首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysophospholipase D (EC 3.1.4.-) activity was demonstrated in rat kidneys, intestines, lungs, testes, and liver. The liver enzyme was studied in greatest detail and its labeled products were identified by chemical and Chromatographic techniques. This enzyme hydrolyzes 1-[1-14C]hexadecyl-sn-glycero-3-phosphoethanolamine and 1-[1-14C]hexadecyl-sn-glycero-3-phosphocholine to yield 1-[1-14C]hexadecyl-sn-glycero-3-phosphate; the initial product is subsequently dephosphorylated by a phosphohydrolase in microsomes to form 1-[1-14C]hexadecyl-sn-glycerol. The possibility that phospholipase C and a phosphotransferase were responsible for the formation of 1-[1-14C]hexadecyl-sn-glycero-3-phosphate was ruled out. Neither 1-[1-14C]hexadecyl-2-acyl-sn-glycero-3-phosphoethanolamine nor 1-[1-14C]hexadecyl-2-acyl-sn-glycero-3-phosphocholine was hydrolyzed. The enzyme requires Mg2+, is inhibited by Ca2+, and is stimulated by high salt concentrations; it is localized in the microsomal fraction and has a pH optimum between 7.0 and 7.6. Inhibition by sulfhydryl reagents and protection by glutathione and dithiothreitol suggest that a sulfhydryl group is required for activity. The enzyme is inhibited by detergents and by organic solvent extraction. It appears to be tightly bound to the microsomes, since repeated freeze-thawing or sonication did not release the activity, and trypsin digestion (either in the presence or in the absence of 0.04% deoxycholate) did not destroy the activity. Lysophospholipase D was previously known to occur only in brain (R. L. Wykle and J. M. Schremmer, 1974, J. Biol. Chem., 249, 1742–1746).  相似文献   

2.
The subunits of the F0 membrane sector of bovine heart mitochondrial H+-ATPase that contact the lipids of the mitochondrial inner membrane were identified with the use of specially synthesized proteoliposomes that contained active mitochondrial H+-ATPase and a photoreactive lipid, which was 1-acyl-2-[12-[di-azocyclopentadiene-2-carbonylamino)-[12-14C]dodecanoyl]-sn-glycero-3-phosphocholine, 1-acyl-2-[11-([125I]diazoiodocyclopentadiene-2-carbonyloxy)undecanoyl]-sn-glycero-3-phosphocholine, or 1-acyl-2-[12-(diazocyclopentadiene-2-carbonylamino)dodecanoyl]-sn-glycero-3-phosphocholine, where acyl is a mixture of the residues of palmitic (70%) and stearic (30%) acids. An analysis of the cross-linked products obtained upon the UV-irradiation of these proteoliposomes indicated that subunits c and a of the F0 membrane sector contact the lipids. The crosslinked products were identified by SDS-PAGE and MALDI mass spectrometry.  相似文献   

3.
Abstract— [1-14C]Arachidonic acid was incorporated into brain lipids with a half-life of approx. 5 min. Within 40 min after intra-cerebral injection, radioactivity was distributed mainly among the diacyl-sn-glycero-3-phosphorylcholine (45 per cent), diacyl-sn-glycero-3-phosphorylinositol (22 per cent), diacyl-sn-glycero-3-phosphorylethanolamine (14 per cent) and triacylglycerols (9 per cent). At comparable times, the proportions of radioactivity distributed in diacyl-sn-glycero-3-phosphorylserines and alkenylacyl-sn-glycero-3-phosphorylethanolamines were relatively small. Radioactivity was initially incorporated into the phosphatidio acids and diacylglycerols before labelling of the triacylglycerols and other phosphogly-cerides. The relative specific activity of diacylglycerols was maximum between 3–6 min after injection. Due to the small level of diacyl-sn-3-phosphorylinositol present in brain, its relative specific radioactivity was higher than other types of brain phosphoglycerides. Results of the experiment thus indicate that labelled arachidonic acid is an excellent precursor for metabolic studies with regard to acyl groups present in the 2-position of the phosphoglyceride molecules. Furthermore, this labelled precursor is specially useful in studies related to metabolism of diacyl-sn-glycero-3-phosphorylinositol in brain.  相似文献   

