首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High molecular weight zinc ion-dependent acid p-nitrophenylphosphatase (HMW-ZnAPase) was purified from bovine liver to homogeneity as judged by native and sodium dodecyl sulfate polyacrylamide gel electrophoresis. The partial sequence of the purified enzyme electroblotted on PVDF membrane reveals a 95% sequence homology with human and bovine liver fructose-1,6-bisphosphate aldolase isozyme B (FALD B). FALD B was isolated from bovine liver using an affinity elution from phosphocellulose column. FALD B from bovine liver shows a native and subunit molecular weight that is indistinguishable from that of HMW-ZnAPase. In addition, an affinity purified antiserum raised in rabbits against purified HMW-ZnAPase cross-reacts with bovine liver FALD B and rabbit muscle isozymes. Despite these similarities, HMW-ZnAPase does not show FALD activity and bovine liver FALD does not display any zinc ion-p-nitrophenylphosphatase activity. These results suggested the existence of structural and immunological similarities between bovine liver HMW-ZnAPase and FALD B. Differences in some amino acid residues in enzyme activity indicate that they may be involved in different biochemical functions.  相似文献   

2.
Aldolase was purified from rabbit liver by affinity-elution chromatography. By taking precautions to avoid rupture of lysosomes during the isolation procedure, a stable form of liver aldolase was obtained. The stable form of the enzyme had a specific activity with respect to fructose 1,6-bisphosphate cleavage of 20-28 mumol/min per mg of protein and a fructose 1,6-bisphosphate cleavage of 20-28mumol/min per mg of protein and a frutose 1,6-bisphosphate/fructose 1-phosphate activity ratio of 4. It was distinguishable from rabbit muscle aldolase, as previously isolated, on the basis of its electrophoretic mobility and N-terminal analysis. Muscle and liver aldolases were immunologically distinct. The stable liver aldolase was degraded with a lysosomal extract to a form with catalytic properties resembling those reported for aldolase B4. It is postulated that liver aldolase prepared by previously described methods has been modified by proteolysis and does not constitute the native form of the enzyme.  相似文献   

3.
Regulation of rat liver fructose 2,6-bisphosphatase   总被引:17,自引:0,他引:17  
An enzyme activity that catalyzes the hydrolysis of phosphate from the C-2 position of fructose 2,6-bisphosphate has been detected in rat liver cytoplasm. The S0.5 for fructose 2,6-bisphosphate was about 15 microM and the enzyme was inhibited by fructose 6-phosphate (Ki 40 microM) and activated by Pi (KA 1 mM). Fructose 2,6-bisphosphatase activity was purified to homogeneity by specific elution from phosphocellulose with fructose by specific elution from phosphocellulose with fructose 6-phosphate and had an apparent molecular weight of about 100,000, 6-phosphofructo 2-kinase activity copurified with fructose 2,6-bisphosphatase activity at each step of the purification scheme. Incubation of the purified protein with [gamma-32P]ATP and the catalytic subunit of the cAMP-dependent protein kinase resulted in the incorporation of 1 mol of 32P/mol of enzyme subunit (Mr = 50,000). Concomitant with this phosphorylation was an activation of the fructose 2,6-bisphosphatase and an inhibition of the 6-phosphofructo 2-kinase activity. Glucagon addition to isolated hepatocytes also resulted in an inhibition of 6-phosphofructo 2-kinase and activation of fructose 2,6-bisphosphatase measured in cell extracts, suggesting that the hormone regulates the level of fructose 2,6-bisphosphate by affecting both synthesis and degradation of the compound. These findings suggest that this enzyme has both phosphohydrolase and phosphotransferase activities i.e. that it is bifunctional, and that both activities can be regulated by cAMP-dependent phosphorylation.  相似文献   

4.
Fructose 1,6-bisphosphatase (Fru-P2ase,EC 3.1.3.11) purified from livers of fed rabbits has been reported to contain tryptophan, which is not present in the enzyme purified from livers of fasted animals. We now show that the tryptophan arises from small amounts of active or inactive rabbit liver aldolase in the Fru-P2ase preparations. Fru-P2ase free of tryptophan may conveniently be prepared by raising the temperature of the heat step in the purification procedure to 67 °C.  相似文献   

