首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Alcoholic liver disease is caused mainly by free radicals. Ascorbic acid (AA) and glutathione (GSH) are the major water-soluble antioxidants in the liver. The impact of AA supplementation on GSH, AA and activities of GSH-dependent enzymes in alcoholic guinea pigs was studied and was compared with alcohol abstention. Guinea pigs were administered ethanol at a dose of 4 g/kg body weight (b.wt)/day for 90 days. After 90 days, alcohol administration was stopped and one-half of the ethanol-treated animals were supplemented with AA (25 mg/100 g b.wt) for 30 days and the other half was maintained as the abstention group. There was a significant increase in the activities of alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transpeptidase in the serum of the ethanol group. In addition, a significant decrease in the GSH content, activities of GSH peroxidase, GSH reductase, and increased activity of GSH-S-transferase were observed in the liver of the ethanol group. Histopathological analysis and triglycerides content in the liver of the ethanol group showed induction of steatosis. But AA supplementation and abstention altered the changes caused by ethanol. However, maximum protective effect was observed in the AA-supplemented group indicating the ameliorative effect of AA in the liver.  相似文献   

2.
trans-Stilbene oxide (400 mg/kg) produced a 500% increase in the microsomal in the microsomal epoxide hydratase activity in rat and mouse with little change in the soluble enzyme activity. However, in guinea pig, the soluble epoxide hydratase activity increased by about 33% with only a small increase (47.6%) in the microsomal enzyme activity. The soluble glutathione S-transferase activities were also induced in both rat and mouse, with little change in that of the guinea pig. Increasing dosage of trans-stilbene oxide from 400 mg/kg to 1000 mg/kg had little effect on the above enzyme activities. That the guinea pig was not relatively refractory to all inducing agents was shown by the fact phenobarbital (100 mg/kg) and 3-methylcholanthrene (25 mg/kg) produced relatively similar increases in the activities of aniline hydroxylase and P-aminopyrineP-demethylase in rat, mouse and guinea pig. However, these inducers produced only a 15–20% stimulation in the soluble glutathione S-transferase and microsomal epoxide hydratase activities in guinea pig, when compared to a 50–80% increase in rat and mouse, suggesting a general resistance to induction by the phase II enzymes in guinea liver. In all animal models, the inducer markedly increased th emicrosomal total phospholipid content, although the sphingomyelin content itself was decreased. In both rat and mouse, the microsomal cholesterol content was significantly decreased while that in guinea pig was unaffected. Possible factors responsible for the observed species differences are discussed.  相似文献   

3.
Glutathione S-transferase activity was determined in rat, rabbit, and guinea pig serum using styrene 7,8-oxide (SO) and benzo (a) pyrene 4,5-oxide (4,5-BPO) as substrates. Of the species tested, rat had the highest transferase activity (62.5 and 3.2 nmol/min/ml serum for SO and 4,5-BPO, respectively) and rabbit had the lowest activity. Glutathione S-transferase activity was 60% higher in serum from male rats than in female rats. In rats, serum enzyme specific activities (nmol/min/mg protein) were less than 1% of hepatic enzyme activities with SO, 4,5-BPO, 1,2-dichloro-4-nitrobenzene (DCNB), and 1-chloro-2,4-dinitrobenzene (DNCB). Glutathione S-transferase activity was also determined in rat serum during perinatal development. Serum from rats at 18 days of gestation or from 1- and 4-day-old animals had barely detectable transferase activity. Activity increased with age and reached a maximum in 140-day-old animals. The intraperitoneal administration of diethyl maleate (DEM) (0.8 ml/kg) or L-methionine-DL-sulfoximine (MS) (200 mg/kg) to male rats had no effect on serum or hepatic glutathione S-transferase activities 2 or 26 hr after dosing. Treatment with carbon tetrachloride (CCl4) (1 m1/kg) caused an 11-fold increase in serum transferase activity and a 40% decrease in liver specific activities 24 hr after administration.  相似文献   

