首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proline and hepatic lipogenesis   总被引:1,自引:0,他引:1  
The effects of proline on lipogenesis in isolated rat hepatocytes were determined and compared with those of lactate, an established lipogenic precursor. Proline or lactate plus pyruvate increased lipogenesis (measured with 3H2O) in hepatocytes from fed rats depleted of glycogen in vitro and in hepatocytes from starved rats. Lactate plus pyruvate but not proline increased lipogenesis in hepatocytes from starved rats. ( - )-Hydroxycitrate, an inhibitor of ATP-citrate lyase, partially inhibited incorporation into saponifiable fatty acid of 3H from 3H2O and 14C from [U-14C]lactate with hepatocytes from fed rats. Incorporation of 14C from [U-14C]proline was completely inhibited. Similar complete inhibition of incorporation of 14C from [U-14C]proline by ( - )-hydroxycitrate was observed with glycogen-depleted hepatocytes or hepatocytes from starved rats. Inhibition of phosphoenolpyruvate carboxykinase by 3-mercaptopicolinate did not inhibit the incorporation into saponifiable fatty acid of 3H from 3H2O or 14C from [U-14C]proline or [U-14C]lactate. Both 3-mercaptopicolinate and ( - )-hydroxycitrate increased lipogenesis (measured with 3H2O) in the absence or presence of lactate or proline with hepatocytes from starved rats. The results are discussed with reference to the roles of phosphoenolpyruvate carboxykinase, mitochondrial citrate efflux, ATP-citrate lyase and acetyl-CoA carboxylase in proline- or lactate-stimulated lipogenesis.  相似文献   

2.
The rates of glycolysis and lipogenesis in isolated perfused liver of well-fed rats were studied. When liver was allowed to synthesize [14C]glycogen prior to perfusion, no more than 9% of the degraded [14C]glycogen was recovered in lactate and 6% in lipid. Addition of glucose, fructose and sorbitol enhanced concomitantly the formation of lactate and pyruvate and the rate of release of triglyceride and free fatty acid. Glucose was less efficient than fructose or sorbitol. The incorporation of 14C from these 14C-labelled substrates into lactate, pyruvate and lipids confirmed their role as carbon sources. Incorporation of 14C into the glycerol moiety of neutral lipid exceeded that found in the fatty acids, suggesting that these substrates contributed largely to the esterification of fatty acids. The total rate of de novo fatty acid synthesis was correlated with the formation of lactate and pyruvate. It is concluded that increased rates of aerobic glycolysis are related to increased rates of lipogenesis.  相似文献   

3.
Metabolic inhibitors were used in vitro in an attempt to elucidate the biochemical pathways by which lactate is converted to fatty acids by bovine adipose tissue. Subcutaneous adipose tissue samples were obtained by biopsy techniques from steers fed a high-energy ration. Kynurenate (α-2-diamino-γ-oxabenzenebutanoic acid) (5–10 mm), an inhibitor of acetyl-CoA carboxylase, and cerulenin (2,3-epoxy-4-oxo-7,10-dodecadienamide) (20–100 μg/ml), an inhibitor of the fatty acid synthetase enzyme complex, inhibited fatty acid synthesis from both acetate and lactate. The hydrogen acceptor, N-methylphenazonium methosulfate (10 μm) inhibited acetate but not lactate incorporation into fatty acids. α-Cyanohydroxycinnamate (5 mm) and phenylpyruvate (10 mm), which inhibit pyruvate entry into the mitochondria and pyruvate carboxylase, respectively, decreased lipogenesis from both acetate and lactate. The effects of phenylpyruvate on lipogenesis from acetate were greater in the presence of glucose plus insulin. Agaric acid (2-hydroxy-1,2,3-nonadecanetricarboxylic acid) (0.2 and 1.0 mm), which inhibits citrate efflux from the mitochondria also decreased lipogenesis from both acetate and lactate. Fluoroacetate (2.5 mm), an inhibitor of aconitate hydratase, had no effect on lipogenesis from acetate; but, in the presence of glucose or pyruvate, decreased lactate incorporation into fatty acids. n-Butylmalonate (5 mm), which blocks malate transport across the mitochondrial membrane, decreased lipogenesis from lactate but not acetate. Malate transport during lipogenesis is not associated with an operative malate:asparate shuttle in bovine adipose tissue, as indicated by the lack of effect of either 0.2 or 1.0 mm aminooxyacetate, a transaminase inhibitor, on lipogenesis from acetate or lactate. The results suggest a functional ATP-citrate lyase:NADP-malate dehydrogenase pathway in bovine subcutaneous adipose tissue and that this pathway may be involved in lipogenesis from acetate as well as lactate.  相似文献   

