首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Superoxide dismutases in photosynthetic organisms at different evolutionary levels were characterized using the criterion that the Cu,Zn-enzyme is sensitive to cyanide while the Mn- and Fe-enzymes are insensitive. The effect of the antibody against spinach Cu,Zn-superoxide dismutase was also tested as a means of distinguishing the several forms of the enzyme. Superoxide dismutase activity in extracts from photosynthetic bacteria, prokaryotic algae (blue-green algae), and eukaryotic algae (red, green, and brown algae, diatoms, Euglena, and Charophyta) were insensitive to cyanide and to the antibody, suggesting the presence of the Fe- and/or Mn-enzymes and the absence of the Cu,Zn-enzyme. In contrast, ferns, mosses, and seed plants including gymnosperms and angiosperms contained the Cu,Zn-superoxide dismutase in addition to the cyanidein-sensitive enzyme in soluble or bound form. Although an aerial green alga lacks the Cu,Zn-superoxide dismutase, aquatic angiosperms and ferns, like other land plants, contain this form of superoxide dismutase. Thus the distribution of the Cu,Zn-superoxide dismutase does not reflect the habitat but, rather, the phylogeny of the organism. The relation between the oxygen concentration in the atmosphere and the appearance of various forms of superoxide dismutase during the evolution of photosynthetic organisms is discussed.  相似文献   

2.
Hog intestinal peroxidase and bovine lactoperoxidase exhibited similar spectral shifts upon pH alteration. From spectrophotometric titrations, it was found that there are hemelinked ionizations of pKa = 4.75 in intestinal peroxidase and pKa = 3.5 in lactoperoxidase. The apparent pKa (pKa′) increased with the increase in chloride concentration. The pKa′ vs log[Cl?] plots showed that the chloride forms complex with the acid forms of these enzymes with a dissociation constant (pK = 2.7). Although the dissociation constant (Kd) of the peroxidase-cyanide complexes is nearly independent of pH, cyanide competed with chloride in the acidic pH region. The slopes of logKd vs log[Cl?] were 1.0 for intestinal peroxidase and 0.5 for lactoperoxidase. The reaction of hydrogen peroxide with these peroxidases was also affected by chloride, similarly as the reaction with cyanide was. The results were explained by assuming that protonation occurs at the distal base and destroys the hydrogen bond between the base and a water molecule at the sixth coordinate position of the heme iron.  相似文献   

3.
Colchicine was found to be taken up by adipose tissue and therein to bind to a soluble macromolecule not sedimented by centrifugation for 2 h at 100 000 × g. A similar binding occurred when soluble extracts of adipose tissue were incubated with colchicine. The binding reaction is temperature dependent and shows a pH optimum between 6.8 and 7.0. Double reciprocal plots of colchicine concentration versus amounts of colchicine bound to protein in the steady state disclosed an apparent Km of 0.250 to 1.5 ωM. The colchicine binding activity of soluble tissue extracts decreased when the extracts were incubated at 37°C. Addition of guanosine triphosphate and Mg2+ retarded the loss of colchicine binding activity. The molecular weight of the colchicine complex was estimated to be 115 000 and its sedimentation coefficient 5.8 S. All of these characteristics are remarkably similar to those of the protein tubulin which has been isolated from other tissues. Since it is now well known that tubulin is a protein subunit of cytoplasmic microtubules, it is suggested that the previously reported metabolic effects of colchicine on adipose tissue result from the dissolution of microtubules by colchicine.  相似文献   

4.
Formation constants of ternary complexes MAL, where M = Cu(II) or Ni(II). A = 2.2′bipyridyl. 1, 10-phenanthroline, and L = 3.4-dihydroxyphenylalanine (dopa), tyrosine, or phenylalanine have been determined by using the computer program SCOGS. It is observed that dopa coordinates with Cu(II)-A and Ni(II)-A through the aminocarboxylate and only over the pH range 3–8, though the ligand coordinates with free Cu(II) ion from the amino carboxylate end in the lower pH range (pH 2–4) and from the catechol end at the higher pH range (pH > 5). The visible spectrum of Cu-A-dopa is similar to that of Cu-A-phenylalanine or Cu-A-tyrosine over the entire pH range, confirming amino carboxylate coordination. Δ log K (KMAL - logKML) is found to be positive in all the six Cu(II) complexes. whereas it is negative in Ni(II) complexes. Release in the ternary complexes of the repulsion between the Cu(II) dπ electron and electrons delocalized over the phenyl ring has been proposed as a probable reason for the positive Δ log K.  相似文献   

