首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ehrlich cells grown in mice fed coconut oil diets (highly saturated) contain about twice as much cholesteryl ester as those grown in mice fed sunflower oil diets (highly polyunsaturated). Acylcoenzyme A: cholesterol acyltransferase (ACAT) activity was 30-100% higher in microsomes prepared from the cells grown on coconut oil (M(c)) than in those prepared from the cells grown on sunflower oil (M(s)). Increased ACAT activity was noted in M(c) with either [1-(14)C]palmitoyl CoA or [1,2-(3)H]cholesterol as the labeled substrate. This occurred at all acyl CoA concentrations tested and, in the [1,2-(3)H]cholesterol assay, with palmitoyl, oleoyl, or linoleoyl CoA as the substrate. The pH optimum for ACAT activity was the same with M(c) and M(s), pH 7.0. ACAT activity obeyed Michaelis-Menten kinetics at palmitoyl CoA concentrations between 1 and 10 micro M. Substrate inhibition occurred at higher concentrations. Kinetic analysis with [1-(14)C]palmitoyl CoA as the substrate indicated that the apparent K(m) for M(c) was 33% smaller than for M(s). There was no difference, however, in apparent V(max) values. The cholesterol and phospholipid contents of M(c) and M(s) were similar, but their fatty acid compositions differed considerably. M(c) contained 2.7 times more monoenoic fatty acid and only half as much polyenoic fatty acid as M(s). Our results indicate that dietary modification of the microsomal fatty acid composition is associated with alterations in the activity of ACAT, an enzyme that is tightly bound to the microsomes. These changes in ACAT activity may be partly responsible for the differences in cholesteryl ester contents of Ehrlich cells grown in mice fed the coconut and sunflower oil diets.  相似文献   

2.
3.
After foliar application of [4-14C]cholesterol to a Solanum khasianum shrub during a 6-week period, cholesterol was recovered not only from untreated leaves, but also from fruits at three different stages of maturity. In addition to free [4-14C]cholesterol, small amounts of [4-14C]cholesteryl esters but no [4-C14]cholesteryl glycosides were found in the fruits, treated, and untreated leaves. Thus, cholesteryl glycosides are probably not involved in the translocation of cholesterol. The implications of cholesterol translocation in the kinetics of solasodine Production are discussed.  相似文献   

4.
The activity of cholesterol 7α-hydroxylase in rat liver microsomes was assayed by measuring the mass of 5-cholestene-3β, 7α-diol formed from endogenous cholesterol under standardized incubation conditions. After termination of incubations, a known amount of 5-[24,25,7β-2H3]cholestene-3β,7α-diol was added. A chloroform extract of the incubation mixture was subjected to thin layer chromatography and the fraction containing 5-cholestene-3β,7α-diol was converted into trimethylsilyl ether. The trimethylsilyl ether was subjected to combined gas chromatography-mass spectrometry and the amount of unlabeled 5-cholestene-3β,7α-diol in the mixture was calculated from the ratio between the relative intensitics of the peaks at me 456 (M-90) and me 459 [M-(90 + 3)]. The precision of the method was ±2.2% (SD). The results with this method of assay of cholesterol 7α-hydroxylase were compared with those obtained with a method based on conversion of a trace amount of added [4-14C]cholesterol into 5-cholestene-3β,7α-diol.  相似文献   

5.
The effect of sterol carrier protein2 (SCP2) purified from rat liver on the formation of cholesterol esters by acyl-CoA: cholesterol acyl-transferase (ACAT: EC 2.3.1.26) in rat adrenal microsomes was studied. The rate of incorporation of [1-14C]oleoyl-CoA into cholesteryl oleate was determined in the presence or absence of exogenously added cholesterol or SCP2, or both. The addition of SCP2 had no effect on the formation of cholesterol esters from endogenous cholesterol by ACAT in rat adrenal microsomes. In contrast, the formation of cholesterol esters from exogenous cholesterol by ACAT was dose-dependently increased by the addition of SCP2. These experiments showed that SCP2 had an enhancing effect on cholesterol esterification by ACAT in rat adrenal microsomes most likely by modulating the availability of exogenous cholesterol and that SCP2 may participate in the formation of cholesterol esters in the rat adrenal gland.  相似文献   