4.
Acyltransferases are present in microsomes from alveolar type II cell adenomas (produced by urethan injections) that transfer palmitic acid in the presence of CoA, ATP, and Mg++ to sn-glycerol-3-P to form phosphatidic acid, to dihydroxyacetone-P to form acyldihydroxyacetone-P, and to 1-acyl-sn-glycero-3-phosphocholine to form 3-sn-phosphatidylcholine. The data clearly demonstrate that the microsomal preparations can catalyze significant incorporation of palmitic acid into the 2-position of the disaturated species of 3-sn-phosphatidylcholine independently of phosphatidic acid formation as evidenced by the fact that sn-glycerol-3-P and calcium ions (which inhibit choline phosphotransferase) did not influence the incorporation of palmitic acid into the main surfactant lipid. Thus, a deacylation-acylation reaction involving 2-lysophosphatidylcholine appears to be an important pathway for the synthesis of surfactant lipid in alveolar type II cells; the control of acyl specificity at the 2-position is determined by the relative concentrations of the coparticipating substrates, l-palmitoyl-sn-glycero-3-phosphocholine and palmitoyl-CoA.  相似文献   

5.
The metabolism of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet-activating factor) was studied using various cultured cell lines. All incubations were done in the presence of bovine serum albumin and serum-free media, since albumin eliminates the adsorption of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine to cultureware and serum enzymes interfere. Human leukemia (HL-60) cells, MDCK canine kidney cells, and transformed and nontransformed clones of mouse C3H1OT1/2 cells display varying rates of uptake, degradation, and capacities for reacylation of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine. HL-60 cells displayed the highest uptake rate (24.6 pmol/mg cell protein/15 min). Whereas C3H10T1/2 cells in culture showed uptake rates comparable to other cells tested, they displayed a relative metabolic inertness towards 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine.  相似文献   

6.
An enzyme preparation was isolated from rat lung cytosol with the capability to transfer the fatty acyl chain from 1-acyl-sn-glycero-3-phosphocholine to water and to another molecule of 1-acyl-sn-glycero-3-phosphocholine. The evidence presented to indicate that a single protein confers both activities includes: (a) both normal and sodium dodecyl sulfate polyacrylamide disc gel electrophoresis showed a single protein band, and (b) heat treatment and preincubation with increasing amounts of diisopropylfluorophosphate resulted in concomitant loss of fatty acid and phosphatidylcholine formation. The enzyme converted 1-[9,10-3H2]stearoyl-sn-glycero-3-phospho[14C-methyl]choline into phosphatidylcholine with an isotopic 3H/14C ratio twice that of the substrate, even when an excess of unlabeled fatty acid was present. The acyl group from palmitoyl-propanediol (1,3)-phosphocholine and palmitoyl-propanediol (1,3)-phosphoethanolamine could be transferred to lysophosphatidylcholine acceptor to yield phosphatidylcholine. Neither acylglycerols and cholesterol nor glycero-3-phosphate and glycero-3-phosphocholine served as acyl acceptors. Lysophosphatidylethanolamine and lysophosphatidyglycerol were converted also into the corresponding diacylphospholipids. Palmitoyllysophosphatidylcholine is preferentially converted into phosphatidylcholine when compared with stearoyllysophosphatidylcholine. The possible involvement of the enzyme in the synthesis of dipalmitoylphosphatidylcholine for the production of lung surfactant is discussed.  相似文献   

7.
Rabbit peritoneal neutrophils incorporated [14C]arachidonic acid into seven molecular species of choline-containing phosphoglycerides. These 2-[14C]arachidonoyl species differed with respect to the alkyl ether or acyl residue bound at the sn-1 position; four of the seven were ether-linked. Stimulation with calcium ionophore A23187 induced a proportionate release of arachidonate from all seven molecular species: 40% of the released arachidonate came from alkyl ether species. Thus, 1-O-alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine (GPC) is a significant source of metabolizable arachidonic acid. Since 1-O-alkyl-2-lyso-GPC is the metabolic precussor of platelet activating factor, these results further interrelate pathways forming arachidonate metabolites and platelet activating factor; they also supply a rationale for the observation that both classes of stimuli form concomitantly during cell activation.  相似文献   