4.
In recent studies using intact chloroplasts of spinach (Spinacia oleracea L.) to investigate the accumulation of acetyl-CoA produced by the activity of either acetyl-CoA synthetase (EC 6.2.1.1) or the pyruvate-dehydrogenase complex, this product was not detectable. These results in combination with new information on the physiological levels of acetate and pyruvate in spinach chloroplasts (H.-J. Treede et al. 1986, Z. Naturforsch. 41 C, 733–740) prompted a reinvestigation of the incorporation of [1-14C] acetate and [2-14C] pyruvate into fatty acids at physiological concentrations.The K m for the incorporation into fatty acids was about 0.1 mM for both metabolites and thus agreed with the values obtained by H.-J. Treede et al. (1986) for acetyl-CoA synthetase and the pyruvate dehydrogenase complex. However, acetate was incorporated with a threefold higher V max. Saturation for pyruvate incorporation into the fattyacid fraction was achieved only at physiological pyruvate concentrations (<1.0 mM). The diffusion kinetics observed at higher concentrations may be the result of contamination with derivates of the labeled substrate. Competition as well as double-labeling experiments with [3H]acetate and [2-14C]pyruvate support the notion that, at least in spinach, chloroplastic acetate is the preferred substrate for fatty-acid synthesis when both substrates are supplied concurrently (P.G. Roughan et al., 1979 b, Biochem. J. 184, 565–569).Experiments with spinach leaf discs confirmed the predominance of fatty-acid incorporation from acetate. Radioactivity from [1-14C]acetate appeared to accumulate in glycerolipids while that from [2-14C]pyruvate was apparently shifted in favor of the products of prenyl metabolism.Abbreviations Chl chlorophyll - TLC thin-layer chromatography  相似文献   

5.
Activities of key lipogenic and glycolytic enzymes were determined in extracts of crude homogenates to elucidate the rate-limiting step(s) for lipogenesis from lactate and glucose in bovine subcutaneous adipose tissue. The enzymes ATP-citrate lyase, NADP-malate dehydrogenase, and pyruvate carboxylase were shown to have enough activity to account for the rates of in vitro lipogenesis from 10 mm lactate with or without 2 mm glucose. Glucose utilization for fatty acid synthesis appears to be limited by the low activities of key glycolytic enzymes, especially hexokinase. Attempts were also made to estimate enzyme activities in bovine subcutaneous adipose tissue being incubated in vitro by relating primary substrate levels to kinetic characteristics for the enzymes. ATP-citrate lyase was estimated to be operating at levels equivalent to the rates of lactate incorporation into fatty acids in the absence or presence of 2 mm glucose in the incubation media. Additionally, metabolite levels were measured in rapidly frozen samples of bovine subcutaneous adipose tissue to estimate the relative importance of key lipogenic enzymes in vivo. At the citrate and malate levels measured in vivo, ATP-citrate lyase would be operating at levels that approximate those estimated in vitro.  相似文献   