6.
Radiolabeled cholesteryl ethers are widely used as non-metabolizable tracers for lipoproteins and lipid emulsions in a variety of in vitro and in vivo experiments. Since cholesteryl ethers do not leave cells after uptake and are not hydrolyzed by mammalian cellular enzymes, these compounds can act as markers for cumulative cell uptakes of labeled particles. We have employed [3H]cholesteryl oleoyl ether to study the uptake and distribution of triglyceride-rich emulsion particles on animal models. However, questionable unexpected results compelled us to analyze the stability of these ethers. We tested the stability of two commercially available radiolabeled cholesteryl ethers - [3H]cholesteryl oleoyl ether and [3H]cholesteryl hexadecyl ether from different suppliers, employing in vitro, in vivo and chemical model systems. Our results show that, among the two cholesteryl ethers tested, one ether was hydrolyzed to free cholesterol in vitro, in vivo and chemically under alkaline hydrolyzing agent. Free cholesterol, unlike cholesteryl ether, can then re-enter the circulation leading to confounding results. The other ether was not hydrolyzed to free cholesterol and remained as a stable ether. Hence, radiolabeled cholesteryl ethers should be analyzed for biological stability before utilizing them for in vitro or in vivo experiments.  相似文献   

7.
Recent studies from our laboratory have suggested that estradiol or androgen precursor may stimulate steroidogenesis in the luteal cell by modulating intracellular cholesterol metabolism including mobilization of cholesteryl esters, stimulation of lipoprotein receptor activity and induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) activity. To test the functionality of cholesteryl ester turnover per se, we measured the activities of acyl CoA:cholesterol acyltransferase (ACAT) and cholesteryl esterase, the enzymes involved in cholesteryl ester synthesis and hydrolysis, respectively; we also measured de novo synthesis of cholesterol, cholesteryl esters, and steroids. Pregnant rats, hypophysectomized and hysterectomized on Day 12, were treated for 72 h with either estradiol or testosterone, and luteal microsomal and cytosolic fractions were utilized to measure ACAT and cholesteryl esterase activity, respectively. Intact corpora luteal were employed for [14C]acetate incorporation experiments. Basal ACAT activity (expressed as pmol.min-1.CL-1 increased from a mean of 78 +/- 16 in vehicle-treated rats to 119 +/- 18 and 197 +/- 16 in the estradiol- and testosterone-treated rats, respectively. Similarly, total ACAT activity (measured in the presence of exogenous cholesterol) was also increased in estradiol- and testosterone-treated groups. On the other hand, cholesterol esterase activity (expressed either pmol.min-1.CL-1 or pmol.min-1.mg protein-1) was similar in all three groups and comparable to corpora lutea from intact pregnant rats. Hypophysectomy and hysterectomy caused a 50-60% reduction in [14C]acetate incorporation into sterols when compared with intact pregnant rat. Treatment with either estradiol or testosterone not only restored the cholesterol biosynthetic capacity but also enhanced the overall rate of [14C]acetate incorporation into steroids as compared to intact pregnant rats. The major (-80%), newly synthesized steroid was identified as progesterone. In conclusion, the present studies suggest that the major function of luteal estradiol is to induce de novo cholesterol biosynthesis, regulate ACAT activity, and channel available free cholesterol (derived from both endogenous and exogenous sources) for steroidogenesis.  相似文献   

8.
Potential probes of protein cholesterol and fatty acid binding sites, namely, 12-[(5-iodo-4-azido-2-hydroxybenzoyl)amino]dodecanoate (IFA) and its coenzyme A (IFA:CoA) and cholesteryl (IFA:CEA) esters, were synthesized. These radioactive, photoreactive lipid analogues were recognized as substrates and inhibitors of acyl-CoA:cholesterol O-acyltransferase (ACAT) and cholesterol esterase, neutral lipid binding enzymes which are key elements in the regulation of cellular cholesterol metabolism. In the dark, IFA reversibly inhibited cholesteryl [14C]oleate hydrolysis by purified bovine pancreatic cholesterol esterase with an apparent Ki of 150 microM. Cholesterol esterase inhibition by IFA became irreversible after photolysis with UV light and oleic acid (1 mM) provided 50% protection against inactivation. Incubation of homogeneous bovine pancreatic cholesterol esterase with IFA:CEA resulted in its hydrolysis to IFA and cholesterol, indicating recognition of IFA:CEA as a substrate by cholesterol esterase. The coenzyme A ester, IFA:CoA, was a reversible inhibitor of microsomal ACAT activity under dark conditions (apparent Ki = 20 microM), and photolysis resulted in irreversible inhibition of enzyme activity with 87% efficiency. IFA:CoA was also recognized as a substrate by both liver and aortic microsomal ACATs, with resultant synthesis of 125IFA:CEA. IFA and its derivatives, IFA:CEA and IFA:CoA, are thus inhibitors and substrates for cholesterol esterase and ACAT. Biological recognition of these photoaffinity lipid analogues will facilitate the identification and structural analysis of hitherto uncharacterized protein lipid binding sites.  相似文献   

