首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Saponin-permeabilization (30 µg/ml) of the platelet plasma membrane, which enables access of added compounds to mitochondrial overt carnitine palmitoyltransferase (CPT I), was applied to allow the rapid determination of CPT I activity in situ. The effects of diabetes and short-term incubation with insulin in vitro on the kinetic parameters and malonyl-CoA sensitivity of CPT I were also studied in rat platelets. CPT I exhibited ordinary Michaelis-Menten kinetics when platelets were incubated with palmitoyl-CoA. Malonyl-CoA showed an I50 (concentration giving 50% inhibition of CPT activity) of 0.92 ± 0.11 µM in permeabilized platelets. Platelets obtained from diabetic rats (induced by streptozotocin injection) exhibited an increased Vmax. and I50 for malonyl-CoA, and an unaltered Km for palmitoyl-CoA. In contrast, preincubation of platelets prepared from both fed control rats and diabetic rats with insulin (100 and 150 µ-cU/ml) led to a decrease in enzyme activity when assayed with 75 µM palmitoyl-CoA and 0.5 mM L-carnitine as substrates. These in vivo and in vitro results suggested that insulin directly modulated rat platelet CPT I activity, as it does in the liver.  相似文献   

2.
Overt carnitine palmitoyl transferase (CPT1) activity was measured in liver mitochondria from foetal rats (21 days gestation) and from neonatal rats (1 day post-partum). Birth was accompanied by a 6-fold increase in CPT1 activity, a 14-fold decrease in sensitivity to inhibition by malonyl CoA and an increase in the nH and the S0.5 from palmitoyl CoA. The activity of latent enzyme (CPT2) was unaffected at birth.  相似文献   

3.
The carnitine palmitoyltransferase activity of various subcellular preparations measured with octanoyl-CoA as substrate was markedly increased by bovine serum albumin at low M concentrations of octanoyl-CoA. However, even a large excess (500 M) of this acyl-CoA did not inhibit the activity of the mitochondrial outer carnitine palmitoyltransferase, a carnitine palmitoyltransferase isoform that is particularly sensitive to inhibition by low M concentrations of palmitoyl-CoA. This bovine serum albumin stimulation was independent of the salt activation of the carnitine palmitoyltransferase activity. The effects of acyl-CoA binding protein (ACBP) and the fatty acid binding protein were also examined with palmitoyl-CoA as substrate. The results were in line with the findings of stronger binding of acyl-CoA to ACBP but showed that fatty acid binding protein also binds acyl-CoA esters. Although the effects of these proteins on the outer mitochondrial carnitine palmitoyltransferase activity and its malonyl-CoA inhibition varied with the experimental conditions, they showed that the various carnitine palmitoyltransferase preparations are effectively able to use palmitoyl-CoA bound to ACBP in a near physiological molar ratio of 1:1 as well as that bound to the fatty acid binding protein. It is suggested that the three proteins mentioned above effect the carnitine palmitoyltransferase activities not only by binding of acyl-CoAs, preventing acyl-CoA inhibition, but also by facilitating the removal of the acylcarnitine product from carnitine palmitoyltransferase. These results support the possibility that the acyl-CoA binding ability of acyl-CoA binding protein and of fatty acid binding protein have a role in acyl-CoA metabolismin vivo.Abbreviations ACBP acyl-CoA binding protein - BSA bovine serum albumin - CPT carnitine palmitoyltransferase - CPT0 malonyl-CoA sensitive CPT of the outer mitochondrial membrane - CPT malonyl-CoA insensitive CPT of the inner mitochondrial membrane - OG octylglucoside - OMV outer membrane vesicles - IMV inner membrane vesicles Affiliated to the Department of Experimental Medicine, University of Montreal  相似文献   

4.
We investigated the effects of protons and calcium ions on the voltage-dependent gating of the hyperpolarization-activated, nonselective cation channel current, Ih, in rod photoreceptors. Ih is a cesium-sensitive current responsible for the peak-plateau sag during the rod response to bright light. The voltage dependence of Ih activation shifted about 5 mV per pH unit, with external acidification producing positive shifts and alkalinization producing negative shifts. Increasing external [Ca2+] from 3 to 20 mM resulted in a large (∼17 mV) positive shift in Ih activation. External [Ca2+] (20 mM) blocked pH-induced shifts in activation. Cytoplasmic acidification produced by 25 mM sodium acetate led to a negative shift in inactivation (−9 mV) and internal alkalinization produced with 20 mM ammonium chloride resulted in a positive shift (+6 mV). Surface charge binding and screening theory (Gouy-Chapman-Stern) accounted for the observed shifts in Ih activation, with the best fit achieved when protons and calcium ions were assumed to bind to distinct sites on the membrane. Since light induces changes in the retinal ionic environment, these results permit us to gauge the degree to which rod light responses could be modified via alterations in Ih activation.  相似文献   