4.
Four types of glutathione S-transferase were purified to homogeneity from guinea pig liver by DEAE-cellulose, Sephadex G-75, CM-cellulose, and affinity chromatography. These isozymes were named a, b, c, and d based on the reverse order of elution from a CM-cellulose column, and had specific activities of 89.6, 92.2, 99.0, and 44.0 units/mg, respectively, when assayed with 1 mM each of 1-chloro-2,4-dinitrobenzene and reduced glutathione. All four transferases of guinea pig liver were homodimers. The transferases b, c, and d had a similar molecular weight of 50,000 and their subunit sizes were 25,000, but the corresponding values for transferase a were 45,000 and 23,500, respectively. Transferase a was notably different in the activities towards organic hydroperoxides and 1,2-dichloro-4-nitrobenzene from the other isozymes. Transferases a and b, the major forms in guinea pig liver, were studied with respect to their biochemical properties, including kinetic parameters, absorption and fluorescence spectra, and bilirubin binding. Glutathione peroxidase activity of the transferase a was about 100 times higher than that of other isozymes. In guinea pig liver, it is estimated that transferase a is the major glutathione peroxidase, accounting for about 75% of the total organic hydroperoxide reduction.  相似文献   

5.
《FEBS letters》1985,184(1):139-143
A previously uncharacterized glutathione (GSH) transferase which is not apparent in normal liver, accounts for at least 25% of the soluble GSH transferase content of primary hepatomas induced by feeding N,N-dimethyl-4-aminoazobenzene. This enzyme is readily isolated, has an isoelectric point of 6.8, is composed of two identical subunits of apparent Mr 26 000 and has GSH transferase activity towards a number of substrates including benzo(a)pyrene-7,8-diol-9,10-oxide. It is unusual in that it has GSH peroxidase activity towards fatty acid hydroperoxides but not towards the model substrates, cumene hydroperoxide and t-butyl hydroperoxide. It has been shown by tryptic peptide analysis to be distinct from GSH transferases composed of subunits 1, 2, 3,4 or 6 and has been designated GSH transferase 7-7.  相似文献   

6.
Partially purified rat liver Δ5-3-ketosteroid isomerase (EC 5.3.3.1) is profoundly and specifically activated by reduced glutathione (GSH). This stimulating effect shows normal saturating kinetics, and both Km and Vmax are pH-dependent. The binding of GSH is independent of the concentration of Δ5-androstene-3,17-dione, whereas the Km for Δ5-androstene-3,17-dione is markedly reduced by saturating levels of GSH. The same catalytic site appears to isomerize both Δ5-androstene-3,17-dione and Δ5-pregnene-3,20-dione. Several steroidal inhibitors compete with Δ5-androstene-3,17-dione, whereas S-methyl-glutathione competes with GSH. This activation of Δ5-3-ketosteroid isomerase is also observed in the livers of other species (calf, guinea pig, human), and represents a hitherto unrecognized function of reduced glutathione.  相似文献   

7.
The glutathione S-transferases that were purified to homogeneity from liver cytosol have overlapping but distinct substrate specificities and different isoelectric points. This report explores the possibility of using preparative electrofocusing to compare the composition of the transferases in liver and kidney cytosol. Hepatic cytosol from adult male Sprague–Dawley rats was resolved by isoelectric focusing on Sephadex columns into five peaks of transferase activity, each with characteristic substrate specificity. The first four peaks of transferase activity (in order of decreasing basicity) are identified as transferases AA, B, A and C respectively, on the basis of substrate specificity, but the fifth peak (pI6.6) does not correspond to a previously described transferase. Isoelectric focusing of renal cytosol resolves only three major peaks of transferase activity, each with narrow substrate specificity. In the kidney, peak 1 (pI9.0) has most of the activity toward 1-chloro-2,4-dinitrobenzene, peak 2 (pI8.5) toward p-nitrobenzyl chloride, and peak 3 (pI7.0) toward trans-4-phenylbut-3-en-2-one. Renal transferase peak 1 (pI9.0) appears to correspond to transferase B on the basis of pI, substrate specificity and antigenicity. Kidney transferase peaks 2 (pI8.5) and 3 (pI7.0) do not correspond to previously described glutathione S-transferases, although kidney transferase peak 3 is similar to the transferase peak 5 from focused hepatic cytosol. Transferases A and C were not found in kidney cytosol, and transferase AA was detected in only one out of six replicates. Thus it is important to recognize the contribution of individual transferases to total transferase activity in that each transferase may be regulated independently.  相似文献   