9.
Cao YZ  Oo KC  Huang AH 《Plant physiology》1990,94(3):1199-1206
Lysophosphatidate (LPA) acyltransferase (EC 2.3. 1.51) in the microsomes from the maturing seeds of meadowfoam (Limnanthes alba), nasturtium (Tropaeolum majus), palm (Syagrus cocoides), castor bean (Ricinus communis), soybean (Glycine max), maize (Zea mays), and rapeseed (Brassica napus) were tested for their specificities toward 1-oleoyl-LPA or 1-erucoyl-LPA, and oleoyl coenzyme A (CoA) or erucoyl CoA. All the enzymes could use either of the two acyl acceptors and oleoyl CoA, but only the meadowfoam enzyme could use erucoyl CoA as the acyl donor to produce dierucoyl phosphatidic acid (PA). The meadowfoam enzyme was studied further. It had an optimal activity at pH 7 to 8, and its activity was inhibited by 1 millimolar MnCl2, ZnCl2, or p-chloromercuribenzoate. In a test of substrate specificity using increasing concentrations of either 1-oleoyl-LPA or 1-erucoyl-LPA, and either oleoyl CoA or erucoyl CoA, the enzyme activity in producing PA was highest for dioleoyl-PA, followed successively by 1-oleoyl-2-erucoyl-PA, dierucoyl-PA, and 1-erucoyl-2-oleoyl-PA. In a test of substrate selectivity using a fixed combined concentration, but varying proportions, of 1-oleoyl-LPA and 1-erucoyl-LPA, and of oleoyl CoA and erucoyl CoA, the enzyme showed a pattern of acyl preference similar to that observed in the test of substrate specificity, but the preference toward oleoyl moiety in the substrates was slightly stronger. The meadowfoam microsomes could convert [14C]glycerol-3-phosphate to diacylglycerols and triacylglycerols in the presence of erucoyl CoA. The meadowfoam LPA acyltransferase is unique in its ability to produce dierucoyl-PA, and should be a prime candidate for use in the production of trierucin oils in rapeseed via genetic engineering.  相似文献   

10.
The acyl coenzyme A (CoA) preference of the glycerol phosphate pathway in the microsomes from the maturing seeds of palm (Butia capitata Becc.), maize (Zea mays L.), and rapeseed (Brassica napus L.) was tested. Each microsomal preparation was incubated with [14C-U]-glycerol-3-phosphate and either lauroyl CoA, oleoyl CoA, or erucoyl CoA, and the 14C-lipid products were separated and quantitated. In the presence of oleoyl CoA, the microsomes from each of the three species produced lysophosphatidic acid, phosphatidic acid, diacylglycerol, and triacylglycerol with kinetics consistent with the operation of the glycerol phosphate pathway. In the presence of erucoyl CoA, the microsomes from all the three species did not produce di- or tri-acyl lipids. In the presence of lauroyl CoA, only the microsomes from palm, but not those from maize or rapeseed, synthesized di- and tri-acyl lipids. This lack of reactivity of lauroyl CoA was also observed in the microsomes from maturing castor bean, peanut, and soybean. In maize seed and rapeseed, but not palm seed, the kinetics of labeling suggest that lauroyl and erucoyl moieties of the acyl CoAs were incorporated into lysophosphatidic acid but failed to enter into phosphatidic acid and thus the subsequent lipid products. We propose that the high degree of acyl specificity of lysophosphatidyl acyltransferase is the blocking step in the synthesis of triacylglycerols using lauroyl CoA or erucoyl CoA. The significance of the findings in seed oil biotechnology is discussed.  相似文献   

11.
Treatment of rats with Adriamycin caused an increase in the incorporation into hepatic cholesterol of [1-14C] acetate, but not of [2-14C] mevalonate. The step affected was found to be 3-hydroxy-3-methylglutaryl CoA reductase whose activity in the liver microsomes increased in Adriamycin-treated animals, but was inhibited when the drug was added in the assay medium. Also, the concentration of ubiquinone in the liver and of cholesterol in the plasma increased.  相似文献   

