首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Changes in the concentrations of ammonia, glutamate, alanine, aspartate, -ketoglutarate, oxaloacetate and succinate were measured in freeze-clamped lateralred muscle, dorsal white muscle and liver, and in rapidly cooled blood of goldfish after 12 h of anoxia. Alanine accumulation, succinate accumulation and aspartate depletion are observed in all tissues examined; in the liver the concentrations of glutamate increase and those of ammonia decrease. The mass-action ratio of the glutamate-pyruvate transaminase-catalyzed reaction stays within one order of magnitude from thermodynamic equilibrium in the direction of alanine formation. The mass-action ratio of the glutamate-oxaloacetate transaminase reaction is far from equilibrium when measured oxaloacetate concentrations are used. When levels of free oxaloacetate are calculated from LDH and MDH equilibrium constants, the mass-action ratio of glutamate-oxaloacetate transamination is close to equilibrium in the direction of aspartate formation. Since neither alanine nor glutamate decreases, and since ammonia gradients suggest a continuous ammonia production in all tissues examined, anaerobic proteolysis is assumed. A possible coupling between amino acid catabolism and ethanol production is discussed.Abbreviations ALA alanine - ASP aspartate - EDTA ethylene diamine tetraacetate - FP ox oxidated flavoprotein - FP red reduced flavoprotein - FUM fumarate - GLU glutamate - GOT glutamate oxaloacetate transaminase - GPT glutamate pyruvate transaminase - IMP inosine monophosphate - KG -ketoglutarate - LDH lactate dehydrogenase - MAL malate - MAR mass action ratio - MDH malate dehydrogenase - OAA oxaloacetate - PYR pyruvate - sAMP adenylosuccinate - SDH succinate dehydrogenase - SUCC succinate  相似文献   

2.
To study the effect of facilitated diffusion of the intermediate metabolite, oxaloacetate, on the coupled reaction of aspartate aminotransferase (L-aspartate: 2-oxoglutarate aminotransferase, EC 2.6.1.1) and malate dehydrogenase (L-malate:NAD+ oxidoreductase, EC 1.1.1.37), these enzymes were co-immobilized on the surface of a collagen film. The kinetic properties of the immobilized enzymes were compared with those observed with the enzymes in solution. Since the reactions correspond to the cytosolic enzymes, they have been studied in the direction aspartate aminotransferase toward malate dehydrogenase. Coupled enzymes in solution showed classical behaviour. A lag-time was observed before they reached a steady state and this lag-time was dependent on the kinetic properties of the second enzyme, malate dehydrogenase. The same lag-time was observed when malate dehydrogenase in solution was coupled with aspartate aminotransferase bound to the film. When aspartate aminotransferase in solution was coupled with malate dehydrogenase bound to the collagen film, a very long lag-time was observed. Theoretical considerations showed that in the latter case, the lag-time was dependent on the kinetic properties of the second enzyme and the transport coefficient of the intermediate substrate through the boundary layer near the surface of the film. Then both enzymes were co-immobilized on the collagen film. The coupled activity of aspartate aminotransferase and malate dehydrogenase was compared for films with an activity ratio of 5 and 0.8. In both cases, a highly efficient coupling was observed. In the former case, where malate dehydrogenase was rate-limiting, 81% of this limiting activity was observed. In the latter case, aspartate aminotransferase was rate-limiting and 82% of its rate was obtained for the final product formation. The linear increase of product formation with time corresponded fairly well to the theoretical equations developed in the paper. To interpret these rate equations, one should assume that the intermediate substrate oxaloacetate formed by aspartate aminotransferase was used by malate dehydrogenase in the diffusion layer near the film, before diffusing in the bulk solution.  相似文献   