8.
A number of epoxides, including cis- and trans-stilbene oxides, were assayed as substrates for epoxide hydrolases (EHs) by gas-liquid chromatography. Radiolabeled stilbene oxides were prepared by sodium borotritide reduction of desyl chloride followed by ring closure with base treatment. Rapid radiometric assays for EHs were performed by differential partitioning of the epoxide into dodecane, while the product diol remained in the aqueous phase. Glutathione (GSH) transferase was similarly assayed by partitioning the epoxide and diol, if formed metabolically, into 1-hexanol, while the GSH conjugate was retained in the aqueous phase. The cytosolic EH rapidly hydrates the trans isomer while the cis is very poorly hydrated. In contrast, the cis is a better substrate for the microsomal EH than the trans. GSH transferase utilized both epoxides as substrates, but conjugation is faster with the cis isomer. Cytosolic EH activity is high in mouse but very low in rat and guinea pig. Microsomal EH activity, in contrast, is highest in guinea pig, intermediate in rat, and the lowest in mouse. GSH transferase activity, which is high in all three species, can be inhibited by chalcone, with an I50 of 3.1 × 10?5m. These assays facilitate the rapid evaluation and direct comparison of epoxide-metabolizing systems in cell homogenates used in short-term mutagenicity assays, cell or organ culture, and possibly in vivo.  相似文献   

9.
A sensitive assay has been devised for glutathione-S-arene oxidase transferase using as substrates naphthalene-1,2-oxide or styrene oxide along with [35S]glutathione. Activity of the order of 2–3 nmoles of conjugate formed during a 5-min incubation can be detected. This yields about 2000 cpm above a blank of about 1500 cpm. Transferase activity was found mainly in liver and kidney but was also present in most other tissues of rats. Glutathione-S-arene oxide transferase has been purified 70- to 80-fold from sheep liver 100,000 g supernatants using the conventional procedures. After electrofocusing, enzyme activity separated into two major peaks and two or three minor peaks, ranging in isoelectric point from pH 6.5 to 7.5. Activities assayed with naphthalene-1,2-oxide or styrene oxide as substrates were found to almost parallel each other in all the peaks.The sheep liver transferase required neither metal ions nor cofactors such as FAD, pyridoxal-phosphate and thiamine pyrophosphate. The molecular weight of the transferase has been estimated to be about 40,000.Km values for glutathione, naphthalene-1,2-oxide, and styrene oxide are 1.6, 0.11, and 0.13 mm, respectively. Km values for glutathione decreased with increasing pH, whereas the Km values for naphthalene-1,2-oxide were independent of pH in the range of 6.5–8.  相似文献   