12.
Microsomal acyl CoA:cholesterol acyltransferase (ACAT) is stimulated in vitro and/or in intact cells by proteins that bind and transfer both substrates, cholesterol, and fatty acyl CoA. To resolve the role of fatty acyl CoA binding independent of cholesterol binding/transfer, a protein that exclusively binds fatty acyl CoA (acyl CoA binding protein, ACBP) was compared. ACBP contains an endoplasmic reticulum retention motif and significantly colocalized with acyl-CoA cholesteryl acyltransferase 2 (ACAT2) and endoplasmic reticulum markers in L-cell fibroblasts and hepatoma cells, respectively. In the presence of exogenous cholesterol, ACAT was stimulated in the order: ACBP > sterol carrier protein-2 (SCP-2) > liver fatty acid binding protein (L-FABP). Stimulation was in the same order as the relative affinities of the proteins for fatty acyl CoA. In contrast, in the absence of exogenous cholesterol, these proteins inhibited microsomal ACAT, but in the same order: ACBP > SCP-2 > L-FABP. The extracellular protein BSA stimulated microsomal ACAT regardless of the presence or absence of exogenous cholesterol. Thus, ACBP was the most potent intracellular fatty acyl CoA binding protein in differentially modulating the activity of microsomal ACAT to form cholesteryl esters independent of cholesterol binding/transfer ability.  相似文献   

13.
The hypothesis tested in this study was that cholesterol esterification by ACAT2 would increase cholesterol absorption efficiency by providing cholesteryl ester (CE) for incorporation into chylomicrons. The assumption was that absorption would be proportional to Acat2 gene dosage. Male ACAT2+/+, ACAT2+/−, and ACAT2−/− mice were fed a diet containing 20% of energy as palm oil with 0.2% (w/w) cholesterol. Cholesterol absorption efficiency was measured by fecal dual-isotope and thoracic lymph duct cannulation (TLDC) methods using [3H]sitosterol and [14C]cholesterol tracers. Excellent agreement among individual mice was found for cholesterol absorption measured by both techniques. Cholesterol absorption efficiency in ACAT2−/− mice was 16% compared with 46–47% in ACAT2+/+ and ACAT2+/− mice. Chylomicrons from ACAT2+/+ and ACAT2+/− mice carried ∼80% of total sterol mass as CE, whereas ACAT2−/− chylomicrons carried >90% of sterol mass in the unesterified form. The total percentage of chylomicron mass as CE was reduced from 12% in the presence of ACAT2 to ∼1% in ACAT2−/− mice. Altogether, the data demonstrate that ACAT2 increases cholesterol absorption efficiency by providing CE for chylomicron transport, but one copy of the Acat2 gene, providing ∼50% of ACAT2 mRNA and enzyme activity, was as effective as two copies in promoting cholesterol absorption.  相似文献   

14.
When 600 × g supernatants of 10% (w/v) rat lung homogenates were incubated with CDP[Me-14C]choline, both saturated and unsaturated species of phosphatidylcholine were formed from endogenous diacylglycerols. The percentage radioactivity in the disaturated species of total phosphatidylcholine increased with time from 12% after 5 min to 30% after 60 min incubation. In similar experiments with 20000 × g supernatants, the increase in the disaturated species of microsomal phosphatidylcholine was from 25 to 37% over the same time period. In incubations of isolated microsomes in buffer, the percent of 14C label in disaturated phosphatidylcholine remained constant at a level of 25%. To investigate a possible role of cytosolic factor(s) in the increase in the percentage of disaturated phosphatidylcholine with time, microsomes were prelabeled by incubation in buffer with CDP[Me-14C]choline to give a fixed ratio of radioactive saturated and unsaturated phosphatidylcholine species. When the reisolated microsomes were incubated in buffer, the distribution of radioactivity over saturated and unsaturated species remained constant. In contrast, incubation of prelabeled microsomes in the presence of cytosol caused an increase in the percent radioactivity in saturated phosphatidylcholines from a starting value of 18 to 30% after 60 min incubation, while leaving total phosphatidylcholine radioactivity unaffected. These results indicate a remodeling of phosphatidylcholine under the influence of a cytosolic factor(s). Evidence is presented that suggests that Ca2+-independent cytosolic phospholipase A2 activity as well as a microsomal ATP-independent CoA-mediated acyltransferase activity might contribute to this remodeling. The cytosol donates the necessary CoA for this acyl transfer as well as saturated acyl-CoA for the reacylation of lysophosphatidylcholine.  相似文献   