5.
E Strapazon  T L Steck 《Biochemistry》1976,15(7):1421-1424
Aldolase is a trace protein in isolated human red cell membrane preparations. Following total elution of the endogenous enzyme by a saline wash, the interaction of this membrane with rabbit muscle aldolase was studied. At saturation, exogenous aldolase constituted over 40% of the repleted membrane protein. Scatchard analysis revealed two classes of sites, each numbering approximately 7 X 10(5) per ghost. Specificity was suggested by the exclusive binding of the enzyme to the membrane's inner (cytoplasmic) surface. Furthermore, milimolar levels of fructose 1,6-bisphosphate eluted the enzyme from ghosts, while fructose 6-phosphate and NADH (a metabolite which elutes human erythrocyte glyceraldehyde-3-phosphate dehydrogenase (G3PD) from its binding site) were ineffectuve. Removing peripheral membrane proteins with EDTA and lithium 3,5-diiodosalicylate did not diminish the binding capacity of the membranes. An aldolase-band 3 complex, dissociable by high ionic strength or fructose 1,6-bisphosphate treatment, was demonstrated in Triton X-100 extracts of repleted membranes by rate zonal sedimentation analysis on sucrose gradients. We conclude that the association of rabbit muscle aldolase with isolated human erythrocyte membranes reflects its specific binding to band 3 at the cytoplasmic surface, as is also true of G3PD.  相似文献   

6.
L Hue  F Sobrino    L Bosca 《The Biochemical journal》1984,224(3):779-786
Incubation of isolated rat hepatocytes from fasted rats with 0-6 mM-glucose caused an increase in [fructose 2,6-bisphosphate] (0.2 to about 5 nmol/g) without net lactate production. A release of 3H2O from [3-3H]glucose was, however, detectable, indicating that phosphofructokinase was active and that cycling occurred between fructose 6-phosphate and fructose 1,6-bisphosphate. A relationship between [fructose 2,6-bisphosphate] and lactate production was observed when hepatocytes were incubated with [glucose] greater than 6 mM. Incubation with glucose caused a dose-dependent increase in [hexose 6-phosphates]. The maximal capacity of liver cytosolic proteins to bind fructose 2,6-bisphosphate was 15 nmol/g, with affinity constants of 5 X 10(6) and 0.5 X 10(6) M-1. One can calculate that, at 5 microM, more than 90% of fructose 2,6-bisphosphate is bound to cytosolic proteins. In livers of non-anaesthetized fasted mice, the activation of glycogen synthase was more sensitive to glucose injection than was the increase in [fructose 2,6-bisphosphate], whereas the opposite situation was observed in livers of fed mice. Glucose injection caused no change in the activity of liver phosphofructokinase-2 and decreased the [hexose 6-phosphates] in livers of fed mice.  相似文献   

7.
Rat liver malic enzyme (EC 1.1.1.40) was purified from livers of rats fasted and refed a high sucrose diet containing 1% desiccated thyroid powder. The purification was accomplished by a six-step procedure. The specific activity of the purified enzyme was increased 181-fold above that of the initial high speed supernatant of liver extracts. Slight additional purification of malic enzyme was achieved with preparative disc electrophoresis. The specific activities of the purified rat liver malic enzyme from the least two steps were between 28.0 and 30.5 units per mg of protein. Homogeneity of the purified enzyme was determined by disc and starch gel electrophoresis as well as sedimentation velocity and sedimentation equilibrium studies. The molecular weight and S20, w values of rat liver malic enzyme are 268,000 and 10.2, respectively. Amino acid analysis based on milligram of protein hydrolyzed yielded higher amounts of leucine and glutamic acid but lower quantities of alanine and voline per subunit than the corresponding Escherichia coli enzyme...  相似文献   

8.
A simple procedure has been developed for the purification of mouse liver and kidney fructose-1,6-bisphosphatase. In addition to the conventional method, including substrate elution from phosphocellulose, Blue Sepharose column chromatography made the purification procedure highly reproducible. The enzyme from rabbit liver was also purified by this method with a small modification. The isolated preparation was electrophoretically homogeneous. The mouse liver enzyme was identical with the kidney enzyme, and different from the rabbit liver enzyme electrophoretically. The structural properties and the amino acid composition were similar to those of this enzyme from other mammalian livers; the molecular weight was 143,000, subunit size was 37,500, S20, w was 7.0, and partial specific volume was 0.74. Cysteine and methionine residues amounted to 5-6 mol per subunit. Tryptophan was not detected. The Km value for fructose-1,6-bisphosphate was 1.3 microM. The Ki value for AMP was 19 microM. EDTA strongly activated the activity of the mouse liver enzyme at neutral pH. A partial proteolytic digestion of the mouse liver enzyme decreased the activity at neutral pH, and increased it at alkaline pH.  相似文献   