3.
4.
Developing soybean seeds contain phosphoenolpyruvate (PEP) carboxylase,pyruvic kinase, malate dehydrogenase, aspartate aminotransferase,alanine aminotransferase and malic enzyme activities. PEP carboxylasemay be important in competing with pyruvic kinase and directinga portion of glycolytic carbon towards oxaloacetate synthesis.The oxaloacetate can then be converted to aspartate and malate.Malic enzyme produces pyruvate and NADPH from malate, and thismay be an important additional source of reducing power forlipid biosynthesis. In the presence of high levels of PEP carboxylaseit is possible to demonstrate PEP formation by pyruvic kinase.PEP carboxylase and pyruvic kinase independently compete forPEP in a mixed system. Soybean seed extracts readily convertedradioactive PEP into alanine and aspartate when supplementedwith ADP, Mg2+, K+, HCO3– and glutamate. Under varyingconditions of pH, metal ions, PEP, enzyme concentration andtime both alanine and aspartate were always produced. Possiblythe final products of glycolysis should be considered as pyruvateand oxaloacetate in plants. (Received April 22, 1981; Accepted June 26, 1981)  相似文献   

5.
Activity levels of pyruvate dehydrogenase, enzymes of citric acid cycle, aspartate and alanine aminotransferases were estimated in mitochondria, synaptosomes and cytosol isolated from brains of normal rats and those injected with acute and subacute doses of ammonium acetate. In mitochondria isolated from animals treated with acute dose of ammonium acetate, there was an elevation in the activities of pyruvate, isocitrate and succinate dehydrogenases while the activities of malate dehydrogenase (malateoxaloacetate), aspartate and alanine aminotransferases were suppressed. In subacute conditions a similar profile of change was noticed excepting that there was an elevation in the activity of -ketoglutarate dehydrogenase in mitochondria. In the synaptosomes isolated from animals administered with acute dose of ammonium acetate, there was an increase in the activities of pyruvate, isocitrate, -ketoglutarate and succinate dehydrogenases while the changes in the activities of malate dehydrogenase, asparatate and alanine amino transferases were suppressed. In the subacute toxicity similar changes were observed in this fraction except that the activity of malate dehydrogenase (oxaloacetatemalate) was enhanced. In the cytosol, pyruvate dehydrogenase and other enzymes of citric acid cycle except malate dehydrogenase were enhanced in both acute and subacute ammonia toxicity though their activities are lesser than that of mitochondria. In this fraction malate dehydrogenase (oxaloacetatemalate), was enhanced while activities of malate dehydrogenase (malateoxaloacetate), aspartate, and alanine aminotransferases were suppressed in both the conditions. Based on these results it is concluded that the decreased activities of malate dehydrogenase (malateoxaloacetate) in mitochondria and of aspartate, aminotransferase in mitochondria and cytosol may be responsible for the disruption of malate-aspartate, shuttle in hyperammonemic state. Possible existence of a small vulnerable population of mitochondria in brain which might degenerate and liberate their contents into cytosol in hyperammonemic states is also suggested.  相似文献   

6.
The mechanistic implications of the kinetic behaviour of a fusion protein of mitochondrial malate dehydrogenase and citrate synthase have been reanalysed in view of predictions based on experimentally determined kinetic parameter values for the dehydrogenase and synthase activities of the protein. The results show that the time-course of citrate formation from malate in the coupled reaction catalysed by the fusion protein can be most satisfactorily accounted for in terms of a free-diffusion mechanism when consideration is taken to the inhibitory effects of NADH and oxaloacetate on the malate dehydrogenase activity. The effect of aspartate aminotransferase on the coupled reaction is likewise fully consistent with that expected for a free-diffusion mechanism. It is concluded that no tenable kinetic evidence is available to support the proposal that the fusion protein catalyses citrate formation from malate by a mechanism involving channelling of the intermediate oxaloacetate.  相似文献   

7.
In earlier work we have described how computer algebra may be used to derive composite rate laws for complete systems of equations, using the mathematical technique of Gröbner Bases (Bennett, Davenport and Sauro, 1988). Such composite rate laws may then be fitted to experimental data to yield estimates of kinetic parameters. Recently we have been investigating the practical application of this methodology to the estimation of kinetic parameters for the closed two enzyme system of aspartate aminotransferase (AAT) and malate dehydrogenase (MDH) (Fisher 1990a; Fisher 1990b; Bennett and Fisher, 1990): $$\begin{gathered} aspartate + \alpha - ketoglutarate\begin{array}{*{20}c} \rightharpoonup \\ \leftharpoondown \\ \end{array} glutamate + oxaloacetate \hfill \\ {\text{oxaloacetate + NADH}}\begin{array}{*{20}c} \rightharpoonup \\ \leftharpoondown \\ \end{array} malate + NAD^ + \hfill \\ \end{gathered} $$ In this paper we present a fuller (although not yet complete) analysis of the system. We show how symbolic estimates of the error behaviour of the parameters can be made, and used to identify those which are of kinetic significance. Finally we consider how metabolic control analysis can be applied directly to such a system.  相似文献   