10.
Guinea pig ethanol metabolism as well as distribution and activities of ethanol metabolizing enzymes were studied. Alcohol dehydrogenase (ADH; EC 1.1.1.1) is almost exclusively present in liver except for minor activities in the cecum. All other organ tissues tested (skeletal muscle, heart, brain, stomach, and testes) contained only negligible enzyme activities. In fed livers, ADH could only be demonstrated in the cytosolic fraction (2.94 μmol/g liver/min at 38 °C) and its apparent Km value of 0.42 mm for ethanol as substrate is similar to the average Km of the human enzymes. Acetaldehyde dehydrogenase (ALDH; EC 1.2.1.3) of guinea pig liver was measured at low (0.05 mm) and high (10 mm) acetaldehyde concentrations and its subcellular localization was found to be mainly mitochondrial. The total acetaldehyde activity in liver amounts to 3.56 μmol/g/ min. Fed and fasted animals showed similar zero-order alcohol elimination rates after intraperitoneal injection of 1.7 or 3.0 g ethanol/kg body wt. The ethanol elimination rate of fed animals after 1.7 g ethanol/kg body wt (2.59 μmol/g liver/min) was inhibited by 80% after intraperitoneal injection of 4-methylpyrazole. Average ethanol elimination rates in vivo after 1.7 g/kg ethanol commanded only 88% of the totally available ADH activity in fed guinea pig livers. Catalase (EC 1.11.1.6), an enzyme previously implicated in ethanol metabolism, is of 3.4-fold higher activity in guinea pig (10,400 U/g liver) than in rat livers (3,100 U/g liver), but 98% inhibition by 3-amino-1,2,4-triazole did not significantly alter ethanol elimination rates. After ethanol injection, fed and fasted guinea pigs reacted with prolonged hyperglycemia.  相似文献   

11.
The reaction of glutathione (GSH) with metabolically-formed N-methyl-4-aminoazobenzene-N-sulfate (MAB-N-sulfate), a presumed ultimate carcinogenic metabolite of N,N-dimethyl-4-aminoazobenzene (DAB), was investigated using a hepatic sulfotransferase incubation mixture containing GSH and the proximate carcinogen, N-hydroxy-N-methyl-4-aminoazobenzene (N-HO-MAB). Under these conditions, 6–16% of the MAB-N-sulfate formed could be trapped as an aminoazo dye-GSH adduct. Upon subsequent purification, the adduct was shown to be chromatographically and spectrally identical to 3-(glutathion-S-yl)-N-methyl-4-aminoazobenzene (3-GS-MAB), a known biliary metabolite of DAB and a product of the reaction of the synthetic ultimate carcinogen, N-benzoyloxy-N-methyl-4-aminoazobenzene(N-BzO-MAB), with GSH. Neither 2′- nor 4′-GS-MAB, both products of the latter reaction, were detected in the sulfotransferase incubation mixture.GSH-S-transferases did not appear to be involved in the reaction of MAB-N-sulfate or N-BzO-MAB with GSH. The addition of triethyltin, a potent GSH-S-transferase inhibitor, had no effect on the yield of 3-GS-MAB in (N-HO-MAB sulfotransferase)-GSH incubations; and the addition of cytosol or purified GSH transferases A and B to a (N-BzO-MAB)-GSH reaction mixture did not increase the amount of 3-GS-MAB formed.GSH was shown to inhibit only partially the covalent binding of [3H]-MAB-N-sulfate to DNA and rRNA. At 10 and 100 mM GSH, the sulfotransferase-mediated binding of [3H]N-HO-MAB to both nucleic acids was reduced by 30% and 70%, respectively. The role of GSH in the detoxification of chemical carcinogens is discussed.  相似文献   

12.
The effects of ascorbic acid (AA) deficiency on microsomal and soluble (postmicrosomal supernatant) enzymes which catalyze drug metabolism were studied in the guinea pig liver, lung, and kidney, (i) Twenty-one days of AA depletion produced a 50–60% decrease in hepatic cytochrome P-450 levels, 20–30% decreases in renal levels, but no significant changes in pulmonary cytochrome P-450 content. Upon repletion of ascorbic acid, recovery to control levels occurred within 7 days. (ii) The decreases in hepatic cytochrome P-450 in scurvy were not accompanied by a corresponding increase in cytochrome P-420. (iii) Aminopyrine N-demethylation decreased by 40% in livers of deficient animals, and recovered within 3 days, but there were no corresponding changes in lungs and kidneys. (iv) There were no significant alterations of NADPH-cytochrome c reductase activity in scorbutic animals in any of the three organs. (v) Activity of “native” UDP-glucuronyl transferase was increased in liver microsomes after 21 days of deficiency, but this apparent increase was not observed when the enzyme was fully activated in vitro with UDP N-acetylglucosamine. “Native” UDP-glucuronyl transferase was increased in kidneys of deficient animals and unchanged in lungs. (vi) In the postmicrosomal supernatant, glutathione S-aryl transferase activity in deficient livers decreased tc 50% of control and did not fully recover after 14 days of ascorbic acid repletion. These changes were not seen in kidney and lung. (vii) Also in the postmicrosomal supernatant, p-aminobenzoic acid (PABA) N-acetyl transferase activity increased in the kidneys of deficient animals, but was unchanged in liver and lungs. (viii) Addition of ascorbic acid in vitro to hepatic microsomes prepared from scorbutic animals had no effect on activities of aminopyrine N-demethylase, NADPH-cytochrome c reductase, PABA N-acetyl transferase, and glutathione S-aryl transferase.  相似文献   

