共查询到20条相似文献,搜索用时 9 毫秒
1.
Extracellular Ca2+ stimulated fatty acid synthesis in isolated rat hepatocytes. Orthovanadate (0.2--2.0 mM), an inhibitor of Ca2+-dependent ATPases, stimulated fatty acid synthesis in both the presence and the absence of extracellular Ca2+. Insulin stimulated fatty acid synthesis only in the presence of extracellular Ca2+. The contribution of extracellular Ca2+ to insulin stimulation of fatty acid synthesis is discussed. 相似文献
2.
The oligoribonucleotide fraction containing the Streptolysin S inducer activity from the RNase digest of yeast RNA (active fraction; A. W. Bernheimer and M. J. Rodbart, 1948, J. Exp. Med., 80, 149–168) was purified by the oligo(dC)-cellulose affinity chromatography based on its high guanine content. A 20-fold purification of the inducer activity over that of AF the active fraction, and approximately 2000-fold over that of yeast RNA has been obtained. The purification oligonucleotide was found to contain several molecular species with 7–10 nucleotide residues, all apparently with inducer activity. Streptolysin S induced with this oligonucleotide preparation and gel filtered has a specific activity comparable to the highest value reported previously. Incorporation of amino acids into streptolysin S was observed upon induction with the purified oligonucleotide and paralleled the increase in the hemolysin activity. This and experiments with chloramphenicol indicated that streptolysin was synthesized de novo on stimulation with the oligonucleotide inducer. The pattern of amino acid incorporation was in good agreement with the amino acid composition of purified streptolysin reported earlier. No incorporation of glucose or mannose was observed. 相似文献
3.
Hepatocytes were isolated from 3 and 5 month old female genetically obese Zucker rats and their lean littermate controls. An age-dependent loss in sensitivity of fatty acid synthesis to inhibition by both glucagon and dibutyryl cyclic AMP was observed with hepatocytes from the obese rats. Hepatocytes from lean animals were much more sensitive to these agents, regardless of age. Low concentrations of glucagon and dibutyryl cyclic AMP actually produced some stimulation of fatty acid synthesis with hepatocytes prepared from the older obese rats. 5-Tetradecyloxy-2-furoic acid, a compound which inhibits fatty acid synthesis, was a very effective inhibitor of fatty acid synthesis by hepatocytes isolated from all rats used in the study. An inhibition of lactate plus pyruvate accumulation and a strong stimulation of glycogenolysis occurred in response to both glucagon and dibutyryl cyclic AMP with hepatocytes from both age groups of lean and obese rats. The results suggest that with aging of the obese female Zucker rat some step of hepatic fatty acid synthesis becomes progressively less sensitive to inhibition by glucagon and dibutyryl cyclic AMP. This may play an important role in maintenance of obesity in these animals. 相似文献
4.
Isolated rat hepatocytes, previously shown to display enhanced rates of fatty acid biosynthesis upon a brief exposure to insulin, were used to study acute effects of this hormone on other aspects of hepatic fatty acid metabolism. Insulin activates the incorporation of exogenously added fatty acids into glycerolipids and depresses their utilization in the formation of ketone bodies. Insulin increases both the activity of acetyl-CoA carboxylase and the cellular content of malonyl-CoA. Evidence is presented that malonyl-CoA plays an important role in the insulin-mediated control of both ketogenesis and de novo fatty acid synthesis. All metabolic parameters studied are affected by glucagon in a manner opposite to that of insulin. 相似文献
5.
Regulation of fatty acid synthesis in isolated hepatocytes prepared from the livers of neonatal chicks 总被引:7,自引:0,他引:7
A G Goodridge 《The Journal of biological chemistry》1973,248(6):1924-1931
6.
