogeneous mitochondrial (d, 1.17–1.21) Mg2+-dependent ATPase, closely associated with cytochrome c oxidase. This ATPase is strongly stimulated (×2) by HCO3. The subfractionation of Fraction P gave rise to two distinct ATPases: (1) the major one is associated with membranous (d, 1.10–1.15) material marked by 5′-nucleotidase and is slightly inhibited by HCO3; (2) the other is associated with denser (d, 1.17–1.21) material and is stimulated by HCO3.The bicarbonate-stimulated fraction of the Mg2+-dependent ATPase activity found in the gastric microsomal fraction is assumed to arise from mitochondrial cross-contamination. Further support comes from the optimal HCO3 concentration. In addition, SCN is shown to specifically inhibit the ATPase of Fraction M.From these results it appears that the implication of HCO3-stimulated ATPase in the gastric secretion of H+ is not as clear as had been suggested. However, in the view of an ATPase-supported model for H+ secretion, attention can be directed towards the Mg2+-dependent ATPase found to be associated with microsomes.  相似文献   

6.
A single 325-pmol dose of 1,25-dihydroxyvitamin D3 given to chicks fed a vitamin D-deficient diet containing 3% calcium and 0.6% phosphorus suppresses renal mitochondrial 25-hydroxyvitamin D3-1α-hydroxylase and stimulates the 25-hydroxyvitamin D3-24-hydroxylase as measured by in vitro assay. This alteration in the enzymatic activity takes place over a period of hours. The administration of parathyroid hormone rapidly suppresses the 25-hydroxyvitamin D3-24-hydroxylase. The alterations in the hydroxylases by parathyroid hormone or 1,25-dihydroxyvitamin D3 are not related to changes in serum clacium or phosphate but could be related to changes in intracellular levels of these ions. Actinomycin D or cycloheximide given in vivo reduces the 25-hydroxyvitamin D3-24-hydroxylase activity rapidly which suggests that the turnover of the enzyme and its messenger RNA is rapid (1- and 5-h half-life, respectively). The half-lives of the hydroxylases are sufficiently short to permit a consideration that the regulation by 1,25-dihydroxyvitamin D3 and parathyroid hormone may involve enzyme synthesis and degradation.  相似文献   

7.
8.
1α,25-Difluorovitamin D3 has been synthesized by reacting 1,25-dihydroxyvitamin D3-3-acetate with diethylaminosulfurtrifluoride followed by hydrolysis. Retention of configuration of the fluoro group in this reaction was demonstrated by physical studies using 1α-fluoro and 1β-fluorovitamin D3 models. The 1,25-difluorovitamin D3 compound possessed no vitamin D-like activity demonstrating the importance of 1α- and 25-hydroxylations of vitamin D for activity. However, 1,25-difluorovitamin D3 had no anti-25-hydroxylation activity and no antivitamin D activity. Since 25-fluorovitamin D3 has anti-25-hydroxylase activity, it appears the introduction of a fluoro group on the 1 position diminishes interaction of the vitamin D molecule with the 25-hydroxylase system.  相似文献   

9.
Kidney homogenates from chicks fed a vitamin D-deficient diet for 10 days and supplemented with 6.5 nmol of vitamin D3 48 hr prior to sacrifice metabolized invitro [3H]-25-hydroxyvitamin D3 (25-OH-D3) to 24,25-dihydroxyvitamin D3 [24,25-(OH)2-D3] and 3 other metabolites (peaks A, C and E). When the homogenates were incubated with purified [3H]-24,25-(OH)2-D3, 3 similar metabolites (peaks A′, C′ and E′) were produced. On high pressure liquid chromatography, peaks A, C and E migrated to exactly the same respective positions as peaks A′, C′ and E′. Kidney homogenates from D-deficient chicks failed to produce these metabolites from [3H]-25-OH-D3 or [3H]-24,25-(OH)2-D3. These results strongly suggest that the new metabolites reported here are synthesized via 24,25-(OH)2-D3 in the kidney of chicks supplemented with vitamin D3.  相似文献   

10.
Hepatic microsomes prepared from red-winged blackbirds (Agelaius phoeniceus) and albino rats were incubated with N,N-dimethylaniline (DMA)_in complete incubation mixtures at pH 7.9 and 37°C for 10 min. Formaldehyde and N,N-dimethylaniline-N-oxide produced from DMA were measured. Redwings were found to have significantly lower N-demethylation activities than rats, and redwings had only marginal or no N-oxidation activities. Hepatic microsomes from redwings did not further metabolize the N-oxide. The N-oxidation and N-demethylation activities of brown-headed cowbirds (Molothrus ater), common grackles (Quiscalus quiscula), and starlings (Sturnus vulgaris) were similar to those of redwings.  相似文献   