15.
Cholesteryl ester synthesis by the acyl-CoA:cholesterol acyltransferase enzymes ACAT1 and ACAT2 is, in part, a cellular homeostatic mechanism to avoid toxicity associated with high free cholesterol levels. In hepatocytes and enterocytes, cholesteryl esters are secreted as part of apoB lipoproteins, the assembly of which is critically dependent on microsomal triglyceride transfer protein (MTP). Conditional genetic ablation of MTP reduces cholesteryl esters and enhances free cholesterol in the liver and intestine without diminishing ACAT1 and ACAT2 mRNA levels. As expected, increases in hepatic free cholesterol are associated with decreases in 3-hydroxy-3-methylglutaryl-CoA reductase and increases in ATP-binding cassette transporter 1 mRNA levels. Chemical inhibition of MTP also decreases esterification of cholesterol in Caco-2 and HepG2 cells. Conversely, coexpression of MTP and apoB in AC29 cells stably transfected with ACAT1 and ACAT2 increases cholesteryl ester synthesis. Liver and enterocyte microsomes from MTP-deficient animals synthesize lesser amounts of cholesteryl esters in vitro, but addition of purified MTP and low density lipoprotein corrects this deficiency. Enrichment of microsomes with cholesteryl esters also inhibits cholesterol ester synthesis. Thus, MTP enhances cellular cholesterol esterification by removing cholesteryl esters from their site of synthesis and depositing them into nascent apoB lipoproteins. Therefore, MTP plays a novel role in regulating cholesteryl ester biosynthesis in cells that produce lipoproteins. We speculate that non-lipoprotein-producing cells may use different mechanisms to alleviate product inhibition and modulate cholesteryl ester biosynthesis.  相似文献   

16.
The kinetic properties and subcellular distribution of an esterifying enzyme in the pigment epithelium of bovine retina have been studied using both [1-3H]retinol and [3H]retinol bound to cellular retinol-binding protein as substrates. The most active esterifying fraction in pigment epithelial cell preparations was the microsomes, but the lysosome plus mitochondria fraction also showed some activity, probably due to endoplasmic reticulum present as an impurity. The microsomal enzyme showed optimum activity at pH 7.5, and the reaction was linear up to 30 μg protein and for the first 10–15 min. The apparent Km values were 16.6 · 10?6 and 5.5 · 10?6 M for [3H]retinol and bound [3H]retinol, respectively. This is the first time that retinol bound to cellular retinol-binding protein has been shown to undergo metabolic stransformation. The microsomal esterifying activity was destroyed by boiling for 1 min, or after freezing for 2 months. No clear requirement for ATP, CoA or fatty acid could be demonstrated.Of all the other tissues examined under the same experimental conditions as those used for the pigment epithelium, onlt intestine showed measurable activity. With larger amounts of tissue protein and longer incubation periods, activity was also detectable in microsomes of liver, testis and retina  相似文献   

17.
Cholesteryl ester synthesis by human choriocarcinoma cells in culture was studied by measuring the incorporation of [1-14C]oleate into cholesteryl esters. Cholesteryl ester synthesis was stimulated in a time- and concentration-dependent fashion when low-density lipoprotein was present in the culture medium, whereas there was no change in the rate of cholesteryl ester synthesis when high-density lipoprotein was present in the medium. The stimulation of cholesteryl ester synthesis by low-density lipoprotein was inhibited by chloroquine, an inhibitor of lysosomal degradative processes, and by progesterone. Cholesteryl ester synthesis, in the presence of low density lipoprotein, was further stimulated by aminoglutethimide, a substance which inhibits cholesterol side-chain cleavage. Based on these findings we suggest that cholesteryl ester synthesis by human choriocarcinoma cells in culture is inhibited by endogenously synthesized progesterone, a phenomenon that may be important in the regulation of cholesterol metabolism in the human placenta.  相似文献   

