首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The supernatant above hatched sea urchin (Strongylocentrotus purpuratus) blastulae contains crude hatching protease, which is heterogeneous in molecular weight, solubility, charge, and density. It requires urea treatment (6 m, 22 °C, 6 h) to dissociate from the enzyme the heterogeneous population of fragments it has generated in digesting its substrate, the fertilization envelope. It can then be purified 340-fold by diethylaminoethyl-cellulose, ammonium sulfate, and Sephadex G-100. The resulting preparation, homogeneous by the criteria of gel exclusion chromatography, sodium dodecyl sulfate gel electrophoresis, and thermal inactivation, has the following properties: specific activity = 1.44 U mg?1 (1.44 μmol min?1 mg?1); kcat = 0.72 s-1; molecular weight = 29,000; energy of activation = 12.9 kcal mol?1 on dimethylated casein;Km = 0.93 mgml?1 dimethylated casein. The pure enzyme is optimally active at pH 7 to 9, 0.5 m NaCl, 10 mm Ca2+, and 42 °C. Purification renders the enzyme less stable to freezing and thawing and increases the rate of its thermal inactivation at 37 °C by 100-fold.  相似文献   

2.
Isopentenyl pyrophosphate isomerase (EC 5.3.3.2) from pig liver has been purified 197-fold. The preparation was estimated to contain less than 10% of contaminating protein. The molecular weight determined by gel filtration was 82,500 ± 3,000 and the isoelectric point from isoelectric focusing was in the range 6.0–6.2. N-terminal analysis showed the presence of both leucine and proline. The pH optimum of the enzyme preparation was 6.3. After dialysis against EDTA, activity was restored by either Mn2+ or Mg2+, the former being more effective. At the optimum pH and concentration of Mn2+, Km and V were 2.7 μm and 6.7 μmol min?1 mg?1, respectively. The enzyme was partially inhibited by a variety of terpene mono- and pyrophosphate esters, by inorganic phosphate ions, and by acetate ions; essentially complete inhibition by sulfhydryl-blocking reagents was observed. ATP partially inhibited, the degree of inhibition showing a sigmoid dependence on ATP concentration. Monothiols and dithiothreitol activated the enzyme, as did mevalonic acid.  相似文献   

3.
An NADH:(acceptor) oxidoreductase (EC 1.6.99.3) of human erythrocyte membrane was purified by DEAE-cellulose anion exchange, hydroxyapatite adsorption, and 5′-ADP-hexane-agarose affinity chromatographies after solubilization with Triton X-100. The purified reductase preparation was homogeneous and estimated to have an apparent molecular weight of 36,000 on SDS-polyacrylamide slab gel electrophoresis and of 144,000 on Sephadex G-200 gel filtration in the presence of 0.2% Triton X-100, whereas a soluble NADH-cytochrome b5 reductase of human erythrocyte had a molecular weight of 32,000 by both methods, indicating the existence of a distinct membrane reductase. Digestion of the membrane reductase with cathepsin D yielded a new polypeptide chain which gave the same relative mobility as the soluble reductase on SDS-polyacrylamide slab gel electrophoresis. The membrane enzyme, the cathepsin-digested enzyme, and the soluble enzyme all cross-reacted with the antibody to rat liver microsomal NADH-cytochrome b5 reductase. The enzyme had one mole FAD per 36,000 as a prosthetic group and could reduce K3Fe(CN)6, 2,6-dichlorophenolindophenol, cytochrome c, methemoglobin-ferrocyanide complex, cytochrome b5 and methemoglobin via cytochrome b5 when NADH was used as an electron donor. NADPH was less effective as an electron donor than NADH. The specific activity of the purified enzyme was 790 μmol ferricyanide reduced min?1 mg?1 and the turnover number was 40,600 mol ferricyanide reduced min?1 mol?1 FAD at 25 °C. The apparent Km values for NADH and cytochrome b5 were 0.6 and 20 μm, respectively, and the apparent V value was 270 μmol cytochrome b5 reduced min?1 mg?1. These kinetic properties were similar to those of the soluble NADH-cytochrome b5 reductase. The results indicate that the NADH:(acceptor) oxidoreductase of human erythrocyte membrane could be characterized as a membrane NADH-cytochrome b5 reductase.  相似文献   