6.
SYNOPSIS. The growth of Tetrahymena pyriformis strain HSM was strongly inhibited by 4-pentenoic acid. Supplementing the medium with acetate reversed the growth inhibition, but pyruvate was ineffective. Glycogen content was much lower in cells grown with 4-pentenoic acid than in controls; this effect was not reversed by acetate or by pyruvate. There was little effect of 4-pentenoic acid on the incorporation of label from [1-14C]acetate, [2-14C]glycerol, [1-34]ribose, [U-14C]fructose, or [1-14C]glucose into CO2, but incorporation of label into glycogen was inhibited, the strongest inhibition being on acetate and the weakest (~ 20%) on ribose, fructose, and glucose. A 3-compartment model for quantitation of labeled acetyl CoA fluxes was shown to be applicable to Tetrahymena grown in the presence of 4-pentenoic acid, and experiments were performed to establish the flux of [1-14C]acetyl CoA into glycogen, lipids, CO2, glutamate, and alanine. It was evident from the results of these experiments that 4-pentenoic acid did not appreciably inhibit β-oxidation or lipogenesis, but markedly decreased the glyconeogenic flux of labeled acetyl-CoA from the peroxismal and outer mitochondrial compartments. At least 2 mechanisms have been proposed for the action of 4-pentenoic acid: (a) reduction of the levels of acetyl CoA or free CoA and (b) direct inhibition of enzymes by 4-pentenoyl CoA or its metabolites. Although 4-pentenoic acid has little effect on acetyl-CoA metabolism in the inner mitochondrial compartment, the present data suggest that the flux through the outer mitochondrial compartment of acetyl-CoA derived from pyruvate is inhibited largely by the first, and that the glyconeogenic flux of acetyl-CoA is inhibited largely by the 2nd mechanism.  相似文献   

7.
—The origin of the acetyl group in acetyl-CoA which is used for the synthesis of ACh in the brain and the relationship of the cholinergic nerve endings to the biochemically defined cerebral compartments of the Krebs cycle intermediates and amino acids were studied by comparing the transfer of radioactivity from intracisternally injected labelled precursors into the acetyl moiety of ACh, glutamate, glutamine, ‘citrate’(= citrate +cis-aconitate + isocitrate), and lipids in the brain of rats. The substrates used for injections were [1-14C]acetate, [2-14C]acetate, [4-14C]acetoacetate, [1-14C]butyrate, [1, 5-14C]citrate, [2-14C]glucose, [5-14C]glutamate, 3-hydroxy[3-14C]butyrate, [2-14C]lactate, [U-14C]leucine, [2-14C]pyruvate and [3H]acetylaspartate. The highest specific radioactivity of the acetyl group of ACh was observed 4 min after the injection of [2-14C]pyruvate. The contribution of pyruvate, lactate and glucose to the biosynthesis of ACh is considerably higher than the contribution of acetoacetate, 3-hydroxybutyrate and acetate; that of citrate and leucine is very low. No incorporation of label from [5-14C]glutamate into ACh was observed. Pyruvate appears to be the most important precursor of the acetyl group of ACh. The incorporation of label from [1, 5-14C]citrate into ACh was very low although citrate did enter the cells, was metabolized rapidly, did not interfere with the metabolism of ACh and the distribution of radioactivity from it in subcellular fractions of the brain was exactly the same as from [2-14C]pyruvate. It appears unlikely that citrate, glutamate or acetate act as transporters of intramitochondrially generated acetyl groups for the biosynthesis of ACh. Carnitine increased the incorporation of label from [1-14C]acetate into brain lipids and lowered its incorporation into ACh. Differences in the degree of labelling which various radioactive precursors produce in brain glutamine as compared to glutamate, previously described after intravenous, intra-arterial, or intraperitoneal administration, were confirmed using direct administration into the cerebrospinal fluid. Specific radioactivities of brain glutamine were higher than those of glutamate after injections of [1-14C]acetate, [2-14C]acetate, [1-14C]butyrate, [1,5-14C]citrate, [3H]acetylaspartate, [U-14C]leucine, and also after [2-14C]pyruvate and [4-14C]acetoacetate. The intracisternal route possibly favours the entry of substrates into the glutamine-synthesizing (‘small’) compartment. Increasing the amount of injected [2-14C]pyruvate lowered the glutamine/glutamate specific radioactivity ratio. The incorporation of 14C from [1-14C]acetate into brain lipids was several times higher than that from other compounds. By the extent of incorporation into brain lipids the substrates formed four groups: acetate > butyrate, acetoacetate, 3-hydroxybutyrate, citrate > pyruvate, lactate, acetylaspartate > glucose, glutamate. The ratios of specific radioactivity of ‘citrate’ over that of ACh and of glutamine over that of ACh were significantly higher after the administration of [1-14C]acetate than after [2-14C]pyruvate. The results indicate that the [1-14C]acetyl-CoA arising from [1-14C]acetate does not enter the same pool as the [1-14C]acetyl-CoA arising from [2-14C]pyruvate, and that the cholinergic nerve endings do not form a part of the acetate-utilizing and glutamine-synthesizing (‘small’) metabolic compartment in the brain. The distribution of radioactivity in subcellular fractions of the brain after the injection of [1-14C]acetate was different from that after [1, 5-14C]citrate. This suggests that [1-14C]acetate and [1, 5-14C]citrate are utilized in different subdivisions of the ‘;small’ compartment.  相似文献   