18.
By studying the incorporation and esterification of non-lipoprotein, free [3H]cholesterol in normal and acid sterol ester hydrolase-deficient human fibroblasts, it was examined whether the esterification reaction of the lysosomal acid sterol ester hydrolase contributed to the formation of cellular [3H|cholesteryl esters. Both the normal and the acid sterol ester hydrolase-deficient cells incorporated exogenous, vesicle-derived free [3H]cholesterol linearly as a function of time. Also, the rate of [3H]cholesteryl ester formation was almost the same in normal and mutant fibroblasts, indicating that the apparent esterification activity of the acid sterol ester hydrolase in normal fibroblasts did not contribute to the formation of [3H]cholesteryl esters in intact cells. To examine whether the incorporated [3H]cholesterol was transported into the endoplasmic reticulum and esterified by the acyl-CoA: cholesterol acyltransferase, the rate of [3H]cholesteryl ester formation was measured in the presence or absence of the acyl-CoA: cholesterol acyltransferase-inhibitor 58-035 (Sandoz Inc.). Results showed that the formation of [3H]cholesteryl esters was reduced markedly when cells were co-incubated with the acyltransferase inhibitor. Maximal inhibition (i.e., 75%) was obtained at an inhibitor concentration of 1 μg/ml. Since the inhibitor 58-035 is very specific for acyl-CoA: cholesterol acyltransferase, this finding clearly shows that exogenous, exchangeable [3H]cholesterol can reach and mix with the intracellular substrate pool of the enzyme.  相似文献   

19.
Hepatic free cholesterol levels are influenced by cholesterol synthesis and ester formation, which, in turn, might regulate cholesterol secretion into bile and plasma. We manipulated the rates of hepatic cholesterol synthesis and esterification and measured biliary and very low density lipoprotein (VLDL) cholesterol secretion, and bile acid synthesis. Mevalonate decreased HMG CoA reductase by 80%, increased acyl coenzyme A: cholesterol acyltransferase (ACAT) by 60% and increased [3H]oleate incorporation into microsomal and VLDL cholesteryl esters by 174% and 122%, respectively. Microsomal and biliary free cholesterol remained constant at the expense of increased microsomal and VLDL cholesteryl ester content. Mevalonate did not change bile acid synthesis. 25-OH cholesterol decreased HMG-CoA reductase by 39%, increased ACAT by 24%, but did not effect 7 alpha-hydroxylase. 25-OH cholesterol increased [3H]oleate in microsomal and VLDL cholesterol esters by 71% and 120%. Biliary cholesterol decreased by 40% and VLDL cholesteryl esters increased by 83%. A small and unsustained decrease in bile acid synthesis (14CO2 release) occurred after 25-OH cholesterol. After orotic acid feeding, HMG-CoA reductase increased 352%, and [3H]oleate in microsomal and VLDL cholesteryl esters decreased by 43% and 89%. Orotic acid decreased all VLDL components including free cholesterol (68%) and cholesteryl esters (55%), and increased biliary cholesterol by 160%. No change in bile acid synthesis occurred. Hepatic cholesterol synthesis and esterification appear to regulate a cholesterol pool available for both biliary and VLDL secretion. Changing cholesterol synthesis and esterification did not alter bile acid synthesis, suggesting that either this common bile/VLDL secretory pool is functionally distinct from the cholesterol pool used for bile salt synthesis, or that free cholesterol availability in this precursor pool is not a major determinant of bile acid synthesis.  相似文献   

20.
《Insect Biochemistry》1986,16(1):17-23
The synthesis of [4-14C]cholesta-4,6-dien-3-one and [4-14C]3β-hydroxy-5α-cholestan-6-one is described. Both [4-14C]cholest-4-en-3-one and [4-14C]cholesta-4,6-dien-3-one were not incorporated significantly into ecdysteroids compared to [1α,2α-3H]cholesterol in fifth instar and maturing adult female Schistocerca gregaria. Similarly, [4-14C]3β-hydroxy-5α-cholestan-6-one was not incorporated significantly in the latter system. The results suggest that none of the three 14C-substrates are intermediates in ecdysteroid biosynthesis from cholesterol, although possible complications from permeability barriers cannot be discounted. [4-14C, 7-3H]7-dehydrocholesterol has been synthesized and incorporated into ecdysteroids in adult female Schistocerca gregaria and in Spodoptera littoralis pupae. Although approximately half the tritium was eliminated during ecdysteroid synthesis in S. gregaria, there was essentially complete retention of the tritium in Spodoptera. The results support the direct incorporation of 7-dehydrocholesterol into ecdysteroids and not via cholesterol. A possible explanation for the loss of appreciable tritium in S. gregaria is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号