4.
H.F. Bundy  S. Coté 《Phytochemistry》1980,19(12):2531-2534
Carbonic anhydrase (CA) was purified from the unicellular green alga Chlamydomonas reinhardii, and the purity of the preparation was established by gradient gel electrophoresis. The purified enzyme exhibited a MW of 165 000 and contained 6 atoms of Zn. The subunit MW, as determined by dodecyl sulfate electrophoresis, was 27 000. These results are consistent with a quarternary structure which is hexameric, each monomer containing 1 g atom of Zn. Like spinach CA, and in contrast to other oligomeric plant CAs, a sulfhydryl reducing agent is not needed to stabilize the enzyme. CO2-hydrase activity was inhibited by both acetazolamide (I50 = 7.8 × 10?9M) and sulfanilamide (I50 = 1.3 × 10?5M), as well as by certain inorganic anions. The purified enzyme showed relatively weak esterase activity with p-nitrophenyl acetate but was an extremely effective esterase with 2-hydroxy-5-nitro-α-toluenesulfonic acid sultone as the substrate. Both esterase activities could be completely inhibited by adding acetazolamide. In its gross structural characteristics, the C. reinhardii enzyme resembles the CAs from higher plants. However, in its esterase activity and the inhibition by sulfonamides it is markedly different from plant CAs and bears more resemblance to erythrocyte CAs.  相似文献   

5.
Ethanolamine kinase was partially purified from the larvae of Culex pipiens fatigans and its properties were studied. The enzyme was separated from choline kinase by acetic acid precipitation at pH 5.0 of a 13,000g supernatant of the larval homogenate. Alkaline phosphatase activity was removed from the enzyme preparation by the acid treatment followed by ammonium sulfate fractionation. The enzyme was localized in the cytosolic fraction and had a requirement for Mg2+ as a cofactor. The Km values for ethanolamine and ATP were 4 × 10?4 and 1.54 × 10?4m, respectively. The affinity of the enzyme for nucleotide triphosphates was in the order, ATP > ITP > GTP while UTP and CTP were poorly utilized. p-Chloromercuribenzoate and N-ethylmaleimide inhibited the enzyme activity and reduced glutathione protected the enzyme from their inhibition. Choline and serine had no effect on the enzyme activity. The enzyme had a molecular weight of 44, 000 daltons as determined by gel filtration chromatography. Eggs contained the highest specific activity of the enzyme while adult insects had the highest total enzyme activity.  相似文献   

6.
Carbonic anhydrase activity (hydration of CO2 was found in homogenates of leaves (116–500 units.mg?1 protein) and root nodules (27–255 units.mg?1 protein) from 8 legume genera inoculated in each case with a host specific Rhizobium. No enzyme, or only trace amounts (2–7 units.mg?1 protein), were detected in root extracts, The enzymatic activity was inhibited in all cases by azide and acetazolamide. The sizes of nodule and leaf carbonic anhydrases, estimated by gel filtration of partially purified preparations from Phaseolus vulgaris, were around 45 000 and 205 000 respectively. These enzymes also differed in sensitivity to inhibitors. More than 99% of the activity present in Vicia faba nodules was recovered as a soluble enzyme and only a trace was located in the isolated bacteroids.  相似文献   

7.
Ornithine transcarbamylase (EC 2.1.3.3) was purified to homogeneity from rat liver. The basis of the method is the chromatography of a high-speed supernatant fraction of a homogenized rat liver on an affinity column consisting of the transition-state analog of ornithine transcarbamylase, δ-N-(phosphonacetyl)-l-ornithine, immobilized on epoxy-activated Sepharose 6B through the α-amino group. The enzyme was eluted from the column using a gradient of the substrate, carbamyl phosphate, and further purified by gel filtration. The enzyme elutes with a constant specific activity of 250 to 260 μmol min?1 mg?1 at pH 8.5, 37°C, and is free of contaminating proteins on sodium dodecyl sulfate gel electrophoresis. Determination of the molecular weight of the purified enzyme by centrifugation (98,000) and by gel electrophoresis in the presence of sodium dodecyl sulfate (35,300) indicates that the enzyme from rat liver is a trimer. The enzyme exhibits conventional Michaelis-Menten kinetics at pH 7.4 and in this respect differs from the enzyme prepared by other methods.  相似文献   