8.
13C-nuciear magnetic resonance (NMR) spectroscopy was used to investigate the products of glycerol and acetate metabolism released by Leishmania braziliensis panamensis promastigotes and also to examine the interaction of each of these substrates with glucose or alanine. The NMR data were supplemented by measurements of the rates of oxygen consumption and substrate utilization, and of 14CO2 production from 14C-labeIed substrate. Cells incubated with [2-13C]glycerol released acetate, succinate and D-lactate in addition to CO2. Cells incubated with acetate released only CO2. More succinate C-2/C-3 than C-l/C-4 was released from both [2-13C]glycerol and [2-13C]glucose, indicating that succinate was formed predominantly by CO2 fixation followed by reverse flux through part of the Krebs cycle. Some redistribution of the position of labeling was also seen in alanine and pyruvate, suggesting cycling through pyruvate/oxaloacetate/phosphoenolpyruvate. Cells incubated with combinations of 2 substrates consumed oxygen at the same rate as cells incubated with 1 or no substrate, even though the total substrate utilization had increased. When promastigotes were incubated with both glycerol and glucose, the rate of glucose consumption was unchanged but glycerol consumption decreased about 50%, and the rate of 14CO2 production from [l,(3)-14C]glycerol decreased about 60%. Alanine did not affect the rates of consumption of glucose or glycerol, but decreased 14CO2 production from these substrates by increasing flow of label into alanine. Although glucose decreased alanine consumption by 70%, it increased the rate of 14CO2 production from [U-14C]- and [l-14C]alanine by about 20%. This is consistent with rapid equilibration of alanine with pyruvate derived from glucose and yet little decrease in the specific activity of the large alanine pool.  相似文献   

9.
We have examined the effects of glucagon on lipogenesis from fasted-refed rats incubated under two conditions, either without added substrate or with 10 mml-lactate. Net glycolysis (from glycogen) occurs in the absence of glucagon. This glycolysis is inhibited by glucagon under conditions of no added lactate, and reversed by glucagon to a net gluconeogenesis in the presence of 10 mm lactate. Glucagon markedly inhibits fatty acid synthesis (estimated by incorporation of tritium from THO) in hepatocytes incubated without added substrate; but, in the presence of 10 mml-lactate, the inhibition of fatty acid synthesis is only about 10%. The inhibition of lipogenesis from endogenous glycogen is primarily caused by inhibition of glycolysis. Glucagon markedly lowers the C-4,5,6C-1,2,3 ratio in glucose produced from [1-14C]galactose, indicating a strong inhibition of phosphofructokinase flux. The C-1,2,3C-4,5,6 ratio in glucose from [1-14C]glycerol is only slightly less than 1, indicating an active fructose diphosphatase flux even under conditions of active net glycolysis. Glucagon increases this ratio only slightly, suggesting that an acute increase of fructose diphosphatase activity by glucagon may occur, but is of much less importance than the decrease of phosphofructokinase.  相似文献   