11.
Carbonyl compounds released during the NADPH-Fe dependent peroxidation of liver microsomal lipids and identified as 4-hydroxyalkenals (almost entirely as 4-hydroxynonenal) inhibit protein synthesis in a rabbit reticulocyte lysate. The ID50 was 0.48 mM. The inhibitory effect was reproduced by synthetic 4-hydroxynonenal. The inhibition was already evident at 1–2 min of incubation. The addition of ?SH groups to the incubation medium afforded a marked protection against the inhibition of protein synthesis. The inhibitory effect seems to be due to an interaction of the carbonyl compound with ?SH groups essential for the cellular protein synthetic machinery.  相似文献   

12.
Liver plasma membranes virtually free of contaminating mitochondria have been prepared. Sodium dodecylsulfate-polyacrylamide gel electrophoresis reveals a membrane protein resistant to papain digestion in the intact membranes but readily hydrolyzed in membranes disrupted by detergent or sonication.Electron microscopy of mechanically deformed membranes reveals fibrils within the membrane which appear to be protein in nature but which also persist in papain digested membranes.  相似文献   

13.
Catalytically active isoenzymes of rat liver monoamine oxidase have been copurified from the outer mitochondrial membrane by a novel method involving repetitive solubilization with octyl-β-d-glucopyranoside followed by reconstitution into lipid vesicles. As analyzed using sodium dodecyl sulfate-gel electrophoresis, the purified enzyme migrates as a single band of protein of molecular weight 60,000. The preparation is capable of metabolizing 576 nmol serotonin and 777 nmol β-phenylethylamine/min/mg protein. Apparent Km values and sensitivity to the inhibitor clorgyline are very similar for the purified and outer mitochondrial membrane-bound enzyme when determined with the substrates β-phenylethylamine, serotonin, and tyramine.  相似文献   

14.
The ability of four vitamin D analogs to inhibit the liver microsomal vitamin D-25-hydroxylase was determined. 19-Hydroxy-10(S),19-dihydrovitamin D3,25-fluorovitamin D3, 3 beta-hydroxy-9,10-seco-5,7,10(19)-choletrien-24-oic acid dimethylamide and 25-aza-vitamin D3 were competitive inhibitors with apparent KI values of 44, 137, and 870 nM, and 6.4 microM, respectively. The values for the 19-hydroxy-10(S), 19-dihydrovitamin D3, 25-fluorovitamin D3, and 25-aza-vitamin D3 correspond well to other literature reports with respect to their relative in vivo inhibitory properties. 24-Oxovitamin D3 oxime also proved to be a potent inhibitor but a detailed analysis was prohibited by the lack of material. The 3 beta-hydroxy-9,10-seco-5,7,10(19)-choletrien-24-oic acid dimethylamide was also tested in vivo but had no antagonistic activity when provided at a 2000-fold excess over vitamin D3.  相似文献   

15.
A primary confluent culture of epithelial cells from rat kidney has been developed. These cells possess a 3.2–3.4 S high-affinity, low-capacity binding protein for 1,25-dihydroxyvitamin D3. They metabolize 25-hydroxyvitamin D3 to at least five metabolites. Two have been identified as 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3. Two others have been identified by means of physical data and cochromatography as trans 19-nor-10-oxo-25-hydroxyvitamin D3 and the other as its cis isomer. These two “metabolites” have not been observed in vivo, but one of them (cis) comigrates with 1,25-dihydroxyvitamin D3 on straight-phase high-performance liquid chromatography. Thus, mere cochromatography on high-performance liquid chromatography is not sufficient to identify critical vitamin D metabolites.  相似文献   

16.
To understand better dietary regulation of intestinal calcium absorption, a quantitative assessment of the metabolites in plasma and duodenum of rats given daily doses of radioactive vitamin D3 and diets differing in calcium and phosphorus content was made. All known vitamin D metabolites were ultimately identified by high-pressure liquid chromatography. In addition to the known metabolites (25-hydroxyvitamin D3, 24,25-dihydroxyvitamin D3, 1,25-dihydroxyvitamin D3, 25,26-dihydroxyvitamin D3, and 1,24,25-trihydroxyvitamin D3), several new and unidentified metabolites were found. In addition to 1,25-dihydroxyvitamin D3 and 1,24,25-trihydroxyvitamin D3, the levels of some of the unknown metabolites could be correlated with intestinal calcium transport. However, whether or not any of these metabolites plays a role in the stimulation of intestinal calcium absorption by low dietary calcium or low dietary phosphorus remains unknown.  相似文献   