8.
  • 1.1. Lactate dehydrogenase is able to catalyse the reduction of oxaloacetate utilizing NADH as coenzyme but, contrary to a previous report, with greatly reduced values for both Km and Vmax when compared to the normal substrate pyruvate.
  • 2.2. A modification to the published procedure for the purification of vertebrate l-lactate dehydrogenase by affinity chromatography on oxamated Sepharose is described.
  • 3.3. Supernatant malate dehydrogenase does not catalyse the reduction of pyruvate at rates greater than 1%, of the rates with oxaloacetate.
  相似文献   

9.
One group of C4, species utilize a NAD-malic enzyme to decarboxylate C4 acids. This enzyme, together with a major isoenzyme of aspartate aminotransferase and a NAD-malate dehydrogenase, is localized in the mitochondria of the bundle sheath cells and the following pathway for C4, acid decarboxylation has been proposed: aspartate → oxaloacetate → malate → CO2 + pyruvate. The present study reports that mitochondria isolated from the bundle sheath cells of one of these species, Atriplex spongiosa, are capable of decarboxylating C4, acids at rates between 5 and 8 μmol/min/mg chlorophyll. For maximum decarboxylating activities, these particles required aspartate, 2-oxoglutarate and phosphate as well as malate; in the absence of any one of these compounds, activity was reduced to 0.3–0.8 μmol/min/mg chlorophyll. Rates for C4 acid decarboxylation were much greater than the respiratory activities of these particles, including the capacity to form citrate or to oxidize malate, succinate, pyruvate or 2-oxoglutarate (0.03–0.6 μmol/min/mg chlorophyll). A comparison of mitochondria prepared from leaves of various C4, and C3, species showed that only the mitochondria from the bundle sheath cells of plants with high NAD-malic enzyme have capacities for rapid C4 acid decarboxylation. The effects of a variety of experimental conditions on C4 acid decarboxylating activities are also reported. The role of these mitochondria in C4 photosynthesis is discussed.  相似文献   

10.
Davis B  Merrett MJ 《Plant physiology》1973,51(6):1127-1132
Sucrose density gradient centrifugation of broken cell suspensions of autotrophically grown Euglena gracilis Klebs. has allowed the separation of chloroplasts, mitochondria, and peroxisomes. Chlorophyll was taken as a marker for chloroplasts, fumarase and succinate dehydrogenase for mitochondria, and glycolate oxidoreductase for peroxisomes. Peaks of malate dehydrogenase (l-malate-NAD oxidoreductase, EC 1.1.1.37) activity were found in the mitochondrial and peroxisomal fractions. Acrylamide gel electrophoresis showed specific isoenzymes in the mitochondrial and peroxisomal fractions and a third isoenzyme in the supernatant. The mitochondrial isoenzyme which had a Km (oxaloacetate) of 30μm was inhibited by oxaloacetate concentrations above 0.17 mm, an inhibition of 50% being given by 0.9 mm oxaloacetate. The peroxisomal isoenzyme had a Km (oxaloacetate) of 24 μm, was inhibited by oxaloacetate concentrations above 0.13 mm, 50% inhibition being given by 0.25 mm oxaloacetate. Malate dehydrogenase activity in the supernatant did not show inhibition by increasing oxaloacetate concentration, the Km (oxaloacetate) being 91 μm.  相似文献   

