首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Proton nuclear magnetic resonance spectroscopy has been used to detect two water molecules bound to residues in the active site of the Lactobacillus casei dihydrofolate reductase (DHFR). Their presence was detected by measuring nuclear Overhauser effects between NH protons in protein residues and protons in the individual bound water molecules in two-dimensional nuclear Overhauser effect spectroscopy (NOESY), in nuclear Overhauser effect spectroscopy in the rotating frame (ROESY) and three-dimensional 1H-15N ROESY-heteronuclear multiple quantum coherence spectra recorded on samples containing appropriately 15N-labelled DHFR. For the DHFR-methotrexate-NADPH complex, two bound molecules were found, one close to the Trp5 amide NH proton and the other near to the Trp21 indole HE1 proton: these correspond to two of the water molecules (Wat201 and Wat253) detected in the crystal structure studies described by Bolin and co-workers. However, the nuclear magnetic resonance experiments did not detect any of the other bound water molecules observed in the X-ray studies. The nuclear magnetic resonance results indicate that the two bound water molecules that were detected have lifetimes in the solution state that are longer than approximately two nanoseconds. This is of considerable interest, since one of these water molecules (Wat253) has been implicated as the likely proton donor in the catalytic reduction of dihydrofolate to tetrahydrofolate.  相似文献   

2.
Investigation on the volume properties of protein hydration layers is reported. Presented results are based on combination of Monte Carlo modeling and available experimental data. Six globular proteins with known data are chosen for analysis. Analyzing the model and the experimental results we found that water molecules bound to proteins by hydrogen bond are preferentially located at the places with local depressions on the protein surface. Consequently, the hydration level is not strictly proportional to the area of charged and polar surfaces, but also depends on the shape of the molecular surface. The thickness of the thermal volume layer as calculated in the framework of the scaled particle theory is 0.6-0.65 A for chosen proteins. The obtained value is significantly lower than that presented for proteins in earlier papers (where proportionality between the hydration level and the area of charged and polar surfaces was assumed), but is close to the value published for small solute molecules. Discussion including the influence of protein size and the thermal motion of the surface is presented.  相似文献   

3.
S B Zimmerman  L D Murphy 《Biopolymers》1992,32(10):1365-1373
The distribution coefficients of single- and double-stranded oligodeoxynucleotides in a PEG 8000/phosphate two-phase system are a function of their chain length. Values of the distribution coefficients are in general agreement with a simple extension of a model for excluded volume effects (the "available volume model") which was applied previously to the distribution of proteins in this system. The current results therefore provide a second set of examples for molecules of very different geometry where the distribution added molecules is controlled by excluded volume interactions between those molecules and the PEG 8000 of the two-phase system.  相似文献   

4.
Proteins undergoing protease reactions, heat denaturation, or interactions with sodium dodecyl sulfate (SDS) were used to demonstrate the effectiveness of a near-infrared method for the quantitative study of changes in hydration or water binding during such processes. The spectra of different proteins showed that the liberation of COO? and NH3+ groups during a protease reaction is associated with a large increase in hydration and excluded volume. On the basis of experiments with model compounds, other spectral changes, including development of continuum absorbance between 1.55 and 1.85 μm and a band with a peak near 2.1 μm, were also attributed to the liberation of these groups. After heat denaturation or in the presence of SDS, the rate of proteolytic hydrolysis was markedly increased, consistent with the view that some preliminary denaturation is necessary for protease activity. The validity of the hydration changes calculated for protease reactions was supported by model studies with l-lysine, and with poly-l-lysine before and after hydrolysis. The near-infrared spectrum of the protein substrate with no added protease was largely unaffected by heat treatment alone, indicating that the hydration as such was not changed to a large extent by the structural modifications of denaturation. In contrast to the protease reaction, the interactions between SDS and the proteins resulted in a decrease in hydration. Results of this paper are compared with those obtained from other methods. Some unique advantages of the near-infrared method for the study of hydration changes during reactions in aqueous solution are described.  相似文献   