13.
Hepatic glutathione (GSH) S-methyl transferase from rabbit, pig and dog demethylates dimethyl phosphate triesters. No stereospecificity towards racemic ethyl methyl 2-chloro-1-(2,4-dichlorophenyl)vinyl phosphate could be demonstrated but the enzyme exhibited some selectivity towards the (+) and (?) forms of O-methyl S-methyl 1-naphthyl phosphorothiolate. Pig liver enzyme, purified 30-fold, demethylated the prochiral substrate dimethyl 1-naphthyl phosphorothionate with 90% stereo-selectivity.  相似文献   

14.
A previously uncharacterized glutathione S-transferase isoenzyme which is absent from normal adult rat livers has been isolated fetal rat livers. The enzyme was purified using a combination of affinity chromatography, CM-cellulose column chromatography and chromatofocusing. It is composed of two non-identical subunits, namely, subunit Yc (Mr 28 000) and a subunit (Mr 25 500) recently reported by us to be uniquely present in fetal rat livers and which we now refer to as subunit ‘Yfetus’. The enzyme which we term glutathione S-transferase YcYfetus has an isoelectric point of approx. 8.65 and has glutathione S-transferase activity towards a number of substrates. The most significant property of the fetal isozyme is its high glutathione peroxidase activity towards the model substrate cumene hydroperoxide. We suggest that this isozyme serves a specific function in protecting fetuses against the possible teratogenic effects of organic peroxides.  相似文献   

15.
Lipid peroxidation in vitro in rat liver microsomes (microsomal fractions) initiated by ADP-Fe3+ and NADPH was inhibited by the rat liver soluble supernatant fraction. When this fraction was subjected to frontal-elution chromatography, most, if not all, of its inhibitory activity could be accounted for by the combined effects of two fractions, one containing Se-dependent glutathione (GSH) peroxidase activity and the other the GSH transferases. In the latter fraction, GSH transferases B and AA, but not GSH transferases A and C, possessed inhibitory activity. GSH transferase B replaced the soluble supernatant fraction as an effective inhibitor of lipid peroxidation in vitro. If the microsomes were pretreated with the phospholipase A2 inhibitor p-bromophenacyl bromide, neither the soluble supernatant fraction nor GSH transferase B inhibited lipid peroxidation in vitro. Similarly, if all microsomal enzymes were heat-inactivated and lipid peroxidation was initiated with FeCl3/sodium ascorbate neither the soluble supernatant fraction nor GSH transferase B caused inhibition, but in both cases inhibition could be restored by the addition of porcine pancreatic phospholipase A2 to the incubation. It is concluded that the inhibition of microsomal lipid peroxidation in vitro requires the consecutive action of phospholipase A2, which releases fatty acyl hydroperoxides from peroxidized phospholipids, and GSH peroxidases, which reduce them. The GSH peroxidases involved are the Se-dependent GSH peroxidase and the Se-independent GSH peroxidases GSH transferases B and AA.  相似文献   