9.
When rat liver cytosolic P-enolpyruvate carboxykinase is purified, its activity is no longer enhanced by incubation with 30 muM Fe2+. Ferrous ion stimulation of the purified enzyme is restored by the addition of rat liver cytosol. The agent responsible is a cytosolic protein, named P-enolpyruvate carboxykinase ferroactivator, that was readily separated from the enzyme during purification of the latter. A quantitative assay for P-enolpyruvate carboxykinase ferroactivator is described. Subcellular fractionation of livers from fasted rats shows that 98% of the combined mitochondrial and cytosolic P-enolpyruvate carboxykinase ferroactivator activity resides in the cytosol. Fasting does not produce significant change in this cytosolic activity when compared to that of fed animals. Examination of various tissue homogenates shows that the ferroactivator is found in liver, kidney, erythrocytes, adipose tissue, and brain. No activity was detected in blood serum or skeletal muscle. The ability to enhance the activity of purified rat liver cytosolic P-enolpyruvate carboxykinase in the presence of Fe2+ is not species specific. P-enolpyruvate carboxykinase ferroactivator may have an important function in regulating enzyme activity in vivo.  相似文献   

10.
The properties of 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase from Sprague-Dawley rat liver cytosol have been re-examined in light of several reports which suggest that multiple forms of the enzyme may exist in this tissue. During enzyme purification, chromatography on DE-52 cellulose and chromatofocusing columns indicated the existence of only one form of the protein. Re-chromatography of the purified enzyme by either of these techniques failed to resolve the protein into additional forms. When the purified enzyme was subjected to SDS/polyacrylamide-gel electrophoresis a single band corresponding to Mr 34,000 was detected. Two-dimensional gels showed one predominant protein with a pI of 5.9. Using the homogeneous enzyme as antigen, high-titre polyclonal antibody was raised in rabbits. Western-blot analysis of cytosolic proteins prepared from male and female Sprague-Dawley rat liver indicated the presence of a single immunoreactive band with an Mr of 34,000 in both sexes. All of the 3 alpha-hydroxysteroid dehydrogenase activity present in rat liver cytosol could be immunotitrated with the antibody and the resulting titration curve was superimposable on the titration curve obtained with the purified enzyme. Western-blot analysis of cytosolic proteins prepared from livers of male Wistar and Fischer rats also revealed the presence of a single immunoreactive protein with an Mr of 34,000. These data indicate that, contrary to previous reports, only one form of the dehydrogenase may exist in liver cytosols prepared from a variety of rat strains. Although 3 alpha-hydroxysteroid dehydrogenase activity is known to be widely distributed in male Sprague-Dawley rat tissues, Western blots indicate that only the liver, lung, testis and small intestine contain immunoreactive protein with an Mr of 34,000. The levels of immunoreactive protein in these tissues follow the distribution of dihydrodiol dehydrogenase.  相似文献   

11.
A method is described for the detection of 2-keto-4-hydroxyglutarate aldolase activity after electrophoresis of the enzyme on polyacrylamide gels. When gels are incubated with substrate (2-keto-4-hydroxyglutarate), activity is seen as a yellow-colored band due to interaction of the product )glyoxylate) with ortho-aminobenzaldehyde and glycine. Positive results have been obtained using either crude cell-free preparations or homogeneous enzyme from Escherichia coli as well as with highly purified samples of aldolase from bovine liver or kidney extracts. The method is potentially applicable to other aldolases that liberate an aliphatic aldehyde as a product; modifications and limitations of the procedure for detecting fructose 1,6-diphosphate aldolase, 2-keto-3-deoxy-6-phosphogluconate aldolase, and 2-deoxyribose-5-phosphate aldolase activities have been explored.  相似文献   

12.
6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities were copurified to homogeneity from bovine liver. The purification scheme consisted of polyethylene glycol precipitation, anion-exchange and Blue-Sepharose chromatography, substrate elution from phosphocellulose, and gel filtration. The bifunctional enzyme had an apparent molecular weight of 102,000 and consisted of two subunits (Mr 49,000). The kinase had a Km for ATP of 12 microM and a S0.5 for fructose 6-phosphate of 150 microM while the bisphosphatase had a Km for fructose 2,6-bisphosphate of 7 microM. Both activities were subject to modulation by various effectors. Inorganic phosphate stimulated both activities, while alpha-glycerolphosphate inhibited the kinase and stimulated the bisphosphatase. The pH optimum for the 6-phosphofructo-2-kinase activity was 8.5, while the fructose-2,6-bisphosphatase reaction was maximal at pH 6.5. Incubation of the purified enzyme with [gamma-32P]ATP and the catalytic subunit of the cAMP-dependent protein kinase resulted in 32P incorporation to the extent of 0.7 mol/mol enzyme subunit with concomitant inhibition of the kinase activity and activation of the bisphosphatase activity. The mediation of the bisphosphatase reaction by a phosphoenzyme intermediate was suggested by the isolation of a stable labeled phosphoenzyme when the enzyme was incubated with fructose 2,6-[2-32P]bisphosphate. The pH dependence of hydrolysis of the phospho group suggested that it was linked to the N3 of a histidyl residue. The 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from bovine liver has properties essentially identical to those of the rat liver enzyme, suggesting that hepatic fructose 2,6-bisphosphate metabolism is under the same control in both species.  相似文献   