8.
1-O-Hexadecyl-2-O-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) stimulated the degranulation of rabbit platelets and human neutrophils, whereas the enantiomer, 3-O-hexadecyl-2-O-acetyl-sn-glycero-1-phosphocholine, was inactive. The analogs compared had the following relative potencies in degranulating platelets and neutrophils: 1-O-hexadecyl-2-O-acetyl-sn-glycero-3-phosphocholine > 1-O-hexadecyl-2-O-ethyl-sn-glycero-3-phosphocholine >rac-1-O-octadecyl-2-O-ethylglycero-3-phosphocholine = 1-O-hexadecyl-2-O-methyl-sn-glycero-3-phosphocholine >rac-1-O-dodecyl-2-O-ethyl-glycero-3-phosphocholine. The deacetylated compound, 1-O-hexadecyl-2-lyso-sn-glycero-3-phosphocholine, and 1-O-hexadecyl-2,2-dimethylpropanediol-3-phosphocholine were inactive. The active analogs selectively desensitized the response to each other in the neutrophils. It is suggested that these compounds may activate cells through interaction with a stereospecific receptor.  相似文献   

9.
The effect of synthetic 1-O-octadecyl-2-O-acetyl-sn-glycero-3-phosphocholine (PAF-acether) and of 1-O-octadecyl-sn-glycero-3-phosphocholine (lyso-PAF-acether) on human neutrophil migration was studied in modified Boyden chambers, with the following results: (1) By checker-board analysis and deactivation experiments, the factors are chemokinetic at low (10?8 M) and chemotactic at higher concentrations (10?6 M), with lyso-PAF-acether being less potent at all concentrations. (2) Cross-deactivation occurs between the two PAF compounds, but not with two other chemotactic factors, suggesting a specific, common receptor for the PAFs on the neutrophil membrane. (3) Other chemotactic substances may act as potentiating or additive factors to the PAF compounds. (4) Inhibition of arachidonic acid turnover during chemotaxis by compound BW 755 C enhances leukocyte chemotaxis towards the PAF compounds and towards other chemotactic factors. The data suggest that PAF and its lyso-derivate may contribute in a unique and potent fashion to leukocyte accumulation at inflammatory sites.  相似文献   

10.
A possible role for an acidic subcellular compartment in biosynthesis of lung surfactant phospholipids was evaluated with granular pneumocytes in primary culture. Incubation with chloroquine (100μm) was used to perturb this compartment. With control cells, incorporation of [9,10-3H]palmitic acid into total lipids and into total phosphatidylcholines increased linearly with time up to 4h. Total incorporation into phosphatidylcholine during a 1h incubation was 999+85pmol of [9,10-3H]palmitic acid, 458±18pmol of [1-14C]oleic acid and 252±15pmol of [U-14C]glucose per μg of phosphatidylcholine phosphorus. The cellular content of either disaturated phosphatidylcholine or total phosphatidylcholines did not change during a 2h incubation with chloroquine. In the presence of chloroquine, the specific radioactivity of [3H]palmitic acid in disaturated phosphatidylcholine increased by 40%, and that of disaturated-phosphatidylcholine fatty acids from [U-14C]glucose increased by 125%. Incorporation of [1-14C]oleic acid into phosphatidylcholine was decreased by chloroquine by 79% and 33% in the presence or absence of palmitic acid respectively. Chloroquine stimulated phospholipase activity in intact cells, and in sonicated cells at pH4.0, but not at pH8.5. The observations indicate that chloroquine stimulates synthesis of disaturated phosphatidylcholine in granular pneumocytes from fatty acids, both exogenous and synthesized de novo, which can be due to stimulation of acidic phospholipase. This stimulation of acidic phospholipase A activity by chloroquine appears to be coupled to the synthesis of disaturated phosphatidylcholine, thereby enhancing remodelling of phosphatidylcholine synthesized de novo. Our findings, therefore, implicate the involvement of an acidic subcellular compartment in the remodelling pathway of disaturated phosphatidylcholine synthesis by granular pneumocytes.  相似文献   