8.
9.
Low- and high-affinity binding sites for cyclic GMP were found to be associated with the cyclic AMP-dependent protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) from human tonsillar lymphocytes, but neither of them was identical with the cyclic AMP binding site.The enzyme activated by cyclic GMP phosphorylated the same site of calf thymus H2b histone as the cyclic AMP activated enzyme; however, more complex kinetics of activation were found with cyclic GMP.Two classes of cyclic GMP binding site were demonstrated by kinetic analysis of cyclic [3H]GMP binding in the enzyme preparations eluted by 0.1 M potassium phosphate (pH 7.0) from DEAE cellulose. The high-affinity cyclic GMP binding site (Kd about 44 · 10?8 M belonged to some complex form of the protein kinase, as evidenced by the mutual inhibition of cyclic AMP binding and high affinity cyclic GMP binding. However, the high-affinity cyclic GMP binding site disappeared on Sephadex G-100 gel chromatography of the enzyme preparation, whereas the cyclic AMP binding activity was recovered quantitively as separate fractions. The low-affinity cyclic GMP binding site (Kd 2–5 · 10?6 M) was demonstrated by the inhibitory effect of 10?5 M cyclic GMP on cyclic AMP binding in each cyclic AMP binding fraction obtained by gel chromatography. However, cyclic AMP did not inhibit the binding of cyclic GMP to the low-affinity binding site.  相似文献   

10.
Mitochondria isolated from the Crassulacean acid metabolism plant Sedum praealtum were demonstrated to decarboxylate added malate at basal rates of 30–50 μmol mg?1 original chlorophyll h?1. The basal rate could be stimulated markedly by the addition of ADP, oxaloacetic acid, an uncoupler of oxidative phosphorylation, or NAD, with maximum rates of 70–100 μmol mg?1 original chlorophyll h?1 observed. These observed rates were high enough to account for a large proportion of the estimated rate of malate decarboxylation in vivo. The major products of malate oxidation by the mitochondria in most cases were found to be pyruvate and CO2, indicating that malate oxidation in these mitochondria proceeds mainly through NAD malic enzyme rather than NAD malate dehydrogenase. Under conditions employed little of the pyruvate formed was further oxidized, suggesting a fate other than oxidation (conversion to starch) for this pyruvate. Malate decarboxylation by mitochondria and by partially purified NAD malic enzyme was markedly inhibited by NaHCO3. A possible physiological role is suggested for this inhibition as a feedback control on the enzyme.  相似文献   

11.
ATP:AMP phosphotransferase (EC 2.7.4.3) (adenylate kinase) has been purified 1746-fold from Mycobacterium marinum (ATCC 927) by successive column chromatography on DEAE-cellulose (DE-53), Reactive Blue agarose, Sephadex G-75, hydroxyapatite and, finally, DEAE-Sephadex A-50. The final enzyme preparation had a specific activity of 576 μmol/min per mg protein with an overall yield of 51%. The preparation was homogeneous by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme was estimated to have an Mr of 29500 and an isoelectric point of 6.7, properties which generally resemble those of the mitochondrial enzyme. Indeed, the two enzymes failed to separate when subjected to polyacrylamide gel electrophoresis under denaturing conditions. The extinction coefficient (at 276 nm) was calculated to be 3.114 · 104 M−1 and E1cm1% = 10.556. Adenylate kinase was present at a concentration of 0.06 mg/g (wet weight) bacteria. Enzyme was stable for months in 60% glycerol in the freezer; at 4°C, less than 5% of the activity was lost over a 7 day period.  相似文献   

12.
For a purified preparation of the soluble form of phosphatidate phosphohydrolase (EC 3.1.3.4) from guinea pig cerebral cortex, 1-O-alkyl-rac-glycerol 3-phosphate was found to be accepted as a substrate. This substrate analog was tritium-labeled in order to serve in a rapid sensitive assay for the enzyme, in which labeled 1-alkyl glycerol is released. Heat denaturation and enzyme activity dependence on pH indicated that 1-O-alkyl-rac-glycerol 3-phosphate phosphohydrolase and phosphatidate phosphohydrolase activities in the preparation are attributable to the same enzyme. 1-O-Alkyl-rac-glycerol 3-phosphate was hydrolyzed with a Vmax of 1.7 nmol min?1 mg?1 of protein and a Km of 270 μm.  相似文献   

