首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetyl transfer in arylamine metabolism   总被引:1,自引:0,他引:1       下载免费PDF全文
1. N-Hydroxyacetamidoaryl compounds (hydroxamic acids) are metabolites of arylamides, and an enzyme that transfers the acetyl group from these derivatives to arylamines has been found in rat tissues. The reaction products were identified by thin-layer chromatography and a spectrophotometric method, with 4-amino-azobenzene as acetyl acceptor, was used to measure enzyme activity. 2. The acetyltransferase was in the soluble fraction of rat liver, required a thiol for maximum activity and had a pH optimum between 6·0 and 7·5. 3. The soluble fractions of various rat tissues showed decreasing activity in the following order: liver, adrenal, kidney, lung, spleen, testis, heart; brain was inactive. 4. With the exception of aniline and aniline derivatives all the arylamines tested were effective as acetyl acceptors but aromatic compounds with side-chain amino groups were inactive. 5. The N-hydroxyacetamido derivatives of 2-naphthylamine, 4-amino-biphenyl and 2-aminofluorene were active acetyl donors but N-hydroxyacetanilide showed only slight activity. Acetyl-CoA was not a donor. 6. Some properties of the enzyme are compared with those of other acetyltransferases.  相似文献   

2.
Two new multidentate N-methylhydroxamic acids were prepared and characterized. β-Cyclodextrin was esterified by treatment with succinic anhydride. The resulting carboxyl groups (14 per cyclodextrin) were converted to the N-hydroxysuccinimide esters and then on to the hydroxamic acids by treatment with N-methylhydroxylamine. Tetracyanoethylation of cyclohexanone followed by hydrolysis of the nitrile and conversion of the carboxylic acid to hydroxamic acid produced a tetrahydroxamic acid derivative of cyclohexanone. Infrared, 1H NMR, and 13C NMR were consistent with the proposed structures. The hydroxamic acids were water soluble and formed the typical red-brown iron complexes. Stability constants (log K) of 29–30 for the iron complexes indicated a strong chelate effect. Animal tests indicated that the two compounds were only weakly effective in removing iron in vivo from iron-overloaded mice. The potency was only 0.1 that of the standard drug desferrioxamine-B.  相似文献   

3.
One-pot preparation of N α -protected amino/peptide hydroxamic acids from corresponding carboxylic acids is described using uronium-type coupling reagent COMU. The present protocol is simple and mild conditions are used. Thus the resulting hydroxamic acids are obtained in good yields without racemization.  相似文献   

4.
1. Enzymic esterifications of 2-(N-hydroxyacetamido)fluorene and several other hydroxamic acids by liver cytosol were studied. Determination of 2-acetamido-3-methylthiofluorene was used for the assay. 2. With rat liver cytosol, requirement for ATP, Mg2+ and SO42− suggested formation of phosphate and sulphate esters of 2-(N-hydroxyacetamido)fluorene. 3. Rats showed sex and age differences in their activity. Liver from adult male rat was at least twice as active as liver from adult female rat. No such sex differences were found in mice, hamsters and guinea pigs. 4. Administration of testosterone (300μg/day) subcutaneously for 8 days increased the activity in the female rat by 100%, whereas diethylstilboestrol (100μg/day) had no effect. In the male rat diethylstilboestrol treatment decreased the activity by 60%, whereas testosterone pretreatment was without any effect. 5. Among various endocrine ablations such as adrenalectomy, castration, adrenalectomy–castration and hypophysectomy in the adult male rat, hypophysectomy was found to be the most effective in decreasing the activity of the liver to about 50% of control values. 6. Like 2-(N-hydroxyacetamido)fluorene, various other N-hydroxy derivatives of 2-acetamido-7-fluorofluorene, 2-acetamidophenanthrene, 4-acetamidobiphenyl and 4-acetamidostilbene were also shown to be esterified to different extents by rat liver cytosol.  相似文献   

5.
The established ability of pyruvate decarboxylase to catalyze the conversion of nitroso aromatics to hydroxamic acids was utilized to generate the previously unknown hydroxamic acid 2. Although 2 could not be isolated in pure form from enzymatic reactions, evidence for its production is presented in this study. Under the conditions of the enzymatic reaction, 2 undergoes a slower reduction to give the corresponding acetanilide 3, which was isolated and characterized. The isomeric hydroxamic acid 4 was synthesized and its stability compared to that of 2. The much greater reactivity of the hydroxamic acid 2, particularly evidenced by its facile reduction to 3, was explained on the basis of the potential for the formation of the N-acylquinonediimine cation, 9.  相似文献   