11.
The unnatural amino-alcohol, N-isopropylethanolamine, is incorporated into a phospholipid by monolayers of L-M fibroblasts. This phospholipid was identified as 1,2-diacyl-sn-glycero-3-phosphoisopropylethanolamine by using chemical and enzymatic procedures combined with thin-layer and gas-liquid chromatography. Since the phospho-N-isopropylethanolamine moiety is removed by phospholipase C, the stereochemistry of the phospholipid analog is identical to naturally occurring phosphoglycerides. Incubation of cells in 10 mM N-isopropylethanolamine inhibited the incorporation of [14C]choline and [14C]ethanolamine into phospholipids and stimulated the incorporation of [1-14C]palmitic acid and [1-14C]hexadecanol into triacylglycerols and alkyldiacylglycerols. These results indicate that N-isopropylethanolamine affects glycerolipid synthesis at the diradylglycerol branch point.  相似文献   

12.
Four naturally occurring platelet-activating factor (PAF) analogs, 1-alk-1'-enyl-2-acetyl-sn-glycero-3-phosphocholine, 1-hexade-canoyl-2-acetyl-sn-glycero-3-phosphocholine, 1-octadecanoyl-2-acetyl-sn-glycero-3-phosphocholine, and 1-alkyl-2-acetyl-sn-glycero-3-phosphoethanolamine, stimulated human neutrophils (PMN) to mobilize Ca2+, degranulate, and produce Superoxide anion. They were, respectively, 5-, 300-, 500-, and 4000-fold weaker than PAF in each assay; inhibited PMN-binding of [3H]PAF at concentrations paralleling their biological potencies; and showed sensitivity to the inhibitory effects of PAF antagonists. PAF and the analogs, moreover, desensitized PMN responses to each other but not to leukotriene B4 and actually increased (or primed) PMN responses to N-formyl-MET-LEU-PHE. Finally, 5-hydroxyicosatetraenoate-enhanced PMN responses to PAF and the analogs without enhancing the actions of other stimuli. It stereospecifically raised each analog's potency by as much as 100-fold and converted a fifth natural analog, 1-alk-1'-enyl-2-acetyl-sn-glycero-3-phosphoethanolamine from inactive to a weak stimulator of PMN. PAF and its analogs thus represent a structurally diverse family of cell-derived phospholipids which can activate, prime, and desensitize neutrophils by using a common, apparently PAF receptor-dependent mechanism.  相似文献   

13.
This report describes the in vivo metabolism of a new class of naturally occurring biologically active phospholipids (1-alkyl-2-acetyl-sn-glycero-3-phosphocholines) that can cause hypotension and platelet aggregation. After intravenous injection in male rats, the acetylated ether phospholipid (1-[1′,2′-3H]alkyl) is rapidly cleared (T12 ?30 s) from blood and its metabolites are found in a variety of tissues. The tissues containing the highest levels of radioactivity are lung, liver, spleen, and kidney. Chromatographic results showed that a considerable portion of the active lipid is not readily catabolized in some of the major tissues examined; however, inactive metabolites were also found, mainly 1-alkyl-2-lyso-sn-glycero-3-phosphocholine and 1-alkyl-2-acyl-sn-glycero-3-phosphocholine; the latter has a long chain fatty acid at the sn-2 position instead of the acetate. The findings are consistent with our earlier data that show these same tissues have the most active enzyme systems for metabolizing 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine.  相似文献   

14.
Part of a phase diagram for the system 1-palmitoyl-sn-glycero-3-phosphocholine (PamGroPCho)/oleic acid/water has been constructed from mainly 31P-NMR data and a previous determination of the phase equilibria of the binary PamGroPCHo/water system. It was found that the appearance of the phase diagram is very similar to those found for several simple soap/fatty acid/water or soap/long-chain alcohol/water systems. The most striking features observed are: (1) the lamellar phase can swell towards very high water contents (2) vesicles are formed after sonication and (3) the cubic liquid crystalline phase disappears upon addition of very small amounts of oleic acid. The self-association of the amphiphiles and the shape of the aggregates are discussed in terms of existing first-order approximative theories.  相似文献   