5.
Microwave dielectric spectroscopy can measure the rotational mobility of water molecules that hydrate proteins and the hydration-shell volume. Using this technique, we have recently shown that apart from typical hydrating water molecules with lowered mobility there are other water molecules around the actin filaments (F-actin) which have a much higher mobility than that of bulk water [Biophys. J. 85 (2003) 3154]. We report here that the volume of this water component (hyper-mobile water) markedly increases without significant change of the volume of the ordinary hydration shell when the myosin motor-domain (S1, myosin subfragment-1) binds to F-actin. No hyper-mobile component was found in the hydration shell of S1 itself. The present results strongly suggest that the solvent space around S1 bound to F-actin is diffusionally asymmetric, which supports our model of force generation by actomyosin proposed previously [op. cit.].  相似文献   

6.
When introduced into water, some molecules and ions (solutes) enforce the hydrogen-bonded network of neighboring water molecules that are thus restrained from thermal motions and are less mobile than those in the bulk phase (structure-making or positive hydration effect), and other solutes cause the opposite effect (structure-breaking or negative hydration effect). Using a method of microwave dielectric spectroscopy recently developed to measure the rotational mobility (dielectric relaxation frequency) of water hydrating proteins and the volume of hydration shells, the hydration of actin filament (F-actin) has been studied. The results indicate that F-actin exhibits both the structure-making and structure-breaking effects. Thus, apart from the water molecules with lowered rotational mobility that make up a typical hydration shell, there are other water molecules around the F-actin which have a much higher mobility than that of bulk water. No such dual hydration has been observed for myoglobin studied as the representative example of globular proteins which all showed qualitatively similar dielectric spectra. The volume fraction of the mobilized (hyper-mobile) water is roughly equal to that of the restrained water, which is two-thirds of the molecular volume of G-actin in size. The dielectric spectra of aqueous solutions of urea and potassium-halide salts have also been studied. The results suggest that urea and I(-) induce the hyper-mobile states of water, which is consistent with their well-known structure-breaking effect. The molecular surface of actin is rich in negative charges, which along with its filamentous structure provides a structural basis for the induction of a hyper-mobile state of water. A possible implication of the findings of the present study is discussed in relation to the chemomechanical energy transduction through interaction with myosin in the presence of ATP.  相似文献   

7.
8.
We have determined crystal structures of Sec4, a member of the Rab family in the G protein superfamily, in two states: bound to GDP, and to a non-hydrolyzable GTP analog, guanosine-5'-(beta, gamma)-imidotriphosphate (GppNHp). This represents the first structure of a Rab protein bound to GDP. Sec4 in both states grossly resembles other G proteins bound to GDP and GppNHp. In Sec4-GppNHp, structural features common to active Rab proteins are observed. In Sec4-GDP, the switch I region is highly disordered and displaced relative to the switch I region of Ras-GDP. In two of the four molecules of Sec4-GDP in the asymmetric unit of the Sec4-GDP crystals, the switch II region adopts a conformation similar to that seen in the structure of the small G protein Ran bound to GDP. This allows residues threonine 76, glutamate 80, and arginine 81 of Sec4 to make contacts with other conserved residues and water molecules important for nucleotide binding. In the other two molecules in the asymmetric unit, these interactions do not take place. This structural variability in both the switch I and switch II regions of GDP-bound Sec4 provides a possible explanation for the high off-rate of GDP bound to Sec4, and suggests a mechanism for regulation of the GTPase cycle of Rab proteins by GDI proteins.  相似文献   

9.
The effects of thermodynamic non-ideality on the forms of sedimentation equilibrium distributions for several isoelectric proteins have been analysed on the statistical-mechanical basis of excluded volume to obtain an estimate of the extent of protein solvation. Values of the effective solvation parameter delta are reported for ellipsoidal as well as spherical models of the proteins, taken to be rigid, impenetrable macromolecular structures. The dependence of the effective solvated radius upon protein molecular mass exhibits reasonable agreement with the relationship calculated for a model in which the unsolvated protein molecule is surrounded by a 0.52-nm solvation shell. Although the observation that this shell thickness corresponds to a double layer of water molecules may be of questionable relevance to mechanistic interpretation of protein hydration, it augurs well for the assignment of magnitudes to the second virial coefficients of putative complexes in the quantitative characterization of protein-protein interactions under conditions where effects of thermodynamic non-ideality cannot justifiably be neglected.  相似文献   