10.
  • 1.1. Indian River male broiler chickens growing from 7 to 28 days of age were fed diets containing 12, 18, 24 and 30% protein + 0 or 1 mg triiodothyronine (T3)/kg of diet to study energetic costs of lipogenesis and the use of various substrates for in vitro lipogenesis.
  • 2.2. De novo lipid and CO2 production were determined in the presence of [1-14C]pyruvate, [2-14q]pyruvate, [3-14C]pyruvate, [2-14C]acetate and [U-14C]alanine.
  • 3.3. Oxygen consumption was determined in mitochondrial preparations to estimate the energetic costs in expiants synthesizing lipid.
  • 4.4. Radiolabeled CO2 derived from [1-14C]pyruvate was used as an estimate of coenzyme A availability in liver expiants. Lipids derived from [2-14C]pyruvate, [2-14C]acetate and [U-14C]alanine estimate relative substrate efficiency.
  • 5.5. Labeled CO2 production from [1-14C]pyruvate was greatest in that group fed a 12% protein diet and least in the group fed a 30% protein diet.
  • 6.6. In addition, T3 increased CO2 production from [1-14C]pyruvate.
  • 7.7. The production of 14CO2 from the second carbon of pyruvate or acetate was increased by T3.
  • 8.8. The low-protein diet (12% protein) increased (P <0.05) lipogenesis.
  • 9.9. Adding T3 to the diets decreased carbon flux into lipid from all substrates, but increased CO2 production from all substrates without changing stage 3 and 4 respiration rates in mitochondrial preparations.
  • 10.10. These observations imply that coenzyme A availability may have regulated de novo lipogenesis in the present study.
  • 11.11. It was also concluded that previously noted effects of T3 on intermediary metabolism may involve metabolic pathways that do not involve changes in mitochondrial function.
  相似文献   

11.
β-Hydroxybutyrate as a Precursor to the Acetyl Moiety of Acetylcholine   总被引:3,自引:3,他引:0  
Abstract— Rat brain cortex slices were incubated with 10 mm -glucose and trace amounts of [6-3H]glucose and [3-14C]β-hydroxybutyrate. The effects of (-)-hydroxycitrate, an inhibitor of ATP-citrate lyase; methylmalonate, an inhibitor of β-hydroxybutyrate dehydrogenase; and increasing concentrations of unlabeled acetoacetate were examined. The incorporation of label into lactate, citrate, malate, and acetylcholine (ACh) was measured and 3H:14C ratios calculated. Incorporation of [14C]β-hydroxybutyrate into lactate was limited because of the low activity of gluconeogenic enzymes in brain, whereas incorporation of 14C label into Krebs cycle intermediates and ACh was higher than in previous experiments with [3H-,14C]-glucose. (–)-Hydroxycitrate (5.0 mM) reduced incorporation of [3H]glucose and [14C]β-hydroxybutyrate into ACh. In contrast, slices incubated with methylmalonate (1 mm ) showed a decrease in 14C incorporation without appreciably affecting glucose metabolism. The effects of high concentrations of methylmalonate were nonselective and yielded a generalized decrease in metabolism. Acetoacetate (1 mm ) also produced a decreased 14C incorporation into ACh and its precursors. At 10 mm , acetoacetate reduced 3H and 14C incorporation into ACh without substantially affecting total ACh content. From the results, it is suggested that in adult rats β-hydroxybutyrate can contribute to the acetyl moiety of ACh, possibly via the citrate cleavage pathway, though it is quantitatively less important than glucose and pyruvate. This contribution of ketone bodies could become significant should their concentration become abnormally high or glucose metabolism be reduced.  相似文献   

12.
A quantitative triterpene analysis was made of latex stem tissue of Euphorbia lathyris. Young plants seedlings of E. lathyris were incubated with various labelled precursors. Incorporation into triterpenes was obtained from [2-14C]mevalonic acid, [1-14C]acetate, [3-14C]pyruvate, [U-14C]sucrose, [U-14C]glucose, [U-14C]xylose, [U-14C]glyoxylate, [2,3-14C]succinic acid, [1-14C]glycerol [U-14C]serine. Both sugars tyrosine appeared to be effective precursors in DOPA synthesis inside the laticifers. Exogenously supplied mevalonic acid was only involved in triterpene synthesis outside the laticifers. GC-RC of triterpenes synthesized from [U-14C]glucose revealed the origin of these compounds in the latex. The labelled triterpenes obtained after incorporation of the other mentioned labelled precursors were only partly synthesized in the laticifers. For quantitative data on latex triterpene synthesis seedlings were incubated with [U-14C]sucrose, [U-14C]glucose, [U-14C]xylose [1-14C]acetate in the presence of increasing amounts of unlabelled substrate. From the amount of 14C incorporated into the triterpenes the amount of substrate directly involved in triterpene synthesis was calculated, as was the absolute triterpene yield. Sucrose showed the highest triterpene yield, equivalent to the daily increase of the triterpene content of growing seedlings. The possible significance of the other precursors in triterpene synthesis in the laticifers is discussed.  相似文献   