6.
Maize microsomal benzoxazinone N-monooxygenase   总被引:3,自引:0,他引:3       下载免费PDF全文
The benzoxazinones occur in hydroxamic acid and lactam forms in maize (Zea mays L.) tissue. The hydroxamic acid forms which possess a N-hydroxyl group are found in the highest concentration while the lactam members which lack the N-hydroxyl group occur in lower concentrations. The hydroxamic acid 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) has as its lactam counterpart 2-hydroxy-1,4-benzoxazin-3-one (HBOA). An enzyme has been identified in maize microsomal preparations which catalyzes the N-hydroxylation of HBOA to form DIBOA. The enzyme is initially observed in seedlings 2 days after imbibition which coincides with the onset of hydroxamic acid accumulation. The enzyme requires NADPH and is inhibited by sulfhydryl reagents, NADP, cytochrome c, cations, carbon monoxide, and nitrogen gas. The effect of nitrogen can be reversed by exposing the enzyme to air, while the effect of carbon monoxide can be reversed by exposing the enzyme to 450 nanometer light during the incubation period. The apparent Km values for HBOA and NADPH are 13 and 5 micromolar, respectively. The pH optimum is 7.5 and the temperature optimum for the enzyme is 35°C. A 450 nanometer absorbance peak is observed when reduced microsomal preparations are exposed to carbon monoxide which in combination with other data presented supports the hypothesis that the enzyme is a cytochrome P-450 dependent N-monooxygenase.  相似文献   

7.
α-Hydroxyethylthiamine (4) reacts with nitrosobenzene (5) to produce N-phenylacetohydroxamic acid (7). A mechanism for this reaction is proposed. The possibility that similar reactions can occur in vivo with the production of carcinogenic hydroxamic acids is discussed.  相似文献   

8.
The ability of phytopathogenic fungi to overcome the chemical defense barriers of their host plants is of great importance for fungal pathogenicity. We studied the role of cyclic hydroxamic acids and their related benzoxazolinones in plant interactions with pathogenic fungi. We identified species-dependent differences in the abilities of Gaeumannomyces graminis var. tritici, Gaeumannomyces graminis var. graminis, Gaeumannomyces graminis var. avenae, and Fusarium culmorum to detoxify these allelochemicals of gramineous plants. The G. graminis var. graminis isolate degraded benzoxazolin-2(3H)-one (BOA) and 6-methoxy-benzoxazolin-2(3H)-one (MBOA) more efficiently than did G. graminis var. tritici and G. graminis var. avenae. F. culmorum degraded BOA but not MBOA. N-(2-Hydroxyphenyl)-malonamic acid and N-(2-hydroxy-4-methoxyphenyl)-malonamic acid were the primary G. graminis var. graminis and G. graminis var. tritici metabolites of BOA and MBOA, respectively, as well as of the related cyclic hydroxamic acids. 2-Amino-3H-phenoxazin-3-one was identified as an additional G. graminis var. tritici metabolite of BOA. No metabolite accumulation was detected for G. graminis var. avenae and F. culmorum by high-pressure liquid chromatography. The mycelial growth of the pathogenic fungi was inhibited more by BOA and MBOA than by their related fungal metabolites. The tolerance of Gaeumannomyces spp. for benzoxazolinone compounds is correlated with their detoxification ability. The ability of Gaeumannomyces isolates to cause root rot symptoms in wheat (cultivars Rektor and Astron) parallels their potential to degrade wheat allelochemicals to nontoxic compounds.  相似文献   

9.
Some new aspects of the metabolism of phenacetin in the rat   总被引:1,自引:0,他引:1       下载免费PDF全文
1. Four new metabolites of phenacetin in the urine of the rat are described; these are (i) N-acetyl-S-ethylcysteine, (ii) quinol, (iii) acetamide and (iv) probably N-acetyl-S-2-(4-ethoxyacetanilido)cysteine S-oxide. 2. Metabolites (i), (iii) and (iv) were characterized and estimated by g.l.c., by t.l.c., by paper chromatography, by chemical reactions or by radioactive techniques after administration to rats of [ethyl-14C]phenacetin and [acetyl-3H]phenacetin; metabolite (ii), which was excreted mainly as conjugates of sulphuric acid and glucosiduronic acid, was measured by paper chromatography and characteristic colour reactions after enzymic and chemical hydrolysis of the conjugates. 3. Small amounts of azoxy-4-[ethyl-14C]ethoxybenzene and an unknown metabolite were also found in the urine of rats after administration of [ethyl-14C]phenacetin. 4. The likely mechanisms and some biological implications of these metabolic reactions are discussed.  相似文献   