10.
The implications of protein-water interactions are of importance for understanding the solution behavior of proteins and for analyzing the fine structure of proteins in aqueous solution. Starting from the atomic coordinates, by bead modeling the scattering and hydrodynamic properties of proteins can be predicted reliably (Debye modeling, program HYDRO). By advanced modeling techniques the hydration can be taken into account appropriately: by some kind of rescaling procedures, by modeling a water shell, by iterative comparisons to experimental scattering curves (ab initio modeling) or by special hydration algorithms. In the latter case, the surface topography of proteins is visualized in terms of dot surface points, and the normal vectors to these points are used to construct starting points for placing water molecules in definite positions on the protein envelope. Bead modeling may then be used for shaping the individual atomic or amino acid residues and also for individual water molecules. Among the tuning parameters, the choice of the scaling factor for amino acid hydration and of the molecular volume of bound water turned out to be crucial. The number and position of bound water molecules created by our hydration modeling program HYDCRYST were compared with those derived from X-ray crystallography, and the capability to predict hydration, structural and hydrodynamic parameters (hydrated volume, radius of gyration, translational diffusion and sedimentation coefficients) was compared with the findings generated by the water-shell approach CRYSOL. If the atomic coordinates are unknown, ab initio modeling approaches based on experimental scattering curves can provide model structures for hydrodynamic predictions.  相似文献   

11.
The cytoplasm contains high concentrations of cosolutes. These cosolutes include macromolecules and small organic molecules called osmolytes. However, most biophysical studies of proteins are conducted in dilute solutions. Two broad classes of models have been used to describe the interaction between osmolytes and proteins. One class focuses on excluded volume effects, while the other focuses on binding between the protein and the osmolyte. To better understand protein--smolyte interactions, we have conducted sedimentation equilibrium analytical ultracentrifugation experiments using ferricytochrome c as a model protein. From these experiments, we determined the second virial coefficients for a series of osmolytes. We have interpreted the second virial coefficient as a measure of both excluded volume and protein--osmolyte binding. We conclude that simple models are not sufficient to understand the interactions between osmolytes and proteins.  相似文献   

12.
The triple-quantum filtered (TQF) spin-echo signal of (17)O-water, in the presence of proteins, was analysed to yield estimates of the number of weakly, and strongly bound water molecules. The analysis used a constrained direct iterative regression procedure with a three-state model of fast-exchange. Thus, the population size of free, weakly, and strongly bound water were determined simultaneously. The two fractions of the bound water were estimated by using correlation time(s) estimated in other studies. Bovine serum albumin (BSA), basic pancreatic trypsin inhibitor (BPTI), lysozyme and oxyhaemoglobin were studied. Of the four proteins, BSA contained the largest number of strongly and weakly bound water molecules, there being approximately 30 of the former and approximately 3000 of the latter under conditions of high protein concentration. The correlation time of the proteins increases with their concentration in solution, and when this was taken into account for BSA the estimated number of strongly bound water molecules did not change significantly. This NMR technique, and data analysis, will probably also be useful in studies of water binding and mobility in various systems including hydrogels, protein networks, membranes, cells and tissues.  相似文献   