13.
Various solutions of labeled precursors were absorbed by the cotyledons of etiolated Euphorbia lathyris L. seedlings. Incorporation of 14C into triterpenes from [2-14C]mevalonic acid, [1-14C]acetate, [3-14C]pyruvate, [U-14C]glyoxylate, [U-14C]glycerol, [U-14C]serine, [U-14C]xylose, [U-14C]glucose, and [U-14C]sucrose was obtained. The [14] triterpenes synthesized from [14C] sugars were mainly of latex origin. [14C]mevalonic acid was only involved in terpenoid synthesis outside the laticifers. Exogenously supplied glyoxylate, serine, and glycerol were hardly involved in lipid synthesis at all. The 14C-distribution over the various triterpenols was consistent with the mass distribution of these constituents in gas liquid chromatography when [14C]sugars, [14C]acetate, and [14C]pyruvate were used. These precursors were supplied to the seedlings in the presence of increasing amounts of unlabeled substrates. The amount of substrate directly involved in lipid synthesis as well as the absolute triterpenol yield was calculated from the obtained [14C]triterpenols. The highest yield was obtained in the sucrose incorporated seedlings, being 25% of the daily increase of latex triterpenes in growing seedlings.  相似文献   

14.
1. The incorporation of 5mm-[U-(14)C]glucose into glyceride fatty acids by fat cells from normal rats incubated in the presence of 20munits of insulin/ml was increased by acetate, pyruvate, palmitate, NNN'N'-tetramethyl-p-phenylenediamine, phenazine methosulphate, dinitrophenol, tetrachlorotrifluoromethyl benzimidazole and oligomycin. Lactate did not stimulate glucose incorporation into fatty acids. The effects of these agents were concentration-dependent. 2. In the presence of 5mm-glucose+insulin, [U-(14)C]acetate, [U-(14)C]pyruvate and [U-(14)C]lactate were incorporated into fatty acids in a concentration-dependent manner, thereby further increasing the total rate of fatty acid synthesis. 3. NNN'N'-tetramethyl-p-phenylenediamine decreased the incorporation of [U-(14)C]pyruvate into fatty acids in normal cells and increased the incorporation of [U-(14)C]lactate into fatty acids. 4. In fact cells from 72h-starved rats the stimulatory effects of NNN'N'-tetramethyl-p-phenylenediamine upon glucose and lactate incorporation into fatty acids were totally and partially abolished respectively whereas the stimulatory effects of acetate upon glucose incorporation were retained. 5. Combinations of the optimum concentrations of the substances that stimulate glucose incorporation into fatty acids were tested and compared. The effects of acetate+NNN'N'-tetramethyl-p-phenylenediamine and acetate+palmitate upon normal cells were additive. The effects of NNN'N'-tetramethyl-p-phenylenediamine+palmitate were not additive. It was found that total fatty acid synthesis in the presence of glucose was most effectively increased by raising the concentration of pyruvate in the incubation system. 6. The significance of these results in supporting the proposal that fatty acid synthesis from glucose in adipose tissue is a ;self-limiting process' is discussed.  相似文献   

15.
To study the pathway of lactate utilization as a carbon source for fatty acid synthesis, the effect of (-)-hydroxycitrate, agaric acid, sodium oxamate, 2-n-butyl malonate and alpha-cyano-4-hydroxycinnamate on the rate of in vitro conversion of lactate, acetate and glucose to fatty acids was measured in bovine and rat adipose tissues. Sodium oxamate and hydroxycitrate caused less fatty acid to be synthesized from lactate in bovine adipose tissue. Hydroxycitrate depressed fatty acid synthesis from glucose in rat adipose tissue. alpha-Cyano-4-hydroxycinnamate was an effective inhibitor of lipogenesis from all substrates and may act as a specific inhibitor in adipose tissue. Although the inhibitors were absorbed poorly into adipocytes, the results indicate that conversion of lactate to fatty acids probably occurs by way of the citrate cleavage pathway.  相似文献   