15.
Rat liver 60-kDa lysophospholipase-transacylase catalyzes not only the hydrolysis of 1-acyl-sn-glycero-3-phosphocholine, but also the transfer of its acyl chain to a second molecule of 1-acyl-sn-glycero-3-phosphocholine to form phosphatidylcholine (H. Sugimoto, S. Yamashita, J. Biol. Chem. 269 (1994) 6252–6258). Here we report the detailed characterization of the transacylase activity of the enzyme. The enzyme mediated three types of acyl transfer between donor and acceptor lipids, transferring acyl residues from: (1) the sn-1 to -1(3); (2) sn-1 to -2; and (3) sn-2 to -1 positions. In the sn-1 to -1(3) transfer, the sn-1 acyl residue of 1-acyl-sn-glycero-3-phosphocholine was transferred to the sn-1(3) positions of glycerol and 2-acyl-sn-glycerol, producing 1(3)-acyl-sn-glycerol and 1,2-diacyl-sn-glycerol, respectively. In the sn-1 to -2 transfer, the sn-1 acyl residue of 1-acyl-sn-glycero-3-phosphocholine was transferred to not only the sn-2 positions of 1-acyl-sn-glycero-3-phosphocholine, but also 1-acyl-sn-glycero-3-phosphoethanolamine, producing phosphatidylcholine and phosphatidylethanolamine, respectively. 1-Acyl-sn-glycero-3-phospho-myo-inositol and 1-acyl-sn-glycero-3-phosphoserine were much less effectively transacylated by the enzyme. In the sn-2 to -1 transfer, the sn-2 acyl residue of 2-acyl-sn-glycero-3-phosphocholine was transferred to the sn-1 position of 2-acyl-sn-glycero-3-phosphocholine and 2-acyl-sn-glycero-3-phosphoethanolamine, producing phosphatidylcholine and phosphatidylethanolamine, respectively. Consistently, the enzyme hydrolyzed the sn-2 acyl residue from 2-acyl-sn-glycero-3-phosphocholine. By the sn-2 to -1 transfer activity, arachidonic acid was transferred from the sn-2 position of donor lipids to the sn-1 position of acceptor lipids, thus producing 1-arachidonoyl phosphatidylcholine. When 2-arachidonoyl-sn-glycero-3-phosphocholine was used as the sole substrate, diarachidonoyl phosphatidylcholine was synthesized at a rate of 0.23 μmol/min/mg protein. Thus, 60-kDa lysophospholipase-transacylase may play a role in the synthesis of 1-arachidonoyl phosphatidylcholine needed for important cell functions, such as anandamide synthesis.  相似文献   

16.
On the mechanism of action of lysophospholipase-transacylase from rat lung   总被引:1,自引:0,他引:1  
Lysophospholipase-transacylase from rat lung catalyzes the transfer of palmitate from 1-palmitoyl-sn-glycero-3-phosphocholine to water and to another molecule of 1-palmitoyl-sn-glycero-3-phosphocholine. Incorporation of palmitate into phosphatidylcholine is restricted to palmitate donated by lysophosphatidylcholine, free palmitate cannot be esterified to lysophosphatidylcholine by the enzyme. Experiments in the presence of H218O and mass spectrometric analysis of the reaction products show that 18O is incorporated into the released palmitate but not into the transesterification product phosphatidylcholine. This proofs that the hydrolytic reaction proceeds by O-acyl cleavage. Furthermore, the results strongly suggest that transfer of palmitate to lysophosphatidylcholine occurs through an intermediary covalent acyl-enzyme complex.  相似文献   

17.
Summary Investigations were performed on the influence of the phospholipid composition and physicochemical properties of the rat liver microsomal membranes on acyl-CoA synthetase and acyl-CoA : 1-acyl-sn-glycero-3-phosphocholine O-acyltransferase activities. The phospholipid composition of the membranes was modified by incubation with different phospholipids in the presence of lipid transfer proteins or by partial delipidation with exogenous phospholipase C and subsequent enrichment with phospholipids. The results indicated that the incorporation of phosphatidylglycerol, phosphatidylserine and phosphatidylethanolamine induced a marked activation of acyl-CoA synthetase for both substrates used—palmitic and oleic acids. Sphingomyelin occurred as specific inhibitor for this activity especially for palmitic acid. Palmitoyl-CoA: and oleoyl-CoA : lacyl-sn-glycero-3-phosphocholine acyltransferase activities were found to depend on the physical state of the membrane lipids. The alterations in the membrane physical state were estimated using two different fluorescent probes—1,6-diphenyl-1,3,5-hexatriene and pyrene. In all cases of membrane fluidization this activity was elevated. On the contrary, in more rigid membranes obtained by incorporation of sphingomyelin and dipalmitoylphosphatidylcholine, acyltransferase activity was reduced for both palmitoyl-CoA and oleoyl-CoA. We suggest a certain similarity in the way of regulation of membrane-bound acyltransferase and phospholipase A2 which both participate in the deacylation-reacylation cycle.  相似文献   