13.
Polymers and copolymers of horseradish root peroxidase (HRP) and Penicillium funiculosum 46.1 glucose oxidase (GO) have been synthesized and their catalytic properties have been characterized (free and immobilized forms of each enzyme were studied). The cooxidation reaction of phenol and 4-aminoantipyrin (4-AAP), performed in an aqueous medium in the presence of equimolar amounts of GO and HRP, was characterized by effective K M and k cat of 0.58 mM and 20.9 s?1 (for phenol), and 14.6 mM and 18.4 s?1 (glucose), respectively. The catalytic efficiency of polymerization products (PPs) of GO (GO-PPs) depended on the extent of their aggregation. The combinations GO + HRP-PP and HRP + GO-PP, as well as the copolymer HRP*-GO-PP, proved promising as reagents for enzyme-based analytical systems. When adsorbed on aluminum hydroxide gels, GO-PPs exhibited higher catalytic activity than the non-polymeric enzyme. Maximum retention of GO-PP activity on the inorganic carrier was observed in the case of GO-PP copolymers with an activated HRP. Polymerization of HRP in the presence of a zinc hydroxide gel, paralleled by HRP-PP immobilization onto the gel, increased both the activity of the enzyme and its operational stability.  相似文献   

14.
Beef liver dihydrofolate reductase has been purified to homogeneity by using a methotrexate affinity column followed by gel filtration to remove several higher molecular weight proteins. Tightly bound dihydrofolate is removed by hydroxylapatite chromatography. The overall purification is 13,000-fold; the specific activity is 26 units·mg?1, approximately 25 times higher than previously reported. The enzyme has been shown to be homogeneous by the following criteria: (i) discontinuous gel electrophoresis, (ii) sodium dodecyl sulfate-gel electrophoresis, (iii) velocity sedimentation, (iv) equilibrium sedimentation, and (v) methotrexate titration. The amino acid composition has been determined. Notable features include a single cysteine, three tryptophan and three histidine residues. The N-terminal amino acid is leucine. The molecular weight determined by equilibrium sedimentation is 22,500. The s20,w0 is 2.08 × 10?13 S and D20,w0 = 10.93 cm2·s?1. A frictional coefficient of 1.04 indicates that the enzyme is essentially spherical. An isoelectrical point of 6.80 was measured.  相似文献   

15.
L-Mimosine synthase has been isolated from Leucaena leucocephala seedlings and purified 280-fold by heat treatment, ammonium sulphate fractionation, gel filtration and ion-exchange chromatography. The enzyme was shown to be homogeneous by gel electrophoresis (MW 64 000±2000) and to consist of two identical subunits with MWs of 32 000±2000. The purified enzyme has a Km value of 6.25 x 10?3 M for O-acetyl-L-serine and 5.0 x 10?3 M for 3,4-dihydroxypyridine. In these and other properties, the enzyme differs from β-(pyrazol-1-yl)-L-alanine synthase from Citrullus vulgaris seedlings.  相似文献   

16.
Extracellular laccase produced by the wood-rotting fungus Cerrena unicolor was immobilized covalently on the mesostructured siliceous cellular foams (MCFs) functionalised using various organosilanes with amine and glycidyl groups. The experiments indicated that laccase bound via glutaraldehyde to MCFs modified using 2-aminoethyl-3-aminopropyltrimethoxysilane remains very active. In the best biocatalyst activity was about 42,700 U mL?1 carrier (66,800 U mg?1 bound protein), and hence significantly higher than ever reported before. Optimisation of the immobilization procedure with respect to protein concentration, pH of coupling mixture and the enzyme purity afforded the biocatalyst with activity of about 90,980 U mL?1. For the best preparation, thermal- and pH-stability, and activity profiles were determined. Experiments carried out in a batch reactor showed that kcat/Km for immobilized enzyme (0.88 min?1 μM?1) was acceptable lower than the value obtained for the native enzyme (2.19 min?1 μM?1). Finally, potentials of the catalysts were tested in the decolourisation of indigo carmine without redox-mediators. Seven consecutive runs with the catalysts separated by microfiltration proved that adsorption of the dye onto the carrier and enzymatic oxidation contribute to the efficient decolourisation without loss of immobilized enzyme activity.  相似文献   