16.
1. Livers from fed male rats were perfused in situ in a non-recirculating system with whole rat blood containing acetate at six concentrations, from 0.04 to 1.5 μmol/ml, to cover the physiological range encountered in the hapatic portal venous blood in vivo. 2. Below a concentration of 0.25 μmol/ml there was net production of acetate by the liver, while above it there was ner uptake with a fractional extraction of 40%. 3.No relationship was observed between blood [acetate] and hepatic ketogenesis, the ration [3-hydroxybutyrate]/[acetoacetate] or glucose output, either at low fatty acid concentration s or during oleate infusion. 4. Following the increase in serum fatty acid concentration, induced by oleate infusion, there were suquential incresase in ketogenesis and the ratio of [3-hydroxybutyrate]/[acetoacetate] while glucose output rose and lactate uptake fell significantly after in redox state. 5. There was a highly significant negative correlation between blood [acetate] and hepatic lactate uptake during oleate infusion. At the highest acetate concentration of 1.5 μmol/ml there was a small net hepatic lactate output. After oleate infusion ceased, lactate uptake increased, but the negative correlation between blood [acetate] and hepatic lactate uptake persisted. 6. Livers were also perfused with iether [1-14C]acetate or [U-14C]lactate at a concentration of acetate of either 0.3 or 1.3 μmol/ml of blood. With [1-14C]acetate, most of the radioactivity was recovered as fatty acids at the lower concentration of blood acetate. At the higher blood [acetate] a considerably smaller proportion of the radioactivity was recovered in lipids. With [U-14C]lactate the reverse pattern obtained i.e., recovery was greater at the high concentration of acetate and fell at the low concentration. Fatty acid biosynthesis, measured with 3H2O, was stimulated from 2.4 to 6.6 μmol of fatty acid/g of liver per h by high blood [acetate] although the contribution of (acetate+lactate) to synthesis remained constant at 33–38% of the total. 7. These results emphasize the important role of the liver in regulating blood acetate concentrations and indicate that it can be major hepatic substrate. Acetate taken up by the liver appeared to compete directly with lactate, for lipogenesis and metabolism and acetate uptake was inhibited by raised bloodd [lactate].  相似文献   

17.
The epimastigote or culture form of Trypanosoma cruzi oxidizes [3-14C] pyruvate and [2-14C] acetate to 14CO2 without an apparent increase in overall respiration. This oxidation takes place through the tricarboxylic acid cycle as shown by (a) the incorporation of substrate 14C into cycle intermediates; (b) the earlier liberation of acetate carboxyl carbon as CO2; and (c) the characteristic intramolecular distribution of pyruvate and acetate carbon atoms in the skeletal carbon of aspartic and glutamic acids. Upon oxidation of [3-14C] pyruvate and [2-14C] acetate, two of the products, alanine and glutamic acid, are found to account for more than 50% of incorporated 14C; labeling of alanine predominates with [3-14C] pyruvate while labeling of glutamic acid predominates with [2-14C] acetate. Using [1- or 6-14C] glucose as substrate, the pattern of 14C distribution in soluble metabolites closely resembles that obtained with [3-14C] pyruvate, in accordance with the joint operation of the Embden-Meyerhof pathway and Krebs cycle. The cycle operation depends on electron transport through the mitochondrial respiratory chain, since antimycin A, at a relatively low concentration, inhibits the oxidation of [2-14C] acetate to 14CO2, to the same extent as the parasite respiration. Though functional in T. cruzi epimastigotes, the oxidative role of the Krebs’ cycle is apparently limited by the absence of an efficient oxidative apparatus. The cycle operation does, however, constitute an important source of skeletal carbon for the biosynthesis of amino acids and can contribute to the process of glycogenesis.  相似文献   