11.
  • 1.1. Malate dehydrogenase has been purified from the foot muscle of Patella caerulea by ion-exchange chromatography on DEAE-cellulose, affinity chromatography on Blue Agarose and gel filtration on Sephadex G-150.
  • 2.2. The yield was 23.5% of the initial activity with a final specific activity of 257 U/mg of protein.
  • 3.3. The apparent mol. wt of the native enzyme is approx. 75,000 and it consists of two subunits of mol. wts in the range of 36,000–39,000.
  • 4.4. The enzyme exhibits hyperbolic kinetics with respect to oxaloacetate, NADH and l-malate. The Km values were determined to be 0.055 mM for oxaloacetate, 0.010 mM for NADH and 0.37 mM for l-malate. The pH optima are around 8.4 for the reduction of oxaloacetate and 9.2–9.6 for the reduction of oxaloacetate and 9.2–9.6 for the l-malate oxidation. Vmax and Km values for oxaloacetate change in an opposite manner with respect to pH values.
  • 5.5. Of the various compounds tested, only α-ketoglutarate, citrate and adenylate phosphates were found to inhibit the enzyme activity.
  • 6.6. From the above properties it appears that the reaction of cytoplasmic malate dehydrogenase of P. caerulea foot muscle is a key reaction in the anaerobic pathway and it occurs with the production of malate.
  相似文献   

12.
2-Oxoglutarate (-ketoglutarate) is transported into synaptosomal and synaptoneurosomal preparations by a Na+-dependent, high-affinity process that exhibits complex kinetics, and is differentially modulated by glutamate, glutamine, aspartate, malate, and a soluble, heat-labile substance of high molecular weight present in rat brain extracts. Glutamate and aspartate generally inhibit 2-oxoglutarate uptake, but under certain conditions may increase uptake. Glutamine generally increases 2-oxoglutarate uptake, but under certain conditions may inhibit uptake. One interpretation of our results is that 2-oxoglutarate uptake is mediated primarily by a transporter that exhibits negative cooperativity and possesses three regulatory sites that differentially modulate substrate affinity, Vmax, and negative cooperativity. Glutamate, aspartate, malate, and 2-oxoglutarate itself may interact with a site that reduces substrate affinity; whereas glutamine, and possibly glutamate and aspartate, appear to interact with another site that increases Vmax. A putative regulatory protein appears to abolish negative cooperativity and increases substrate affinity in the absence of glutamine. Based on the evidence that glutamatergic and GABAergic neurons depend on astrocytes to supply precursors to replenish their neurotransmitter and tricarboxylic acid cycle pools, the uptake of 2-oxoglutarate, presumably into synaptic terminals, may reflect a role for this metabolite in replenishing the transmitter and tricarboxylic acid pools, and a role for the transporter as a site at which these pools are regulated.Abbreviations used AAT aspartate aminotransferase - glu glutamate - gln glutamine - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - LDS low-density synaptosomes - OAA oxaloacetate - 2-OG 2-oxoglutarate (-ketoglutarate) - PC pyruvate carboxylase - PDH pyruvate dehydrogenase - TCA tricarboxylic acid Special issue dedicated to Dr. Claude Baxter.  相似文献   

13.
Malic enzyme of the phototrophic bacterium Chromatium vinosum strain D that lacks malate dehydrogenase was partially purified yielding a specific activity of 55 units/mg protein. The constitutive enzyme with a molecular weight of 110,000 and a pH optimum of 8.0 was absolutely dependent on the presence of a monovalent cation (NH 4 + , K+, Cs+, or Rb+) as well as a divalent cation (Mn2+, or Mg2+). The enzyme was inhibited by oxaloacetate, glyoxylate, and NADPH. The K 0.5 value for L-malate and the inhibition constants for oxaloacetate and glyoxylate are dependent on the concentration of the monovalent cation, whereas the K m value for NADP (18 M) and the K 1 value for NADPH (42 M) are independent. Throughout all kinetic measurements hyperbolic saturation curves and linear double reciprocal plots were obtained.Abbreviations OAA oxaloacetate - OD optical density  相似文献   

14.
Glutamate oxaloacetate transaminase (l-glutamate: oxaloacetate aminotransferase, EC 2.6.1.1 [GOT]), a key enzyme in the flow of carbon between the organic acid and amino acid pools in pea (Pisum sativum L.) root nodules, was studied. By ion exchange chromatography, the presence of two forms of GOT in the cytoplasm of pea root nodule cells was established. The major root nodule form was present in only a small quantity in the cytoplasm of root cells. Fractionation of root nodule cell extracts demonstrated that the increase in the GOT activity during nodule development was due to the increase of the activity in the cytoplasm of the plant cells, and not to an increase in activity in the plastids or in the mitochondria. The kinetic properties of the different cytoplasmic forms of GOT were studied. Some of the Km values differed, but calculations indicated that not the kinetic properties but a high concentration of the major root nodule form caused the observed increase in GOT activity in the pea root nodules. It was found that the reactions of the malate/aspartate shuttle are catalyzed by intact bacteroids, and that these reactions can support nitrogen fixation. It is proposed that the main function of the nodule-stimulated cytoplasmic form of GOT is participation in this shuttle.  相似文献   