13.
We have used in situ tapping mode atomic force microscopy (AFM) to study the structural morphology of two fragments of the influenza hemagglutinin protein bound to supported bilayers. The two proteins that we studied are the bromelain-cleaved hemagglutinin (BHA), corresponding to the full ectodomain of the hemagglutinin protein, and FHA2, the 127 amino acid N-terminal fragment of the HA2 subunit of the hemagglutinin protein. While BHA is water soluble at neutral pH and is known to bind to membranes via specific interactions with a viral receptor, FHA2 can only be solubilized in water with an appropriate detergent. Furthermore, FHA2 is known to readily bind to membranes at neutral pH in the absence of a receptor. Our in situ AFM studies demonstrated that, when bound to supported bilayers at neutral pH, both these proteins are self-assembled as single trimeric molecules. In situ acidification resulted in further lateral association of the FHA2 without a large perturbation of the bilayer. In contrast, BHA remained largely unaffected by acidification, except in areas of exposed mica where it is aggregated. Remarkably, these results are consistent with previous observations that FHA2 promotes membrane fusion while BHA only induces liposome leakage at low pH. The results presented here are the first example of in situ imaging of the ectodomain of a viral envelope protein allowing characterization of the real-time self-assembly of a membrane fusion protein.  相似文献   

14.
A very sensitive NMR method has been developed for measuring deuterated water bound to proteins suspended in nonpolar solvents. This has been used to determine the amount of bound water as a function of water activity for subtilisin Carlsberg suspended in hexane, benzene, and toluene and for alpha-chymotrypsin in hexane. The adsorption isotherms for subtilisin in the three solvents are very similar showing that water activity can be usefully employed to predict the amount of water bound to proteins in nonpolar organic media. Comparison of the degree of enzyme hydration reached in nonpolar solvents with that obtained in air shows that adsorption of strongly bound water is hardly affected by the low dielectric medium, but adsorption of loosely bound water is significantly reduced. This suggests that the hydrophobic regions of the protein surface are preferentially solvated by solvent molecules, and that in a nonpolar environment formation of a complete monolayer of water over the protein surface is thermodynamically unfavorable. (c) 1995 John Wiley & Sons, Inc.  相似文献   

15.
A dielectric relaxation peak due to bound water of globule proteins in aqueous solution was observed at first by the use of a time domain reflectometry. This peak locates around 100 MHz as well as that of the aqueous DNA solution and the moist collagen, and has a relaxation strength in proportion to surface of the globule protein except for trypsin and pepsin of hydrolase. It is suggested that this peak is caused by orientation of bound water molecules on the protein surface. The number of bound water molecules estimated is in good agreement with that obtained by other method such as x-ray analysis. The solution exhibits another peak below 100 MHz, which is caused by the rotation of globule protein supplemented by migration of the counterion. Its relaxation time is completely proportional to the molecular weight of the protein. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
This report describes and documents the presence of multiple water-of-hydration fractions on proteins and in cells. Initial studies of hydration fractions in g of water/g of DM (dry mass) for tendon/collagen led to the development of the molecular SHM (stoichiometric hydration model) and the development of methods for calculating the size of hydration fractions on a number of different proteins of known amino acid composition. The water fractions have differences in molecular motion and other physical properties due to electrostatic interactions of polar water molecules with electric fields generated by covalently bound pairs of opposite partial charge on the protein backbone. The methods allow calculation of the size of four hydration fractions: single water bridges, double water bridges, dielectric water clusters over polar-hydrophilic surfaces and water clusters over hydrophobic surfaces. These four fractions provide monolayer water coverage. The predicted SHM hydration fractions match closely measured hydration fraction values for collagen and for globular proteins. This report also presents water sorption findings that support the SHM. The SHM is applicable for cell systems where it has been studied. In seven cell systems studied, more than half of all of the cell water had properties unlike those of bulk water. The SHM predicts and explains the commonly cited and measured bound water fraction of 0.2-0.4 g of water/g of DM on proteins. The commonly accepted concept that water beyond this bound water fraction can be considered bulk-like water in its physical properties is unwarranted.  相似文献   