16.
《Mutation Research Letters》1991,262(2):129-137
Specimens of the seawater fish annular seabream (Diplodus annularis) were caught from a polluted harbor area and from a clean reference area. Seawater concentrates and fish-muscle extracts were not mutagenic in the Salmonella reversion test. Liver preparations of fish from the 2 sources were comparatively assayed for microsomal mixed-function oxidases and cytosolic biochemical parameters, as well as for the ability of S12 fractions to activate promutagens or to detoxify direct-acting mutagens. A shift of the cytochrome P-450 peak from 450.3 to 448.5 was accompanied by a 4.5-fold increase in arylhydrocarbon hydroxylase activity in fish living in the polluted environment. At the same time, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were doubled in the cytosol of the same animals, while reduced glutathione (GSH) peroxidase and GSH S-transferase were slightly yet significantly depressed. No significant difference was recorded for other biochemical parameters, including GSH, oxidized glutathione (GSSG) reductase, NADH- and NADPH-dependent diaphorases, and DT diaphorase. In parallel, fish exposed to polluted seawater exhibited a significant and marked enhancement of the metabolic activation of the pyrolysis product Trp-P-2 and of benzo[a]pyrene-trans-7,8-diol, and at the same time were less efficient in detoxifying the antitumor compound ICR 191. Liver S12 fractions from both sources efficiently decreased the direct mutagenicity of sodium dichromate, and failed to activate benzo[a]pyrene and aflatoxin B1 to mutagenic metabolites. These results provide evidence that both biochemical parameters and the overall capacity of fish liver to activate or detoxify certain mutagens can be assumed to be sensitive indicators of exposure to mixed organic pollutants in the marine environment.  相似文献   

17.
We previously reported that a velvetleaf (Abutilon theophrasti Medic) biotype found in Maryland was resistant to atrazine because of an enhanced capacity to detoxify the herbicide via glutathione conjugation (JW Gronwald, Andersen RN, Yee C [1989] Pestic Biochem Physiol 34: 149-163). The biochemical basis for the enhanced atrazine conjugation capacity in this biotype was examined. Glutathione levels and glutathione S-transferase activity were determined in extracts from the atrazine-resistant biotype and an atrazine-susceptible or “wild-type” velvetleaf biotype. In both biotypes, the highest concentration of glutathione (approximately 500 nanomoles per gram fresh weight) was found in leaf tissue. However, no significant differences were found in glutathione levels in roots, stems, or leaves of either biotype. In both biotypes, the highest concentration of glutathione S-transferase activity measured with 1-chloro-2,4-dinitrobenzene or atrazine as substrate was in leaf tissue. Glutathione S-transferase measured with 1-chloro-2,4-dinitrobenzene as substrate was 40 and 25% greater in leaf and stem tissue, respectively, of the susceptible biotype compared to the resistant biotype. In contrast, glutathione S-transferase activity measured with atrazine as substrate was 4.4- and 3.6-fold greater in leaf and stem tissue, respectively, of the resistant biotype. Kinetic analyses of glutathione S-transferase activity in leaf extracts from the resistant and susceptible biotypes were performed with the substrates glutathione, 1-chloro-2,4-dinitrobenzene, and atrazine. There was little or no change in apparent Km values for glutathione, atrazine, or 1-chloro-2,4-dinitrobenzene. However, the Vmax for glutathione and atrazine were approximately 3-fold higher in the resistant biotype than in the susceptible biotype. In contrast, the Vmax for 1-chloro-2,4-dinitrobenzene was 30% lower in the resistant biotype. Leaf glutathione S-transferase isozymes that exhibit activity with atrazine and 1-chloro-2,4-dinitrobenzene were separated by fast protein liquid (anion-exchange) chromatography. The susceptible biotype had three peaks exhibiting activity with atrazine and the resistant biotype had two. The two peaks of glutathione S-transferase activity with atrazine from the resistant biotype coeluted with two of the peaks from the susceptible biotype, but peak height was three- to fourfold greater in the resistant biotype. In both biotypes, two of the peaks that exhibit glutathione S-transferase activity with atrazine also exhibited activity with 1-chloro-2,4-dinitrobenzene, with the peak height being greater in the susceptible biotype. The results indicate that atrazine resistance in the velvetleaf biotype from Maryland is due to enhanced glutathione S-transferase activity for atrazine in leaf and stem tissue which results in an enhanced capacity to detoxify the herbicide via glutathione conjugation.  相似文献   