5.
The ligand substitution reaction of Ru2(O2CCH3)4Cl with 2-amino-4,6-dimethylpyrimidine (Hadmpym) under gentle refluxing conditions in methanol led to the formation of a bridging-ligand mono-substituted compound, [Ru2(O2CCH3)3(admpym)(Cl)(MeOH)] (1). Compound 1 crystallized in monoclinic space group P21/n (no. 14) with a=8.3074(8) Å, b=12.3722(8) Å, c=18.913(1) Å, β=95.559(3)°, V=1934.8(3) Å3, and Z=4. Temperature dependence of the magnetic susceptibility of 1 revealed it to be in a spin ground state S=3/2 arising from the electronic configuration of σ2π4δ2(δ*π*)3. Compound 1 undergoes three metal-centered redox reactions in electrochemistry: E1/2 (ox)=+0.72 V (Ia/Ic<1, ΔEp=0.17 V); E1/2 (1,red)=−0.65 V (Ia/Ic≈1, ΔEp=0.10 V); and E1/2 (2,red)=−1.80 V (Ia/Ic?1, ΔEp=0.16 V). Then, the redox species produced by electrolysis were characterized by spectroscopic studies.  相似文献   

6.
The NAD+ dependent cytosolic Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) from arms of Octopus vulgaris, Cuvier, 1787, (Octopoda, Cephalopoda) was purified to homogeneity and its kinetic properties investigated. The purification method consisted of ammonium sulfate fractionation followed by Blue Sepharose CL-6B chromatography resulting in a 26-fold increase in specific activity and a final yield of approximately 16%. The apparent molecular weight of the purified native enzyme was 153 kDa. The protein is an homotetramer, composed of identical subunits with an apparent molecular weight of approximately 36 kDa. The Michaelis constants Km for both NAD+ and d-G3P were 66 μM and 320 μM, respectively. The maximal velocity Vmax of the purified enzyme was estimated to be 21.8 U/mg. Only one GAPDH isoform (pI 6.6) was obtained by isoelectrofocusing in polyacrylamide slab gels holding ampholyte generated pH gradients. Under the conditions of assay, the optimum activity occurs at pH 7.0 and at temperature of 35°C. Polyclonal antibodies raised in rabbits against the purified GAPDH immunostained a single 36 kDa GAPDH band on crude extract protein preparations blotted onto nitrocellulose.  相似文献   

7.
8.
A procedure for the purification of a stable acetyl-coenzyme A synthetase (ACS) from aerobic cells of Saccharomyces cerevisiae is presented. The steps include differential centrifugation, solubilization of the bound enzyme from the crude mitochondrial fraction, ammonium sulfate fractionation, crystallization to constant specific activity from ammonium sulfate solutions followed by Bio-Gel A-1.5 m column chromatography. The resulting enzyme preparation is homogeneous as judged by chromatography on Bio-Gel columns, QAE-Sephadex A-50 anion exchange columns, analytical ultracentrifugal studies, and polyacrylamide gel electrophoresis.Sedimentation velocity runs revealed a single symmetric peak with an s20,w value of 10.6. The molecular weight of the native enzyme, as determined by gel filtration and analytical ultracentrifugation, is 250,000 ± 500. In polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, the molecular weight of the single polypeptide chain is 83,000 ± 500. The purified enzyme is inhibited by palmityl-coenzyme A with a Hill interaction coefficient, n, of 2.88. These studies indicate that the ACS of aerobic S. cerevisiae is composed of three subunits of identical or nearly identical size.  相似文献   