10.
Substrate specificity of the bacterial penicillinamidohydrolase (penicillinacylase, EC 3.5.1.11) fromEscherichia coli was determined by measuring initial rates of enzyme hydrolysis of different substrates within zero order kinetics. SomeN-phenylacetyl derivatives of amino acids and amides of phenylacetic acid and phenoxyacetic acid of different substituted amides of these acids or amides, structurally and chemically similar to these compounds, served as substrates. Significant differences in ratios of initial Tates of the enzyme hydrolysis of different substrates were found when using a toluenized suspension of bacterial cells or a crude enzyme preparation, in spite of the fact that the enzyme is localized between the cell wall and cytoplasmic membrane, in the so-called periplasmic space.N-phenylacetyl derivatives are the most rapidly hydrolyzed substrates. Beta-phenylpropionamide and 4-phenylbutyramide were not utilized as substrates. The substrate specificity of the enzyme is discussed with respect to a possible use of certain colourless compounds as substrates, hydrolysis of which yields chromophor products suitable for a simple and rapid assay of the enzyme activity.  相似文献   

11.
Methods are described that allow the combination of established techniques for peptide separation, paper chromatography and electrophoresis, with mass spectrometry. The development of these methods is part of an ongoing effort in the search for a methodology for the systematic utilization of mass spectrometry for the elucidation of primary structure of proteins and peptides. Peptides and amino acids are detected on chromatograms by conversion to covalent derivatives that are also suitable for mass spectrometry. The most useful reagents for detection and derization of peptides reported here are dansyl chloride, N,N-dimethylaminobenzaldehyde, N,N-dimethylaminocinnamaldehyde, and N-hydroxysuccinimido β-naphthoate. Detection limits and mass spectra for some of these derivatives are reported.  相似文献   

12.
Abstract

A quantitative structure-activity relationship (QSAR) study has been made on some lipoxygenase inhibitors belonging to the series of ω-phenylalkyl hydroxamic acids, ω-naphthylalkyl hydroxamic acids, eicosatetraenoic acids, and 1H.benzimidazole-4-ols. It was found that the hydrophobic character of the molecules and the size of their substituents selectively govern their lipoxygenase inhibitory activity. The enzyme active site possesses a non-heme ferric ion, a hydrophobic domain, and a carboxylic acid binding site. It was found that while the functional group of inhibitors must interact with the ferric ion, the substituent on one side of it would be involved in hydrophobic interaction and that on the other side in van der Waals interaction with the enzyme so leading to an enhancement in the inhibitory activity of the inhibitors.  相似文献   

13.
Gas-liquid chromatography-mass spectrometry (GLC-MS) has been used for the separation, detection, and identification of 1,4-benzoxazin-3-ones (hydroxamic acids and lactams) and benzoxazolinones found in maize (Zea mays L.) extracts. Compounds of interest were partitioned into ethyl acetate from aqueous maize seedling extracts. For analysis by GLC-MS, trimethylsilyl derivatives were prepared, chromatographed on a column of 3% OV-1, and detected in the mass spectrometer. Mass spectra were obtained for all peaks present in extracts of four maize lines. A data comparison system was developed for relating unidentified spectra to the spectra of the reference compounds. Based on spectral comparisons, three hydroxamic acids (2,4-dihydroxy-2H-1, 4-benzoxazin-3(4H)-one; 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one; and 2,4-dihydroxy-7,8-dimethoxy-2H-1,4-benzoxazin-3(4H)-one), three lactams (2-hydroxy-2H-1,4-benzoxazin-3(4H)-one; 2,7-dihydroxy-2H-1,4-benzoxazin-3(4H)-one; and 2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one), one benzoxazolinone (6-methoxybenzoxazolinone), and two organic acids (malic and aconitic) were identified in the extracts. In addition, one other hydroxamic acid and one other related compound were tentatively identified based on mass spectral evidence.  相似文献   

14.
《Mutation Research Letters》1986,173(4):245-250
Two mutagenic metabolites of phenacetin, p-nitrosophenetol and N-hydroxy-p-phenetidine, were tested in S. typhimurium strains TA100, its nitroreductase-deficient derivative TA100NR, and O-acetylase-deficient strains TA100 Tn5-1-8-DNP1011 and -DNP1012 in the presence or absence of an exogenous metabolic activation system. The results indicate that bacterial nitroreductase(s) and O-acetylase(s), shown to be involved in the conversion of certain nitroarenes, are not required for the intrabacterial activation of the two phenacetin metabolites to bacterial mutagens. In view of the low reactivity of nitrosoarenes towards nucleophiles at neutrality, the mechanism by which they exert such a high mutagenic effect in S. typhimurium strains remains to be clarified, but is discussed.  相似文献   