17.
The analysis of integral membrane proteins or transmembrane peptides by electrospray ionization mass spectrometry (ESI-MS) is difficult since detergents, used to solubilize these hydrophobic proteins and peptides, severely suppress analyte ion formation. This problem has been addressed previously by precipitating the protein, removing the detergent, and resolubilizing the protein in a nonpolar solvent. Here, we demonstrate a method that avoids protein precipitation and resolubilization. Detergent-solubilized bacteriorhodopsin is extracted into a nonpolar solvent phase by adding a chloroform/methanol/water solvent mixture to the aqueous detergent solution. ESI mass spectra of the nonpolar, chloroform-rich phase were dominated by peaks due to bacterioopsin. Bacterioopsin precursors with partially cleaved leader sequences were seen in all mass spectra. Additional peaks were likely due to intact bacteriorhodopsin, i.e., bacterioopsin with the retinal prosthetic group attached, and to bacterioopsin associated with lipid molecules. A separation process that occurred in the fused-silica capillary leading to the electrospray tip was essential for obtaining ESI mass spectra of bacterioopsin. The extraction-into-chloroform procedure also worked well with hydrophobic, transmembrane-type peptides that were insoluble in other electrospray solvents, including 100% formic acid, and the method has application to transmembrane peptides formed from digests of integral membrane proteins.  相似文献   

18.
The three-dimensional structure of recombinant human muscle fatty acid-binding protein with a bound fatty acid has been solved and refined with x-ray diffraction data to 2.1 A resolution. The refined model has a crystallographic R factor of 19.5% for data between 9.0 and 2.1 A (7243 unique reflections) and root-mean-square deviations in bond length and bond angle of 0.013 A and 2.7 degrees. The protein contains 10 antiparallel beta-strands and two short alpha-helices which are arranged into two approximately orthogonal beta-sheets. Difference electron density maps and a multiple isomorphous derivative electron density map showed the presence of a single bound molecule of a long chain fatty acid within the interior core of the protein. The hydrocarbon tail of the fatty acid was found to be in a "U-shaped" conformation. Seven ordered water molecules were also identified within the interior of the protein in a pocket on the pseudo-si face of the fatty acid's bent hydrocarbon tail. The methylene tail of the fatty acid forms van der Waals interactions with atoms from 13 residues and three ordered waters. The carboxylate of the fatty acid is located in the interior of the protein where it forms hydrogen bonds with the side chains of Tyr128 and Arg126 and two ordered water molecules. A comparison of the three-dimensional structure of human muscle fatty acid-binding protein and rat intestinal fatty acid-binding protein shows strong similarity. Both proteins bind a single fatty acid within their interior cores, but the bound fatty acids are very different in their conformations and interactions. These findings suggest that the intestinal and muscle fatty acid-binding proteins have evolved distinct binding sites in order to satisfy different requirements within the tissues where they are expressed.  相似文献   

19.
G Benga  O Popescu  V I Pop  R P Holmes 《Biochemistry》1986,25(7):1535-1538
The binding of [203Hg]-p-(chloromercuri)benzenesulfonate to the membrane proteins of human erythrocytes and erythrocyte ghosts was examined under conditions where binding to the bulk of membrane sulfhydryl groups was blocked by N-ethylmaleimide. Binding was essentially complete within 90 min when approximately 40 nmol was bound per milligram of membrane protein. This binding was correlated with the inhibition of water transport measured by an NMR technique. Maximal inhibition was observed with the binding of approximately 10 nmol of p-(chloromercuri)benzenesulfonate/mg of membrane protein. Under these conditions, both band 3 and band 4.5 bound 1 mol of inhibitor/mol of protein. In contrast to previous experiments, these results indicate that band 4.5 proteins as well as band 3 have to be considered as playing a role in water transport.  相似文献   

20.
Theoretical methods for correlation of sequence changes and redox potential of electron transport proteins are examined using the Asn52----Ile mutation in cytochrome c as a test case. The first approach uses the protein dipoles Langevin dipoles (PDLD) method and the high resolution X-ray structures of the native and the mutant proteins. This approach is found to give reliable results where all the solvent molecules are represented by Langevin dipoles and also when some bound water molecules are represented explicitly. A free energy perturbation method is also found to give reasonable results but at the expense of much more computer time. Finally, an approach that generates mutant structures from the native structure by molecular dynamics simulation and then uses these configurations in PDLD calculations is found to give a reasonable estimate of the effect of the mutation on the corresponding redox potential. The encouraging results obtained here and in a preliminary test case of the Phe82----Ser mutation indicates that the present strategies can provide a useful tool for structure-redox and sequence-redox correlation in proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号