The effects of alkylthioacetic acids (3-thia fatty acids) on fatty acid metabolism in isolated hepatocytes 总被引:1,自引:0,他引:1
Long-chain alkylthioacetic acids (3-thia fatty acids) inhibit fatty acid synthesis from [1-14C]acetate in isolated hepatocytes, while fatty acid oxidation is nearly unaffected or even stimulated. Desaturation of [1-14C]stearate (delta 9-desaturase) is also unaffected. [1-14C]Dodecylthioacetic acid (a 3-thia fatty acid) is incorporated in triacylglycerol and in phospholipids more efficiently than [1-14C]palmitate in isolated hepatocytes. The metabolism of [1-14C]dodecylthioacetic acid to acid-soluble products (by omega-oxidation) is slow compared to the oxidation of [1-14C]palmitate. In hepatocytes from adapted rats (rats fed tetradecylthioacetic acid for 4 days) the rate of [1-14C]palmitate oxidation is increased and its rate of esterification is decreased. Stearate desaturation is also decreased. The rate of cyanide-insensitive peroxisomal fatty acid beta-oxidation is several-fold increased. The metabolic effects of long-chain 3-thia fatty acids are discussed and it is concluded that they behave essentially like normal fatty acids except for their slow breakdown due to the sulfur atom in the 3 position, which blocks normal beta-oxidation. 相似文献
7.
Using a dual radioactive labelling technique, the large 2,4-D induced increase in invertase activity in root tissue of chicory (Cichorium intybus) could not be attributed to de novo protein synthesis. The highly active enzyme could have arisen by modification of an inactive enzyme precursor. 相似文献
8.
The effects of lactate and acetate on fatty acid and cholesterol biosynthesis by isolated rat hepatocytes 总被引:1,自引:0,他引:1
A C Beynen K F Buechler A J Van der Molen M J Geelen 《The International journal of biochemistry》1982,14(3):165-169
1. The present study demonstrates that lactate and acetate stimulate fatty acid synthesis and inhibit cholesterogenesis by isolated rat hepatocytes. 2. Exposure of the intact cells to lactate increases the activity of acetyl-CoA carboxylase, as can be measured in homogenates of these cells. A similar effect by acetate was not observed. 3. Both acetate and lactate drastically increase the cellular level of citrate. 4. Possible mechanisms underlying the difference in response of fatty acid and cholesterol synthesis to an increase in substrate availability are discussed. Futhermore, a mechanism is proposed for the lactate effect on acetyl-CoA carboxylase. 相似文献
9.
The effects of bioregulators upon amino acid transport and protein synthesis in isolated rat hepatocytes 总被引:2,自引:0,他引:2
Isolated rat hepatocytes prepared by an enzyme perfusion technique possess a functional amino acid transport system and retain the capacity to synthesize protein. Amino acid transport was studied using the non-metabolizable amino acid analog alpha-aminoisobutyric acid. The transport process was time, temperature and concentration dependent. Similarly, leucine incorporation into protein was time and temperature dependent being optimal at 3m degrees C. Amino acid, fetal calf serum, growth hormone and glucose all produced small, reproducible increases in protein synthesis rates. Bovine serum albumin diminished the uptake of alpha-aminoisobutyric acid and leucine incorporation into protein. The amino acid content on either side of the cell membrane was found to affect transport into or out of the cellular compartment (transconcentration effects). High cell concentrations decreased transport and protein synthesis as a result of isotopic dilution of labelled amino acids with those released by the hepatocytes. This was consistent with the capacity of naturally occurring amino aicds to compete with alpha-aminoisobutyric acid for uptake into the hepatocyte. In order to define more precisely the effects of bioregulators on transport and protein synthesis it will be necessary to define and subfractionate cellular compartments and proteins which are the specific targets of cellular regulation. 相似文献
10.
11.
Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofibrate-treated rats. 总被引:20,自引:0,他引:20
G P Mannaerts L J Debeer J Thomas P J De Schepper 《The Journal of biological chemistry》1979,254(11):4585-4595
Mitochondrial and peroxisomal fatty acid oxidation were compared in whole liver homogenates. Oxidation of 0.2 mM palmitoyl-CoA or oleate by mitochondria increased rapidly with increasing molar substrate:albumin ratios and became saturated at ratios below 3, while peroxisomal oxidation increased more slowly and continued to rise to reach maximal activity in the absence of albumin. Under the latter condition mitochondrial oxidation was severely depressed. In homogenates from normal liver peroxisomal oxidation was lower than mitochondrial oxidation at all ratios tested except when albumin was absent. In contrast with mitochondrial oxidation, peroxisomal oxidation did not produce ketones, was cyanide-insensitive, was not dependent on carnitine, and was not inhibited by (+)-octanoylcarnitine, malonyl-CoA and 4-pentenoate. Mitochondrial oxidation was inhibited by CoASH concentrations that were optimal for peroxisomal oxidation. In the presence of albumin, peroxisomal oxidation was stimulated by Triton X-100 but unaffected by freeze-thawing; both treatments suppressed mitochondrial oxidation. Clofibrate treatment increased mitochondrial and peroxisomal oxidation 2- and 6- to 8-fold, respectively. Peroxisomal oxidation remained unchanged in starvation and diabetes. Fatty acid oxidation was severely depressed by cyanide and (+)-octanoylcarnitine in hepatocytes from normal rats. Hepatocytes from clofibrate-treated rats, which displayed a 3- to 4-fold increase in fatty acid oxidation, were less inhibited by (+)-octanoylcarnitine. Hydrogen peroxide production was severalfold higher in hepatocytes from treated animals oxidizing fatty acids than in control hepatocytes. Assuming that all H2O2 produced during fatty acid oxidation was due to peroxisomal oxidation, it was calculated that the contribution of the peroxisomes to fatty acid oxidation was less than 10% both in cells from control and clofibrate-treated animals. 相似文献
12.
The regulation of fatty acid synthesis, measured by 3H2O incorporation into fatty acids, was studied in hepatocytes from rats meal-fed a high carbohydrate diet. Ca2+ increased fatty acid synthesis, which became maximal at physiological concentrations of Ca2+. Ethanol markedly inhibited fatty acid synthesis. Maximum inhibition was reached at 4 mm ethanol. However, ethanol did not decrease lipogenesis in the presence of pyruvate. dl-3-Hydroxybutyrate increased fatty acid synthesis. Acetoacetate decreased lipogenesis when used alone and reversed the effect of dl-3-hydroxybutyrate when both were added. dl-3-Hydroxybutyrate moderately decreased flux through the pyruvate dehydrogenase system and markedly inhibited citric acid cycle flux. By measurement of glycolytic intermediates, two ethanol-induced crossover points were observed: one between fructose 6-phosphate and fructose 1,6-diphosphate and the other between glyceraldehyde 3-phosphate and 1,3-diphosphoglycerate. The concentrations of pyruvate and citrate were decreased by ethanol and increased by dl-3-hydroxybutyrate. Aminooxyacetate and l-cycloserine inhibited fatty acid synthesis and these effects were overcome by dl-3-hydroxybutyrate. Results indicate that in hepatocytes in a metabolic state favoring a high rate of lipogenesis, production of reducing equivalents in the cytosol via ethanol metabolism inhibits fatty acid synthesis from glucose by inhibition of both phosphofructokinase and glyceraldehyde 3-phosphate dehydrogenase and by promoting reduction of pyruvate to lactate. Production of reducing equivalents in the mitochondria via dl-3-hydroxybutyrate enhances fatty acid synthesis in liver cells by altering the partition of citrate between oxidation in the citric acid cycle and conversion to fatty acids in favor of the latter pathway. These interactions indicate the importance of the intracellular pyridine nucleotide redox states in the rate control of hepatic fatty acid synthesis. 相似文献
13.
No synergism between ionomycin and phorbol ester in fatty acid synthesis by isolated rat hepatocytes
W J Vaartjes C Bijleveld M J Geelen S G van den Bergh 《Biochemical and biophysical research communications》1986,139(2):403-409
With hepatocytes in suspension, freshly isolated from meal-fed rats, no significant effect of ionomycin on the rate of de novo fatty acid synthesis was observed, whereas phorbol myristate acetate (PMA) was strongly stimulatory. The combination of ionomycin and PMA produced the same stimulation as was seen with PMA alone. Stimulation of fatty acid synthesis by vasopressin was comparable and not additive to that observed with PMA, indicating that activation of protein kinase C is solely responsible for this metabolic effect of vasopressin. Both vasopressin and PMA increased acetyl-CoA carboxylase activity in isolated rat hepatocytes. 相似文献
14.