9.
Reactions of dichlorodioxobis(triphenylphosphine oxide)molybdenum(VI) complexes with ammonium/sodium salts of O,O-dialkyl(alkylene) and diphenyl dithiophosphoric acids in 1:1 molar ratio in dichloromethane solution yield dioxomolybdenum complexes of the types, MoO2Cl[S2P(OR)2] · OPPh3 (R=Me, Et, i-Pr, Ph) and MoO2Cl[S2] · OPPh3. (G=-CH2CMe2CH2O-, -OCMe2CMe2O-). These newly synthesized compounds were characterized by IR, UV-visible and 1H NMR spectroscopy and elemental analysis. The molecular structure of MoO2Cl2(OSMe2)2 was determined by single-crystal X-ray diffraction. MoO2Cl2(OSMe2)2 crystallizes as orthorhombic in the space group Pbca with cell parameters a=13.7235(3) Å, b=12.2429(2) Å, c=14.3356(3) Å, V=2408.60(8) Å−3, Z=8, R=0.0221, Rw=0.0519. There are two cis oxo ligands, two cis dimethylsulphoxide moieties and two trans chlorine atoms in a distorted octahedral environment around molybdenum.  相似文献   

10.
A major triticale (X Triticosecale Wittmack) endosperm acid phosphatase (EC 3.1.2.2) (APase) from sib-lines producing plump and shriveled seed was purified 140- and 230-fold to a specific activity of 94 and 153 micromoles per minute per milligram protein respectively, by ammonium sulfate fractionation, ion-exchange chromatography, chromatofocusing, affinity column chromatography, and gel filtration. The purified enzyme from both materials is a monomeric glycoprotein with an apparent molecular weight of 45,700 ± 500 containing 12% carbohydrate and an apparent isoelectric point of pH 5.9. It hydrolyzes tri- and di-phosphate of nucleosides as well as phosphate esters and exhibits characteristics of ATP-hydrolase and phosphatase. About 2-fold more of the APase was isolated from shriveled seeds, and the purified enzyme exhibited 3- and 5-fold higher Vmax for p-nitrophenyl phosphate and ATP, respectively, than that of plump seed. The I50 for Pi concentration was 5.5-fold higher in APase of shriveled seed than the plump one. These varied quantitative and kinetic properties substantiate the role of APase in lines with shriveled seeds being reduction of starch accumulation by depleting substrates and energy supply in the cytosol.  相似文献   

11.
We characterized the uptake of carnitine in brush-border membrane (BBM) and basolateral membrane (BLM) vesicles, isolated from mouse kidney and intestine. In kidney, carnitine uptake was Na+-dependent, showed a definite overshoot and was saturable for both membranes, but for intestine, it was Na+-dependent only in BLM. The uptake was temperature-dependent in BLM of both kidney and intestine. The BBM transporter in kidney had a high affinity for carnitine: apparent Km=18.7 μM; Vmax=7.85 pmol/mg protein/s. In kidney BLM, similar characteristics were obtained: apparent Km=11.5 μM and Vmax=3.76 pmol/mg protein/s. The carnitine uptake by both membranes was not affected within the physiological pH 6.5-8.5. Tetraethylammonium, verapamil, valproate and pyrilamine significantly inhibited the carnitine uptake by BBM but not by BLM. By Western blot analysis, the OCTN2 (a Na+-dependent high-affinity carnitine transporter) was localized in the kidney BBM, and not in BLM. Strong OCTN2 expression was observed in kidney and skeletal muscle, with no expression in intestine in accordance with our functional study. We conclude that different polarized carnitine transporters exist in kidney BBM and BLM. L-Carnitine uptake by mouse renal BBM vesicles involves a carrier-mediated system that is Na+-dependent and is inhibited significantly by specific drugs. The BBM transporter is likely to be OCTN2 as indicated by a strong reactivity with the anti-OCTN2 polyclonal antibody.  相似文献   

12.
An unprecedented hybrid vanadate, {MnII(2,2-bpy)}[{VVO2(2,2-bpy)}(VVO3)(VV2O6)], has been hydrothermally synthesized from the reaction of V2O5, 2,2-bipyridine, and MnCl2. It has been characterized by IR, XPS, TGA and single-crystal X-ray diffraction. The structure of the title compound is constructed from left-handed and right-handed V-O helical chains linked through modified binuclear {Mn(2,2-bpy)VVO4(2,2-bpy)} moieties into a double helical structure.  相似文献   

13.
Youg R. Thaker  Yin H. Yau 《FEBS letters》2009,583(7):1090-1095
Owing to the complex nature of V1VO ATPases, identification of neighboring subunits is essential for mechanistic understanding of this enzyme. Here, we describe the links between the V1 headpiece and the VO-domain of the yeast V1VO ATPase via subunit A and d as well as the VO subunits a and d using surface plasmon resonance and fluorescence correlation spectroscopy. Binding constants of about 60 and 200 nM have been determined for the a-d and d-A assembly, respectively. The data are discussed in light of subunit a and d forming a peripheral stalk, connecting the catalytic A3B3 hexamer with VO.