17.
Release of DNA polymerase from rat liver chromatin on incubation with NAD   总被引:3,自引:0,他引:3  
  相似文献   

18.
The intramembrane localization of linoleoyl-CoA desaturase in rat liver microsomes was examined by various methods, such as digestion by proteases, effect of detergents, and inhibition by the antibodies against purified terminal desaturase. Exposure of the desaturase on the surface of microsomal vesicles was suggested by the fact that the enzyme activity in the intact microsomes was susceptible to tryptic digestion, and considerably inhibited by anti-desaturase antibodies. When microsomes were previously treated with trypsin, the enzyme became more susceptible to the antibodies. Furthermore, it was demonstrated that the protein fragments cleaved from microsomal membranes by tryptic digestion formed a single precipitin line with the antibodies by the double-immunodiffusion test. These findings suggest the presence of linoleoyl-CoA desaturase on the cytoplasmic surface in the endoplasmic reticulum, since tryptic digestion liberates only the protein components situated on the surface area of membranes. In addition, desaturase activity in the intact microsomes was not stimulated by addition of the detergent, indicating the further outside location of the active site of the enzyme in microsomal vesicles. The pretreatment of microsomes with a low concentration (0.05%) of sodium deoxycholate, which destroys the permeability barrier for macromolecules without membrane disassembly, did not increase the susceptibility to tryptic digestion and the antibodies. These results show that linoleoyl-CoA desaturase is not present in a latent state in the membrane.  相似文献   

19.
Brief exposure to intoxicating levels of ethanol in the male rat produced a marked reduction in a major hepatic enzyme responsible for estrogen metabolism (estrogen-2-hydroxylase). After 4 days of ethanol administration the specific activity of this enzyme decreased by 70% and remained decreased for 6 days following alcohol withdrawal. Enzyme activity returned to control levels by two weeks. However, if animals were retreated with ethanol for one day each week the enzyme activity remained low. Kinetic analysis of the enzymatic activity from ethanol-treated rats showed a decrease in specific activity (Vmax) with no alteration in substrate affinity (apparent Km). The decrease in enzyme activity persisted long after ethanol disappeared from the blood and concentrations of ethanol from 20–100 mM had no effect on enzyme activity when added in vitro. A similar effect of ethanol on hepatic estrogen metabolism in humans may partially explain the elevated serum estrogen levels and the signs of hyperestrogenization observed in male alcoholic patients.  相似文献   

20.
The binding of the natural and unnatural diastereoisomers 25-hydroxyvitamin D3-26,23-lactone and 1,25 dihydroxyvitamin D3-26,23-lactone to the vitamin D-binding protein (DBP) and 1,25 dihydroxyvitamin D3 [1,25(OH)2D3] chick intestinal receptor have been investigated. Also, the biological activities, under in vivo conditions, of these compounds, in terms of intestinal calcium absorption (ICA) and bone calcium mobilization (BCM), in the chick are reported. The presence of the lactone ring in the C23-C26 position of the seco-steroid side chain increased two to three times the ability of both 25(OH)D3 and 1,25(OH)2D3 to displace 25(OH)[3H]D3 from the D-binding protein; however, the DBP could not distinguish between the various diastereoisomers. In contrast, the unnatural form (23R,25S) of the 25-hydroxy-lactone was found to be 10-fold more potent than the natural form, and the unnatural (23R,25S)1,25(OH)2D3-26,23-lactone three times more potent than the natural 1,25-dihydroxy-lactone in displacing 1,25(OH)2[3H]D3 from its intestinal receptor. While studying the biological activity of these lactone compounds, it was found that the natural form of the 25-hydroxy-lactone increased the intestinal calcium absorption 48 h after injection (16.25 nmol), while bone calcium mobilization was decreased by the same dose of the 25-hydroxy-lactone. The 1,25-dihydroxyvitamin D3-26,23-lactone in both its natural and unnatural forms was found to be active in stimulating ICA and BCM. These results suggest that the 25-hydroxy-lactone has some biological activity in the chick and that 1,25(OH)2D3-26,23-lactone can mediate ICA and BCM biological responses, probably through an interaction with 1,25-(OH)2D3 specific receptors in these target tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号