18.
Chemically synthesized 1-O-hexadecyl-2-O-acetyl-sn-glycero-3-phosphocholine possessed the most potent hypotensive activity compared with bradykinin, prostagrandin E2 and I2 when 5 nano moles/kg body weight of each drug were administered intravenously in spontaneously hypertensive rat. The potency and the duration of hypotensive activity of 1-O-hexadecyl-2-O-acetyl-sn-glycero-3-phosphocholine were dose dependent. Exogenous norepinephrine or angiotensin II showed pressor activity during the hypotensive action of 1-O-hexadecyl-2-O-acetyl-sn-glycero-3-phosphocholine, but did not disturb the hypotensive pattern of this ether lipid. These may suggest that 1-O-alkyl-2-O-acetyl-sn-glycero-3-phosphocholine plays an important role for the regulation of blood pressure.  相似文献   

19.
Reaction of 1-fattyacyl-sn-glycero-3-phosphorylcholine with triphenylphosphine — carbon tetrachloride gave 3-fattyacyl-2-chloro-2-deoxy-sn-glycero-1-phosphorylcholine together with small amounts of other chlorodeoxy isomers. 1-Chloro-1-deoxy-2-palmitoyl-rac-glycero-3-phosphorylcholine was prepared by total synthesis from 3-chloro-2-iodopropyl palmitate. The main step in the synthesis involves the nucleophilic displacement of iodide at C-2 with dibenzyl phosphate anion, which proceeds with an acyloxy migration, leading to the key intermediate 1-chloro-1-deoxy-2-palmitoyl-rac-glycero-3-(dibenzyl phosphate). Hydrogenolysis of this phosphate triester, followed by esterification with choline acetate gave the final product. The properties of the products support an earlier conclusion that the so-called “cyclic lysolecithin” is a mixture of isomeric acyl-chloro-deoxy-glycero-phosphorylcholines in which 1-chloro-1-deoxy-2-acyl-glycero-3-phosphorylcholine is the major component.  相似文献   

20.
Ethanolamine plasmalogens (1-alk-1′-enyl-2-acyl-sn-glycero-3-phosphoethanolamines) of many tissues contain high levels of arachidonate at their 2-position, and in certain tissues have been implicated as possible donors of arachidonate required in the synthesis of prostaglandins and thromboxanes. In the present study, [3H]arachidonate-labeled phospholipids of HSDM1C1 cells, a cell line derived from a mouse fibrosarcoma, were examined to determine the donor of the arachidonic acid released upon bradykinin stimulation of the synthesis of PGE2. HSDM1C1 cells labeled with [3H]arachidonic acid for 24 hr in serum-free medium were used in most of the experiments and had the following distribution of label among the cellular lipids; phosphatidylcholine (33%), phosphatidylinositol (20%), diacyl-sn-glycero-3-phosphoethanolamine (15%), ethanolamine plasmalogen (15%), and less polar lipids (16%). Bradykinin treatment stimulated a rapid hydrolysis of [3H]arachidonate from the cellular lipids and conversion of the released acid to PGE2, which was secreted into the medium. The label was released predominantly from phosphatidylinositol and possibly from phosphatidylcholine with no detectable change in the labeling of diacyl- or 1-alk-1′-enyl-2-acyl-sn-glycero-3-phosphoethanolamine. The ethanolamine plasmalogens, therefore, do not appear to be involved in the stimulated release of arachidonate in the HSDM1C1 cells. Indomethacin blocked the bradykinin-stimulated synthesis of PGE2 and to a lesser degree inhibited the release of [3H]-arachidonate from the cellular lipids into the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号