Structured summary

MINT-7012054: d (uniprotkb:P32366) binds (MI:0407) to A (uniprotkb:P17255) by fluorescence correlation spectroscopy (MI:0052)MINT-7012041: d (uniprotkb:P32366) binds (MI:0407) to A (uniprotkb:P17255) by surface plasmon resonance (MI:0107)MINT-7012028: d (uniprotkb:P32366) binds (MI:0407) to a (uniprotkb:P32563) by surface plasmon resonance (MI:0107)  相似文献   

14.
The shuttle system that mediates the transport of fatty acids across the mitochondrial membrane in invertebrates has received little attention. Carnitine O-palmitoyltransferase I (EC 2.3.1.21; CPT I) is a key component of this system that in vertebrates controls long-chain fatty acid β-oxidation. To gain knowledge on the acyltransferases in aquatic arthropods, physical, kinetic, regulatory and immunological properties of CPT of the midgut gland mitochondria of Macrobrachium borellii were assayed. CPT I optimum conditions were 34 °C and pH = 8.0. Kinetic analysis revealed a Km for carnitine of 2180 ± 281 μM and a Km for palmitoyl-CoA of 98.9 ± 8.9 μM, while Vmax were 56.5 ± 6.6 and 36.7 ± 4.8 nmol min− 1 mg protein− 1, respectively. A Hill coefficient, n ~ 1, indicate a Michaelis–Menten behavior. The CPT I activity was sensitive to regulation by malonyl-CoA, with an IC50 of 25.2 μM. Electrophoretic and immunological analyses showed that a 66 kDa protein with an isoelectric point of 5.1 cross-reacted with both rat liver and muscle-liver anti CPT I polyclonal antibodies, suggesting antigenic similarity with the rat enzymes. Although CPT I displayed kinetic differences with insect and vertebrates, prawn showed a high capacity for energy generation through β-oxidation of long-chain fatty acids.  相似文献   

15.
A relatively rapid five-step procedure was used in purifying to apparent homogeneity the glutamine synthetase from roots and one form of the enzyme (GSI) from leaves of rice. The steps were: preparation of crude extracts, ammonium sulfate precipitation, filtration on Sepharose 4B, fractionation on DEAE-Sephadex A25, and affinity chromatography on ADP-Sepharose 4B. The purified protein appeared as a single band on polyacrylamide gel electrophoresis. Leaf GSI and the second type of leaf glutamine synthetase (GSII) formed distinct peaks when eluted from DEAE-Sephadex (step 4). The root enzyme and leaf GSI were similar in all the properties which were examined. Both enzymes bound to ADP-Sepharose, had similar biosynthetic (18 μmol P/img protein/min) and transferase (1324 and 1156 μmol γ-glutamyl hydroxamate/mg protein/min) activities, and the same or nearly the same Km values for glutamate (2.17 mm), Mg2+ (4.5 and 5.0 mm), ATP (286 μm), NH4+ (210 and 135 μm), and ADP (3.8 and 5.3 μm). In contrast, leaf GSII did not bind to ADP-Sepharose and had much higher Km values for glutamate (8.3 mm), Mg2+ (15 mm), NH4+ (684 μm), and ADP (33 μm).  相似文献   

16.
A lignin-specific O-methyltransferase (OMT) was localized in the cell wall fraction of Douglas-fir needle callus homogenates. The OMT was released from wall-associated membrane by digitonin and partially purified by salt fractionation. Further purification proved to be unfeasible, due to the high tannin content of the callus. The Km values of the partially purified OMT for caffeic acid and S-adenosylmethionine (SAM) were 250 and 8.0.μM, respectively. Substrate inhibition as well as inhibition by S-adenosylhomocysteine (SAH) was observed. Coupled with low levels of caffeic acid found in the callus, 65,μM at maximum with a mean of 11.5μM throughout a subculture period, the properties of this OMT should account in large part for the high tannin and low lignin content characteristic of this cultured tissue.  相似文献   