15.
In our search for novel small molecules targeting histone deacetylases, we have designed and synthesized several series of novel N-hydroxybenzamides/N-hydroxypropenamides incorporating quinazolin-4(3H)-ones (4a-h, 8a-d, 10a-d). Biological evaluation showed that these hydroxamic acids were generally cytotoxic against three human cancer cell lines (SW620, colon; PC-3, prostate; NCI-H23, lung cancer). It was found that the N-hydroxypropenamides (10a-d) were the most potent, both in term of HDAC inhibition and cytotoxicity. Several compounds, e.g. 4e, 8b-c, and 10a-c, displayed up to 4-fold more potent than SAHA (suberoylanilide hydroxamic acid, vorinostat) in term of cytotoxicity. These compounds also comparably inhibited HDACs with IC50 values in sub-micromolar range. Docking experiments on HDAC2 isozyme revealed some important features contributing to the inhibitory activity of synthesized compounds, especially for propenamide analogues. Importantly, the free binding energy computed was found to have high quantitative correlation (R2 ∼ 95%) with experimental results.  相似文献   

16.
The present article describes the synthesis and biological activity of various series of novel hydroxamic acids incorporating quinazolin‐4(3H)‐ones as novel small molecules targeting histone deacetylases. Biological evaluation showed that these hydroxamic acids were potently cytotoxic against three human cancer cell lines (SW620, colon; PC‐3, prostate; NCI?H23, lung). Most compounds displayed superior cytotoxicity than SAHA (suberoylanilide hydroxamic acid, Vorinostat) in term of cytotoxicity. Especially, N‐hydroxy‐7‐(7‐methyl‐4‐oxoquinazolin‐3(4H)‐yl)heptanamide ( 5b ) and N‐hydroxy‐7‐(6‐methyl‐4‐oxoquinazolin‐3(4H)‐yl)heptanamide ( 5c ) (IC50 values, 0.10–0.16 μm ) were found to be approximately 30‐fold more cytotoxic than SAHA (IC50 values of 3.29–3.67 μm ). N‐Hydroxy‐7‐(4‐oxoquinazolin‐3(4H)‐yl)heptanamide ( 5a ; IC50 values of 0.21–0.38 μm ) was approximately 10‐ to 15‐fold more potent than SAHA in cytotoxicity assay. These compounds also showed comparable HDAC inhibition potency with IC50 values in sub‐micromolar ranges. Molecular docking experiments indicated that most compounds, as represented by 5b and 5c , strictly bound to HDAC2 at the active binding site with binding affinities much higher than that of SAHA.  相似文献   

17.
The following new compounds were prepared and characterized: N-benzyl-oxycarbonyl-O-(tetra-O-acetyl-β-D-glucopyranosyl)-N-glycyl-L-serine methyl ester (1) and L-threonine methyl ester (2), N-benzyloxycarbonyl-O-(β-D-glucopyranosyl)-N-glycyl-L-serine amide (3), N-benzyloxycarbonyl-O-(β-D-glucopyranosyl)-N-glycyl-L-threonine methyl ester (4) and L-threonine amide (5), N-benzyloxycarbonyl-O-(tri-O-acetyl-2-deoxy-2-trifluoroacetamido-β-D-glucopyranosyl)-N-glycyl-L-serine methyl ester (6), and N-benzyloxycarbonyl-O-(2-deoxy-2-trifluoroacetamido-β-D-glucopyranosyl)-N-glycyl-L-serine amide (7). Although various modifications of the Koenigs-Knorr synthesis were used, the best, over-all yields of the deacetylated dipeptide derivatives were only 5–10%. Although the products are alkali-labile, deacetylation was accomplished with methanolic ammonia. Of the deacetylated products, the threonine derivatives (4 and 5) were more rapidly hydrolyzed by acids than phenyl β-D-glucopyranoside, which in turn was more rapidly cleaved than the serine derivatives (3 and 7). The stabilities of 3, 4, 5, and 7 to sodium hydroxide and sodium borohydride were similar, and essentially complete β-elimination of the glycosyl residue occurred for the amide derivatives (3, 5, and 7). For the ester derivative 4, pH 9 was optimal; above this pH, ester hydrolysis was more rapid than β-elimination, and the resulting carboxyl derivatives did not undergo β-elimination. Under optimal conditions with sodium borohydride, the β-elimination reaction was complete, but the corresponding alanine and α-aminobutyric acid residues were not formed; presumably reductions to the amino alcohols occurred. A mechanism for the β-elimination is proposed.  相似文献   