Hepatocytes from T3-treated rats synthesized less triglyceride and more ketone bodies from [1-14C]oleate at all concentrations from 0-2 mM, than did hepatocytes from euthyroid animals; addition of 1.0 mM glycerol increased triglyceride synthesis and reduced ketogenesis in hepatocytes from T3-treated rats to the rates observed in euthyroid hepatocytes in the absence of added glycerol. Glycerol did not alter triglyceride synthesis, but reduced ketogenesis genesis by euthyroid hepatocytes. It is probable from these and other data (J. Biol. Chem. 259, 8857-8862 (1985)) that, in the hyperthyroid rat, glycero-3-P, and not fatty acid, is rate limiting for synthesis of triglyceride, and, secondarily for reducing rates of ketogenesis in the hepatocyte. 相似文献
15.
The effects of ovarian hormones on glucose and fatty acid oxidation during exercise in female ovariectomized rats 总被引:3,自引:0,他引:3
The effects of ovarian hormones on glucose and fatty acid oxidation during exercise were investigated in adult female ovariectomized rats. Rats subdivided into 3 groups received intraperitoneal injections of hormones or sesame oil for 8 days. Estrogen (E) treated rats received 17-beta estradiol in daily doses of 2 micrograms. Estrogen and progesterone treated rats (EP) received 17-beta estradiol in daily doses of 2 micrograms and 2 mg, respectively. Control rats (S) received sesame oil alone. After an overnight fast, rats ran at the speed of 25 m.min-1 for 60 min. [U-14C]glucose or [1-14C]palmitate was injected into rats at 5 min of exercise and before 10 min of exercise, respectively. Expired 14CO2 was collected using bottomless chamber on a treadmill belt. No significant differences were found in mean blood glucose, lactate and plasma free fatty acid concentrations after the exercise. Until the end of the exercise 34.7 +/- 2.6 (E, n = 5), 40.8 +/- 2.9 (EP, n = 5) and 43.7 +/- 3.5% (S, n = 6) (mean +/- SE) of 14C which was injected as 14C-glucose was recovered as 14CO2. During 60 min of the exercise 27.5 +/- 1.0 (E, n = 7), 19.8 +/- 2.7 (EP, n = 6) and 25.0 +/- 1.9% (S, n = 6) of 14C which was injected as 14C-palmitate was recovered as 14CO2. A significant difference was found in this rate between E and EP (P less than 0.05). It was concluded that estrogen treatment stimulated fatty acid oxidation compared with the estrogen plus progesterone treatment and tended to inhibit glucose oxidation during prolonged exercise. 相似文献
16.
17.
Maria Y.C. Wu-Rideout Charles Elson Earl Shrago 《Biochemical and biophysical research communications》1976,71(3):809-816
In isolated rat hepatocytes flavaspidic acid, a competitor with free fatty acids for the fatty-acid-binding-protein, decreased the uptake of oleic acid and triglyceride synthesis but stimulated the formation of CO2 and ketone bodies from oleic acid. Flavaspidic acid had no effect on the utilization of octanoic acid. Stimulation of the microsomal fatty-acid-activating enzyme by the fatty-acid-binding protein was reversed by flavaspidic acid. In contrast, the binding protein inhibited the mitochondrial fatty-acid-activating enzyme. Flavaspidic acid not only prevented this inhibition but actually stimulated the enzyme activity. The results indicate that the cytosol fatty-acid-binding protein directs the metabolism of long chain fatty acids toward esterification as well as enhancing their cellular uptake. 相似文献
18.