18.
Dichloroacetate has effects upon hepatic metabolism which are profoundly different from its effects on heart, skeletal muscle, and adipose tissue metabolism. With hepatocytes prepared from meal-fed rats, dichloroacetate was found to activate pyruvate dehydrogenase, to increase the utilization of lactate and pyruvate without effecting an increase in the net utilization of glucose, to increase the rate of fatty acid synthesis, and to decrease slightly [1-14C]oleate oxidation to 14CO2 without decreasing ketone body formation. With hepatocytes isolated from 48-h-starved rats, dichloroacetate was found to activate pyruvate dehydrogenase, to have no influence on net glucose utilization, to inhibit gluconeogenesis slightly with lactate as substrate, and to stimulate gluconeogenesis significantly with alanine as substrate. The stimulation of fatty acid synthesis by dichloroacetate suggests that the activity of pyruvate dehydrogenase can be rate determining for fatty acid synthesis in isolated liver cells. The minor effects of dichloroacetate on gluconeogenesis suggest that the regulation of pyruvate dehydrogenase is only of marginal importance in the control of gluconeogenesis.  相似文献   

19.
The elongation of [9,10-3H]oleoyl-CoA with malonyl-CoA to form 20, 22, and 24 carbon monounsaturated fatty acids was demonstrated in housefly microsomes by radio-GLC. These elongation reactions, which have been postulated to be involved in hydrocarbon biosynthesis, have not been previously demonstrated in insects. 2-Octadecynoate (18:1 Δ2=) inhibited the in vivo incorporation of [1-14C]acetate into both fatty acids and hydrocarbons in a dose-dependent manner. At doses of 10 μg per female housefly of the alkynoic acid, the incorporation of [1-14C]acetate into hydrocarbon was inhibited 93%, the incorporation of [9,10-3H]oleate into hydrocarbon was inhibited 64%, and the incorporation of [1-14C]acetate into total internal lipid was inhibited 65%. Partially purified FAS was inhibited 50% and 95% at 15 μM and 40 μM, respectively, of the alkynoic acid. These results show that 2-octadecynoate inhibits hydrocarbon biosynthesis in the housefly by inhibiting FAS, and the in vivo data suggest that the elongation of 18:1 to longer chain fatty acids is also inhibited.  相似文献   

20.
Dichloroacetate (2 mm) stimulated the conversion of [1-14C]lactate to glucose in hepatocytes from fed rats. In hepatocytes from rats starved for 24 h, where the mitochondrial NADHNAD+ ratio is elevated, dichloroacetate inhibited the conversion of [1-14C]lactate to glucose. Dichloroacetate stimulated 14CO2 production from [1-14C]lactate in both cases. It also completely activated pyruvate dehydrogenase and increased flux through the enzyme. The addition of β-hydroxybutyrate, which elevates the intramitochondrial NADHNAD+ ratio, changed the metabolism of [1-14C]lactate in hepatocytes from fed rats to a pattern similar to that seen in hepatocytes from starved rats. Thus, the effect of dichloroacetate on labeled glucose synthesis from lactate appears to depend on the mitochondrial oxidation-reduction state of the hepatocytes. Glucagon (10 nm) stimulated labeled glucose synthesis from lactate or alanine in hepatocytes from both fed and starved rats and in the absence or presence of dichloroacetate. The hormone had no effect on pyruvate dehydrogenase activity whether or not the enzyme had been activated by dichloroacetate. Thus, it appears that pyruvate dehydrogenase is not involved in the hormonal regulation of gluconeogenesis. Glucagon inhibited the incorporation of 10 mm [1-14C]pyruvate into glucose in hepatocytes from starved rats. This inhibition has been attributed to an inhibition of pyruvate dehydrogenase by the hormone (Zahlten et al., 1973, Proc. Nat. Acad. Sci. USA70, 3213–3218). However, dichloroacetate did not prevent the inhibition of glucose synthesis. Nor did glucagon alter the activity of pyruvate dehydrogenase in homogenates of cells that had been incubated with 10 mm pyruvate in the absence or presence of dichloroacetate. Thus, the inhibition by glucagon of pyruvate gluconeogenesis does not appear to be due to an inhibition of pyruvate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号