17.
A 45-fold purification of uricase (urate:O2 oxidoreductase, EC 1.7.3.3) from soybean root nodules by ammonium sulfate fractionation, gel filtration, and affinity chromatography is described. Electrophoresis on nondenaturing gels using an activity stain or on sodium dodecyl sulfate (SDS) gels demonstrated that the enzyme obtained was nearly homogeneous. The subunit molecular weight of uricase estimated from SDS gels was 32,000 ± 3000. Gel-filtration studies indicated that the native enzyme is a monomer at pH 7.5 which associates to form a dimer at pH 8.8. Enzyme activity was stabilized by the addition of dithiothreitol. The pH dependence of the enzyme showed an optimum of 9.5. Initial rate kinetics showed Km values of 10 and 31 μm for uric acid and oxygen, respectively, with an intersecting pattern of substrate dependence. Uricase activity was inhibited strongly by xanthine, which was competitive with respect to uric acid (Ki = 10 μm). No significant inhibition was observed in the presence of a variety of amino acids, ammonium, adenine, or allopurinol, in contrast with results reported for the cowpea enzyme. Gel-filtration chromatography and SDS-gel electrophoresis of uricase purified by the same method from cowpea nodules indicated that the native enzyme exists as a monomer of Mr 50,000 at pH 7.5.  相似文献   

18.
Subunit G is an essential stalk subunit of the eukaryotic proton pump V1VO ATPase. Previously the structure of the N-terminal region, G1-59, of the 13 kDa subunit G was solved at higher resolution. Here solution NMR was performed to determine the structure of the recombinant C-terminal region (G61-101) of subunit G of the Saccharomyces cerevisiae V1VO ATPase. The protein forms an extended α-helix between residues 64 and 100, whereby the first five- and the last residues of G61-101 are flexible. The surface charge distribution of G61-101 reveals an amphiphilic character at the C-terminus due to positive and negative charge distribution at one side and a hydrophobic surface on the opposite side of the structure. The hydrophobic surface pattern is mainly formed by alanine residues. The alanine residues 72, 74 and 81 were exchanged by a single cysteine in the entire subunit G. Cysteines at positions 72 and 81 showed disulfide formation. In contrast, no crosslink could be formed for the mutant Ala74Cys. Together with the recently determined NMR solution structure of G1-59, the presented solution structure of G61-101 enabled us to present a first structural model of the entire subunit G of the S. cerevisiae V1VO ATPase.  相似文献   

19.
The title compound has been synthesized and subjected to crystal structure analysis. Mr = 548.50, m.p. 108.1 °C (decom.), orthorhombic, Im2m,a = 7.006(2), b = 8.938(2), c = 13.619(2) Å V = 852.8(3) Å3, Z = 2, Dx = 2.136, Dm, (flotation in CCl4/CH2I2) = 2.128 g cm?3, λ(Mo-Kα) = 0.71069 Å, μ = 90.79 cm?1, F(000) = 519.89, T = 295 K, final RF = 0.036 and RG = 0.044 for 566 observed reflections. The discrete [UO2F4(H20)]2? anion has site symmetry m2m, its virtually linear uranyl moiety being surrounded by fluoro and aquo ligands occupying the vertices of a pentagon in the equatorial plane. Watet molecules serve to link the complex anions by hydrogen bonds into layers, between which the organic cations are accommodated.  相似文献   

20.
Reaction of O,O′-diisopropylphosphoric acid isothiocyanate (iPrO)2P(O)NCS with 2- or 3-aminopyridine leads to the new N-phosphorylated thioureas RNHC(S)NHP(O)(OiPr)2 (R = 2-Py, HLI; 3-Py, HLII). Reaction of the potassium salt KLI with Ni(II) in aqueous EtOH leads to the new complex Ni[2-PyNHC(S)NP(O)(OiPr)2-N(Py),N(P),O]2, where the metal cation is coordinated by two deprotonated ligands LI through the pyridine and phosphorylamide nitrogen atoms, and the PO oxygen atoms. Using KLII leads to an oligomeric (or polymeric) structure, where the Ni(II) cation is coordinated by two anionic ligands LII through the CS sulfur atoms and the P-N nitrogen atoms, and the pyridine nitrogen atoms of neighboring molecules. The new compounds were investigated by 1H and 31P{1H} NMR spectroscopy, and microanalysis. Single crystal X-ray diffraction studies showed HLI forms both intra- and intermolecular hydrogen bonds, which in turn lead to the formation of a polymeric chain. Moreover, π?π stacking interactions were observed between molecules of two neighboring chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号