18.
The free-living diazotroph Azotobacter chroococcum B-8 responded to iron-limited growth conditions by forming hydroxamic acids and an 85,000-dalton outer membrane protein. The Fe(III)-binding hydroxamate compounds stimulated the growth of Arthrobacter flavescens JG-9 and gave a positive Csaky reaction for bound hydroxylamines. The hydroxamates were isolated from liquid cultures by benzyl alcohol extraction and purified by size exclusion chromatography and high-performance liquid chromatography. Four high-performance liquid chromatography fractions, designated A, B, C, and D, had the characteristic hydroxamate absorption maximum at 420 to 423 nm, which did not shift over a pH range from 3.0 to 9.0. Cyclic voltammograms of the iron-hydroxamate complexes exhibited reduction potentials of −0.426 to −0.442 V for fractions A, B, and D and of −0.56 V for fraction C versus the normal hydrogen electrode at pH 8.0. Based on mass spectra, nominal molecular weights of 800 and 844 were assigned to ferrated compounds A and B, respectively. Reductive hydrolysis of compounds A and B in 57% hydriodic acid yielded ornithine as detected by gas chromatography-mass spectrometry. All of these physiological and chemical data strongly support the hypothesis that the high-affinity iron-binding compounds isolated from A. chroococcum B-8 are hydroxamic acids and probably function as siderophores for this diazotroph.  相似文献   

19.
Microalgae as sources for biodiesel production have been widely investigated. Microalgae biomass, lipid content and fatty acid profiles of microalgae are limiting factors for the cost-effective production of biodiesel. In this paper, the effects of high ferric ion concentrations on three species of microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis) were studied. The microalgae were cultured in different concentrations (1.2?×?10?2, 1.2?×?10?1, 1.2 and 12 mmol L?1) of ferric ion. The growth, lipid content and fatty acid profiles of the three microalgae were analysed. When algae were cultured in 1.2 mmol L?1 ferric ion for 10 days, the final cell density and specific growth rates of T. subcordiformis, N. oculata and P. viridis decreased significantly (p?<?0.05), and the total lipid contents of the microalgae, 33.72, 37.34 and 29.48 % (dry mass) in T. subcordiformis, N. oculata and P. viridis, respectively, were higher than those at other concentrations. The neutral lipid/total lipid ratios of the three microalgae species increased with increasing ferric ion concentration. Neutral lipids accounted for 50.75, 48.37 and 46.59 % of the total lipid in T. subcordiformis, N. oculata and P. viridis, respectively, when cultured in 12 mmol L?1 ferric ion. The proportions of saturated fatty acids in all three species cultured in 12 mmol L?1 ferric ion were significantly higher than those cultured in lower ferric ion concentrations. An optimum ferric ion concentration can improve the properties of T. subcordiformis, N. oculata and P. viridis as sources for biodiesel.  相似文献   

20.
A new mutagenesis assay is described which detects the induction of forward mutations in isolated DNA. The assay utilizes replicative from DNA of the temperate Bacillus subtilis phage φ105 and tests the ability of chemicals to induce lesions which inactivate phage genes involved in lysogen formation. There is a cluster of such genes tightly linked to the φ105 genetic marker Jsus11 which restricts the host range of the phage to cells capable of suppressing sus mutations. In the actual assay chemically treated DNA, from wild-type J+ phage, is added to competent cells which are infected with φ105Jsus11. Wild-type phage, capable of producing plaques on cells which are nonpermissive for φ105Jsus11, are produced by recombination between the added chemically-treated DNA and infecting φ105Jsus11 DNA. If the added DNA also carried mutagenic lesions in any of the genes controlling lysogeny, clear plaque mutants are produced which are readily distinguishable from the turbid plaquing wild-type phage. This report demonstrates the capacity of this marker rescue-based assay to detect as mutagens the following DNA-reactive chemicals: hydroxylamine (HA); N-methyl-N′-nitro-N-nitrosoguanidine (MNNG); chloroacetaldehyde (CAA); propylene oxide (PO) and N-acetyl-N-acetoxy-2-amino-fluorene (AAAF). The effect of using a host cell, defective for excision repair, on the sensitivity with which the assay detected the mutagenic activities of CAA, PO and AAAF also was examined.The new mutagenesis assay offers 2 advantages over several other previously described transformation-based assays: (1) in contrast to assays based on the induction of ribosome-associated drug resistances, the new assay can detect frameshift as well as base-substitution-type mutagens and (2) the mutants generated can be detected at high plating densities. The assay thus may be useful for general mutagen screening especially with highly bactericidal compounds which are not readily tested in other microbial assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号