17.
The analysis of the effect of pH upon the rate of polymerization indicates that the activity of yeast RNA polymerase I is optimal between pH 7.5 and 9 and depends on the ionization state of two groups with apparent pKa values of 6.5 and 10. Yeast RNA polymerase I is extremely labile at acid pH. Below pH 5 the enzyme is irreversibly inactivated by [H+], with a second-order rate constant of 1.6 × 10?4m?1 min?1. Sucrose gradient sedimentation and gel electrophoresis analysis of the enzyme inactivated at acid pH indicates the sequential dissociation of several enzyme subunits. The polypeptides of 44,000 and 24,000 daltons dissociate first from the enzyme core followed by the dissociation of the polypeptides of 48,000 and 36,000 daltons.  相似文献   

18.
A very potent anticholinesterase compound, 7-(diethoxyphosphinyloxy)-N-methylquinolinium fluorosulfate, has been used to determine the normality of acetylcholinesterase solutions. The inhibitor reacts rapidly and completely with acetylcholinesterase. The bimolecular rate constant is 2.5 × 108m?1 min?1 and the equilibrium constant is about 106. The reaction produces an inactive diethylphosphoryl enzyme in which the active serine is phosphorylated. The reaction produces the highly fluorescent 1-methyl-7-hydroxyquinolinium dipolar ion as a leaving group. The inhibited enzyme is quite stable and hydrolyzes to produce active enzyme only at the rate of 0.04%/min. The inhibitor was used in two ways for measuring the normality of acetylcholinesterase solutions: (1) The very fast reaction of the inhibitor with cholinesterase makes it convenient to determine the normality of enzyme solutions by measuring the decrease in enzyme activity caused by the addition of an accurately known quantity of the inhibitor. (2) The highly fluorescent nature of the leaving group makes it possible to measure the low concentration that is produced by the reaction of excess inhibitor with the enzyme. The two methods yielded activities per site of 6.9 × 105 min?1 and 7.3 × 105 min?1 using enzyme normalities of 1–2 × 10?8m and 1–5 × 10?m, respectively, using a commercial 11 S enzyme preparation from electric eel and acetylthiocholine as the enzyme substrate.  相似文献   

19.
PROPERTIES OF ACETYLCHOLINESTERASE FROM RAT BRAIN   总被引:7,自引:7,他引:0  
—Acetylcholinesterase (EC 3.1.1.7) from cerebral cortex of mature rats was purified by means of affinity chromatography, to a specific activity of 4.5 mmol acetylthiocholine hydrolysed × min?1× mg?1 protein. The enzyme is a glycoprotein and contains a single subunit with a mol. wt of about 80,000. Electrofocusing either a pure or a crude preparation of the enzyme produces six enzymatically active bands with a range of isoelectric points from 5.04 to 5.54. Gel filtration yields oligomers with molecular weights of about 150,000, 320,000, 500,000 and 650,000, with 60 per cent of the activity in the 150,000 fraction. The gel fractions with molecular weights 150,000 and 320,000 produce the same isoelectric patterns. Different subcellular fractions of the cortex show different characteristic isoenzyme patterns.  相似文献   

20.
Glucosamine-6-phosphate (GlcN-6-P) synthase from Saccharomyces cerevisiae was expressed in Pichia pastoris SMD1168 GIVING maximum activity of 96 U ml?1 for the enzyme in the culture medium. By SDS-PAGE, the enzyme, a glycosylated protein, had an apparent molecular mass of 90 kDa. The enzyme was purified by gel exclusion chromatography to near homogeneity, with a 90 % yield and its properties were characterized. Optimal activities were at pH 5.5 and 55 °C, respectively, at which the highest specific activity was 6.8 U mg protein ?1. The enzyme was stable from pH 4.5 to 5.5 and from 45 to 60 °C. The Km and Vmax of the GlcN-6-P synthase towards d-fructose 6-phosphate were 2.8 mM and 6.9 μmol min?1 mg?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号