15.
  • 1.1. In the mitochondria of chicken liver cells there is lactate dehydrogenase activity that catalyses the reduction of the oxaloacetate by the NADH.
  • 2.2. The presence of lactate dehydrogenase in the malate dehydrogenase preparations causes an apparent activation in the double-reciprocal plot at high oxaloacetate concentrations that depends on the lactate dehydrogenase/malate dehydrogenase ratio in the preparation.
  • 3.3. The separation of the two molecular forms of chicken liver mitochondrial malate dehydrogenase, free from lactate dehydrogenase, is described.
  相似文献   

16.
Ting IP 《Plant physiology》1968,43(12):1919-1924
Phosphoenolpyruvate carboxylase was purified from corn root tips about 80-fold by centrifugation, ammonium sulfate fractionation, and anion exchange and gel filtration chromatography. The resulting preparation was essentially free from malate dehydrogenase, isocitrate dehydrogenase, malate enzyme, NADH oxidase, and pyruvate kinase activity. Kinetic analysis indicated that l-malate was a noncompetitive inhibitor of P-enolpyruvate carboxylase with respect to P-enolpyruvate (KI = 0.8 mm). d-Malate, aspartate, and glutamate inhibited to a lesser extent; succinate, fumarate, and pyruvate did not inhibit. Oxaloacetate was also a noncompetitive inhibitor of P-enolpyruvate carboxylase with an apparent KI of 0.4 mm. A comparison of oxaloacetate and l-malate inhibition suggested that the mechanisms of inhibition were different. These data indicated that l-malate may regulate CO2 fixation in corn root tips by a feedback or end product type of inhibition.  相似文献   

17.
Oxidation of NADH in Glyoxysomes by a Malate-Aspartate Shuttle   总被引:16,自引:11,他引:5       下载免费PDF全文
Glyoxysomes isolated from germinating castor bean endosperm accumulate NADH by β-oxidation of fatty acids. By utilizing the glutamate: oxaloacetate aminotransferase and malate dehydrogenase present in glyoxysomes and mitochondria, reducing equivalents could be transferred between the organelles by a malate-aspartate shuttle. The addition of aspartate plus α-ketoglutarate to purified glyoxysomes brought about a rapid oxidation of accumulated NADH, and the oxidation was prevented by aminooxyacetate, an inhibitor of aminotransferase activity. Citrate synthetase activity in purified glyoxysomes could be coupled readily to glutamate: oxaloacetate aminotransferase activity as a source of oxaloacetate, but coupling to malate dehydrogenase and malate resulted in low rates of citrate formation. Glyoxysomes purified in sucrose or Percoll gradients were permeable to low molecular weight compounds. No evidence was obtained for specific transport mechanisms for the proposed shuttle intermediates. The results support a revised model of gluconeogenic metabolism incorporating a malate-aspartate shuttle in the glyoxysomal pathway.  相似文献   