18.
We studied the response of glutathione‐ and ascorbate‐related antioxidant systems of the two tomato cultivars to Pseudomonas syringae pv. tomato infection. In the inoculated susceptible A 100 cultivar a substantial decrease in reduced glutathione (GSH) content, oxidised glutathione accumulation and GSH redox ratio decline as well as glutathione peroxidase activity increase were found. The enhanced glutathione reductase activity was insufficient to keep the glutathione pool reduced. A transiently increased dehydroascorbic acid (DHA) content and ascorbic acid (AA) redox ratio decrease together with ascorbate peroxidase activity suppression were observed. Adversely to the progressive reduction in GSH pool size, AA content tended to increase but the changes were more modest than those of GSH. By contrast, in interaction with the resistant Ontario cultivar the glutathione pool homeostasis was maintained throughout P. syringae attack and no significant effect on the ascorbate pool was observed. Moreover, in the resistant interaction there was a significantly higher constitutive and pathogen‐induced glutathione‐S‐transferase (GST) activity. The relationship between GST activity and DHA content found in this study indicates that this enzyme could also act as dehydroascorbate reductase. These results reflect the differential involvement of GSH and AA in tomato‐P. syringae interaction and, in favour of the former, they clearly indicate the role of GSH and GSH‐utilizing enzymes in resistance to P. syringae. The maintenance of glutathione pool homeostasis and GST induction appear to contribute to tissue inaccessibility to bacterial attack.  相似文献   

19.
Burak Kaptaner 《Cytotechnology》2016,68(4):1577-1583
The present study was conducted to determine cytotoxic effects of 4-octylphenol (4-OP) on primary cultured hepatocytes of pearl mullet (Alburnus tarichi). Lactate dehydrogenase (LDH) release, malondialdehyde (MDA) level, antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST)] and glutathione (GSH) content were measured after 24-h exposure to 4-OP. 4-OP caused dose- and time-dependent increases in LDH release. Significant induction of MDA level and decrease in GSH content were found. SOD and GPx activities were decreased while GST activity was increased. These findings suggest that 4-OP leads to cytotoxicity by depressing antioxidant defenses in fish hepatocytes.  相似文献   

20.
Chemopreventive potential of Acacia nilotica bark extract (ANBE) against single intraperitoneal injection of N-nitrosodiethylamine (NDEA, 200 mg/kg) followed by weekly subcutaneous injections of carbon tetrachloride (CCl4, 3 ml/kg) for 6 weeks induced hepatocellular carcinoma (HCC) in rats was studied. At 45 day after administration of NDEA, 100 and 200 mg/kg of ANBE were administered orally once daily for 10 weeks. The levels of liver injury and liver cancer markers such as alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), γ-glutamyl transferase (γ-GT), total bilirubin level (TBL), α-feto protein (AFP) and carcinoembryonic antigen (CEA) were substantially increased following NDEA treatment. However, ANBE treatment reduced liver injury and restored liver cancer markers. ANBE also significantly prevented hepatic malondialdehyde (MDA) formation and reduced glutathione (GSH) in NDEA-treated rats which was dose dependent. Additionally, ANBE also increased the activities of antioxidant enzymes viz., catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) in the liver of NDEA-administered rats. Eventually, ANBE also significantly improved body weight and prevented increase of relative liver weight due to NDEA treatment. Histological observations of liver tissues too correlated with the biochemical observations. HPLC analysis of ANBE showed the presence of gallic, protocatechuic, caffeic and ellagic acids, and also quercetin in ANBE. The results strongly support that A. nilotica bark prevents lipid peroxidation (LPO) and promote the enzymatic and non-enzymatic antioxidant defense system during NDEA-induced hepatocarcinogenesis which might be due to activities like scavenging of oxy radicals by the phytomolecules in ANBE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号