13.
Fructose bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) has been isolated in homogeneous form from rat muscle by a simple and convenient procedure, including adsorption on carboxymethylcellulose and substrate elution. The resultant enzyme preparation has a specific activity comparable to that of the enzymes isolated from rabbit liver, rabbit muscle and rat liver. The native relative molecular mass of the enzyme was estimated by sedimentation equilibrium centrifugation to be approx. 138 000, and the enzyme appears to be a tetramer containing subunits of Mr approx. 34 500. The amino acid composition is distinctly different from that of the rabbit muscle, rabbit liver and rat liver enzymes. The purified enzyme contains no tryptophan and has a blocked amino terminal.  相似文献   

14.
The process of enzymatic aging was studied in livers of adult and senescent rats for aldolase B. No “cross-reacting material” was found in livers of 27 to 30-month-old rats, estimated by the ratio aldolase activity/antigen amount. The activity towards the two substrates of aldolase, fructose 1,6-diphosphate and fructose 1-phosphate did not vary in senescent animals. Moreover, other physico-chemical properties of the enzyme such as thermal inactivation, immunological reactivity and Michealis constant remain unchanged. These results provide arguments againt the occurence of errors in protein synthesis as a cause of aging.  相似文献   

15.
Dietary fructose has been suspected to contribute to development of metabolic syndrome. However, underlying mechanisms of fructose effects are not well characterized. We investigated metabolic outcomes and hepatic expression of key regulatory genes upon fructose feeding under well defined conditions. Rats were fed a 63% (w/w) glucose or fructose diet for 4 h/day for 2 weeks, and were killed after feeding or 24-hour fasting. Liver glycogen was higher in the fructose-fed rats, indicating robust conversion of fructose to glycogen through gluconeogenesis despite simultaneous induction of genes for de novo lipogenesis and increased liver triglycerides. Fructose feeding increased mRNA of previously unidentified genes involved in macronutrient metabolism including fructokinase, aldolase B, phosphofructokinase-1, fructose-1,6-bisphosphatase and carbohydrate response element binding protein (ChREBP). Activity of glucose-6-phosphate dehydrogenase, a key enzyme for ChREBP activation, remained elevated in both fed and fasted fructose groups. In the fasted liver, the fructose group showed lower non-esterified fatty acids, triglycerides and microsomal triglyceride transfer protein mRNA, suggesting low VLDL synthesis even though plasma VLDL triglycerides were higher. In conclusion, fructose feeding induced a broader range of genes than previously identified with simultaneous increase in glycogen and triglycerides in liver. The induction may be in part mediated by ChREBP.  相似文献   

16.
This study was undertaken to determine the influence of dietary carbohydrate sources: wheat meal, bread meal, soluble corn starch, native potato starch and sorghum meal, on soluble protein, enzyme activity (aldolase) and glucose concentration in muscle and liver of European eels (Anguilla anguilla). There was less soluble protein in both muscle and liver of eels fed 30% wheat meal or bread meal than the other experimental groups. However, eels fed 30% bread meal or soluble corn starch had a higher glucose concentration in muscle and liver than the other experimental groups. High enzyme activity (aldolase) was found in the liver of eels fed 30% wheat meal, bread meal or soluble starch.  相似文献   