18.
Reaction at pH = 2.3 of the [Mo2O2S2(OH2)6]2+ aqua cation with the tetravacant ion [β-B-HAs2W8O31]7− leads to the formation of a red solid from which three mixed salts have been obtained as single crystals and characterized by X-ray diffraction analysis. Three mixed salts K-5a, RbNa-5b, DMACs-5c exhibit a similar molecular arrangement consisting in three {β-HAs2W9O34} subunits mutually linked by three {Mo2O2S2} groups. The triangular arrangement delimits a large open-cavity, lined on the periphery by three outer {As-OH} groups and closed at the bottom by a small hexagonal pocket formed by six terminal oxygen atoms. The central hexagonal cavity is filled either by a potassium, a rubidium or a cesium cation. The outer {As-OH} groups are pointed towards two directions labelled up and down, respectively. In K-6a the three {As-OH} bonds are in up configuration leading to the {up, up, up} isomer. The structure of RbNa-5b is rather consistent with the superposition of the two {up, up, up} and {down, up, up} isomers disordered over the same crystallographic site, while only the {down, up, up} isomer is present in DMACs-5c. In solution, 183W NMR characterization of 6a as sodium salt results in a complicated spectrum consistent with the simultaneous presence of the four isomers, {up, up, up}, {down, up, up}, {down, down, up} and {down, down, down}, respectively. 5a reacts with three equivalents of iodine to give CsNa-6 isolated as single crystals. In 6, four β-{AsW9O33} moieties are located at the corner of a super tetrahedron and are mutually connected by six {Mo2O2S2} linkers. The three outer {As-OH} groups can be selectively removed by iodine, this oxidation reaction consisting in fact in a deprotecting process permitting the extension of the arrangement from triangular to tetrahedral.  相似文献   

19.
The hare heart mitochondrial malate dehydrogenase (mMDH) was established to have a much higher electrophoretic mobility than the corresponding enzyme from the rabbit heart. Differences of kinetic properties of both mMDH and cytoplasmic malate dehydrogenase (cMDH) from these two sources were shown. The hare heart mMDH and cMDH isoenzymes have a higher affinity to malate (in direct reaction) and oxaloacetate and NADH (in reverse reaction), i.e., they have lower K M values in comparison with the isoenzymes from the rabbit heart. Malate dehydrogenase seems to operate more effectively in the hare heart, which might be important in adaptive and evolutionary aspects.  相似文献   

20.
C4-acid metabolism by isolated bundlesheath chloroplasts, mitochondria and strands of Eriochloa borumensis Hack., a phosphoennolpyruvate-carboxykinase (PEP-CK) species, was investigated. Aspartate, oxaloacetate (OAA) and malate were decarboxylated by strands with several-fold stimulation upon illumination. There was strictly light-dependent decarboxylation of OAA and malate by the chloroplasts, but the chloroplasts did not decarboxylate aspartate in light or dark. PEP was a primary product of OAA or malate decarboxylation by the chloroplasts and its formation was inhibited by 3-(3,4-dichlorophenyl)-1, 1-dimethylurea or NH4Cl. There was very little conversion of PEP to pyruvate by bundle-sheath chloroplasts, mitochondria or strands. Decarboxylation of the three C4-acids by mitochondria was light-independent. Pyruvate was the only product of mitochondrial metabolism of C4-acids, and was apparently transaminated in the cytoplasm since PEP and alanine were primarily exported out of the bundle-sheath strands. Light-dependent C4-acid decarboxylation by the chloroplasts is suggested to be through the PEP-CK, while the mitochondrial C4-acid decarboxylation may proceed through the NAD-malic enzyme (NAD-ME) system. In vivo both aspartate and malate are considered as transport metobolites from mesophyll to bundle-sheath cells in PEP-CK species. Aspartate would be metabolized by the mitochondria to OAA. Part of the OAA may be converted to malate and decarboxylated through NAD-ME, and part may be transported to the chloroplasts for decarboxylation through PEP-CK localized in the chloroplasts. Malate transported from mesophyll cells may serve as carboxyl donor to chloroplasts through the chloroplastic NAD-malate dehydrogenase and PEP-CK. Bundle-sheath strands and chloroplasts fixed 14CO2 at high rates and exhibited C4-acid-dependent O2 evolution in the light. Studies with 3-mercaptopicolinic acid, a specific inhibitor of PEP-CK, have indicated that most (about 70%) of the OAA formed from aspartate is decarboxylated through the chloroplastic PEP-CK and the remaining (about 30%) OAA through the mitochondrial NAD-ME. Pyruvate stimulation of aspartate decarboxylation is discussed; a pyruvate-alanine shuttle and an aspartate-alanine shuttle are proposed between the mesophyll and bundle-sheath cells during aspartate decarboxylation through the PEP-CK and NAD-ME system respectively.Abbreviations CK carboxykinase - -Kg -ketoglutarate - ME malic enzyme - 3-MPA 3-mercaptopicolinic acid - OAA oxaloacetate - PEP phosphoenolpyruvate - R5P ribose-5-phosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号