Livers from normal, fed male and female rats were perfused with different amounts of [1-14C]oleate under steady state conditions, and the rates of uptake and utilization of free fatty acid (FFA) were measured. The uptake of FFA by livers from either male or female rats was proportional to the concentration of FFA in the medium. The rate of uptake of FFA, per g of liver, by livers from female rats exceeded that of the males for the same amount of FFA infused. The incorporation by the liver of exogenous oleic acid into triglyceride, phospholipid, and oxidation products was proportional to the uptake of FFA. Livers from female rats incorporated more oleate into triglyceride (TG) and less into phospholipid (PL) and oxidation products than did livers from male animals. Livers from female rats secreted more TG than did livers from male animals when infused with equal quantities of oleate. The incorporation of endogenous fatty acid into TG of the perfusate was inhibite) by exogenous oleate. At low concentrations of perfusate FFA, however, endogenous fatty acids contributed substantially to the increased output of TG by livers from female animals. Production of 14CO2 and radioactive ketone bodies increased with increasing uptake of FFA. The partition of oleate between oxidative pathways (CO2 production and ketogenesis) was modified by the availability of the fatty acid substrate with livers from either sex. The percent incorporation of radioactivity into CO2 reached a maximum, whereas incorporation into ketone bodies continued to increase. The output of ketone bodies was dependent on the uptake of FFA, and output by livers from female animals was less than by livers from male rats. The increase in rate of ketogenesis was dependent on the influx of exogenous FFA, while ketogenesis from endogenous sources remained relatively stable. The output of glucose by the liver increased with the uptake of FFA, but no difference due to sex was observed. The output of urea by livers from male rats was unaffected by oleate, while the output of urea by livers from females decreased as the uptake of FFA increased. A major conclusion to be derived from this work is that oleate is not metabolized identically by livers from the two sexes, but rather, per gram of liver, livers from female rats take up and esterify more fatty acid to TG and oxidize less than do livers from male animals; livers from female animals synthesize and secrete more triglyceride than do livers from male animals when provided with equal quantities of free fatty acid. 相似文献
19.
Differential short-term effects of growth factors on fatty acid synthesis in isolated rat-liver cells 总被引:1,自引:0,他引:1
W J Vaartjes C G de Haas S G van den Bergh 《Biochemical and biophysical research communications》1985,131(1):449-455
Hepatocytes in suspension, freshly isolated from meal-fed rats, were used to study the acute influence of growth factors on the rate of de novo fatty acid synthesis. Nerve growth factor (2.5 S) and epidermal growth factor caused a substantial increase in the rate of fatty acid synthesis, whereas fibroblast growth factor was inhibitory. Little effect was observed with nerve growth factor (7 S), bombesin or substance P. Transferrin did not affect hepatic fatty acid synthesis. The results are discussed in relation to the effects of insulin and tumor-promoting phorbol esters. 相似文献
20.
Control of glycogen metabolism by gluconeogenic and ketogenic substrates in isolated hepatocytes from fed rats. 总被引:1,自引:0,他引:1
1. This study was conducted to examine the effects of gluconeogenic and ketogenic substrates on the activities of the glycogen-metabolizing enzymes and on glycogenolysis in isolated hepatocytes from fed rats. 2. Gluconeogenic substrates like fructose, dihydroxyacetone or lactate turned out to stimulate the glucose-induced activation of glycogen synthase and this effect may be linked, to some extent, to the increase of the cellular glucose 6-phosphate concentration. 3. The effect of fructose was accompanied by the onset of glycogen synthesis. 4. Energetic substrates like fatty acids were also potent activators of glycogen synthase, especially in the presence of glucose. 5. When fatty acids were added alone or together with a physiological concentration of glucose, they induced or potentiated the inhibition of glycogen phosphorylase-a. 6. This inhibitory effect was mediated by a decrease of lactate release. 7. The stimulatory effect of amino acids on glycogen synthase seemed to be direct, non mediated by an inhibition of the phosphorylase-a activity although hepatic glycogenolysis markedly decreased. 8. Moreover, the amino acid action could be linked to their capacities to induce cell swelling and/or to limit proteolysis. 相似文献