17.
Hereditary tyrosinemia is characterized by a deficiency of the enzyme fumarylacetoacetate hydrolase (FAH; E.C.3.7.1.2), the last enzyme in the catabolic pathway of tyrosine. FAH was purified from rat and human liver and was used to immunize rabbits. Specific antibodies were used to probe protein extracts of livers and other tissues of normal and tyrosinemic patients. No immunoreactive FAH band was observed on immunoblots of liver, kidneys, and lymphocytes from patients presenting with the acute form of hereditary tyrosinemia. Patients with the chronic form had immunoreactive FAH at a level approximately 20% of normal liver values, which was correlated with the measured enzymatic activity. Immunoblot analysis of aborted fetal tissues revealed normal FAH immunoreactivity in normal liver and kidneys. No FAH immunoreactivity was found in liver and kidneys of tyrosinemic fetuses. The presence of FAH immunoreactivity in normal fetal tissues suggests that deficient FAH activity in tyrosinemia is not simply related to a developmentally regulated expression of the enzyme. By this immunoblot assay, FAH was detected in most human tissues, with maximal immunoreactivity in liver and kidneys and with only trace amounts in chorionic villi and cultured amniocytes. These data confirm that the primary defect in the acute form of hereditary tyrosinemia is an absence of FAH. Moreover, these data suggest that both clinical forms of the disease have a different molecular basis.  相似文献   

18.
We have been using the glycolytic enzyme fructose-bisphosphate aldolase (d-fructose-1,6-bisphosphate d-glyceraldehyde-3-phosphate lyase, EC 4.1.2.13) as a model system to investigate the assembly of oligometric enzymes. In the present work we investigate the effect of specific, limited tryptic modification on the properties of aldolase isolated from what germ. The wheat-germ enzyme was selected, since several aldolases isolated from animal sources were not readily susceptible to the specific tryptic modification seen with this plant enzyme. We will show that: (1) Low levels of trypsin cause a first-order inactivation of wheat-germ aldolase activity which is associated with a fairly specific cleavage of the enzyme which reduces its subunit molecular weight from 41 000 to 39 000. (2) The proteolytic modification is greatly inhibited in the presence of the ladolase substrate, fructose biphosphate. (3) The intact and modified enzymes appear to have similar surface changes, as judged by their behavior during electrophoresis in polyacrylamide gels under non-denaturing conditions. (4) The modified aldolase is not specifically eluted from phosphocellulose columns by fructose bisphosphate under the conditions used in the affinity chromatographic isolation of the intact enzyme, suggesting that the modified enzyme may no longer be able to bind substrate. (5) Although enzymatically inactive, the modified aldolase subunits are able to refold and reassociate into tetrameric combinations following unfolding of the subunits by treatment at law pH; thus, this specific proteolytic modification does not interfere with the ability of wheat-germ aldolase subunits to refold and to establish precise subunit-subunit recognition in vitro.  相似文献   

19.
1. Fructose 1,6-bisphosphatase was assayed in crude extracts of physiologically important organs and tissues in the ostrich. 2. Highest activity was found in liver and lowest in brain tissue. 3. No activity was detected in the heart, gizzard or adrenals. 4. The enzyme was purified in homogeneous, apparently undegraded form from liver utilizing Blue dextran-Sepharose affinity chromatography. 5. The enzyme is similar to mammalian fructose 1,6-bisphosphatase in many respects including its indispensability of Mg2+ for catalytic activity. 6. Relative molecular weight of the native enzyme and its subunit is about 150,000 and 35,000 respectively. 7. The amino acid composition of ostrich liver fructose 1,6-bisphosphatase is distinctly different from that of the chicken muscle enzyme, but compares favourably with the composition of the rabbit liver enzyme. 8. The purified enzyme is devoid of tryptophan.  相似文献   

20.
This paper describes multinuclear NMR investigations on the isolated perfused mouse liver to optimize its recovery after cold preservation and normothermic reperfusion. The recovery of livers from fed is better than that from 24 h fasted animals. This better recovery is not due to a higher glycogen content before cold preservation. The recovery of livers from fasted animals is specifically enhanced by the presence of 8 mM alanine in the rinsing solution after cold preservation and in the perfusate of reperfusion. This property is not due to the ability of alanine to compensate for the lack of endogenous substrates since the amount, before cold preservation, of these substrates, is not significantly different in livers from fed and fasted animals. Furthermore, the beneficial effect of alanine is not due to an enhancement of the pyruvate dehydrogenase (PDH) activity in livers from fasted animals. In fact these livers have indeed a smaller PDH activity than the livers from fed animals but dichloroacetate, a known PDH activator has a rather deleterious effect on the recovery of fed and fasted livers. Furthermore alanine protects the fasted livers against this effect. So the beneficial effect of alanine should be due to other causes. Furthermore, we have found on a parallel model of rat isolated perfused liver, that the recovery of steatotic livers which is lower than that of normal fed livers is enhanced by a known vasodilator, pentoxifylin but not by alanine. So alanine does not either play its role through its action on microcirculation. The interaction of alanine with some membrane sodium transporters like that already reported for another protective aminoacid, glycine, is thus possible. A novel NMR method of (23)Na observation in living cells or organs should be of great interest to investigate this hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号