5.
RNase activity from Chlorella was partially purified. Two RNase activities were demonstrated, one soluble and the other ribosomal. The effects on ribonuclease activity of variations in pH and temperature, and of Mg2+, Na+, and mononucleotides were examined. The RNase activities (phosphodiesterases EC 3.1.4.23) were both endonucleolytic, releasing oligonucleotides, and cyclic nucleotide intermediates, but exhibited different specificities in releasing mononucleotides from RNA. The ribosomal activity released 3′-GMP, and after prolonged incubation 3′-UMP, but the soluble activity released 3′-GMP, 3′-AMP and 3′-UMP. Neither ofthe RNase preparations hydrolysed DNA, nor released 5′-nucleotides from RNA. Increased ribosomal RNase activity was related to dissociation of ribosomes, and latency of ribosomal RNase activity was demonstrated. The possible in vivo distribution of RNases is discussed.  相似文献   

6.
The pH profile of the rate of isomerization of 4,2′,4′-trihydroxychalcone catalyzed by chalcone isomerase shows dependence on the basic form of a group with a pK of 7.25. The same pH dependence is seen for the reverse reaction. Enzyme activity is lost in the presence of diethylpyrocarbonate at pH 6.0. In the presence of 20% formamide in imidazole buffers, the pK for the forward reaction is modified by a second pK of 7.1. This behavior represents a perturbed pK of a neutral acid group and is attributable to the 2′ hydroxyl of the chalcone substrate. These results suggest a mechanism of enzyme action involving nucleophilic addition of an imidazole group in the active site to the double bond followed by nucleophilic attack by the 2′ phenolate group, resulting in ring closure with inversion of configuration at C-2.  相似文献   

7.
5′-Nucleotidase (EC 3.1.3.5) was solubilized from rod membranes with Ammonyx LO and purified by chromatographic methods. A highly sensitive radioassay was developed. The purified enzyme behaved as a homogeneous protein of 75,000 daltons in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and as a protein of 79,000 in gel filtration. Thus, the enzyme does not contain subunits. The Km values obtained were 1.3 μm for 5′-AMP and 2.3 μm for 5′-GMP. The enzyme was inhibited by concanavalin A, wheat germ agglutinin, and Ricinus communis agglutinin. Rabbit muscle G-actin formed a complex with the enzyme and inhibited its activity. The catalytic site of the enzyme was localized on the internal surface of the disk which, in terms of membrane sidedness, corresponds to the cell surface. A soluble 5′-nucleotidase was extracted from rod membranes with Tris buffer (pH 8.0) containing EGTA in the dark; less enzyme was extracted if the membranes had been exposed to light or incubated with Ca2+. The extracted enzyme was partially purified. The enzyme was unstable and lost 50% of its activity in 3 days at 3 °C. The Km values were 1.3 μm for 5′-AMP and 2.3 μm for 5′-GMP. The enzyme was inhibited by G-actin. A role for the soluble enzyme in the regulation of 5′-GMP in the rod outer segment was suggested.  相似文献   

8.
Carbonyl cyanide phenylhydrazone and its ring-substituted analogs react with thiols (thioglycolic acid, 2-mercaptoethanol, dithiothreitol) and amino-thiols (cysteine, glutathione) to give corresponding N-(substituted phynyl)-N′-(alkythiodicyano)-methylhydrazine derivatives. These addition products decompose to the original components in alkaline solution. On the other hand, in the presence of an excess of thiols in aqueous buffered systems the addition reactions are practically quantitative with respect to phenylhydrazones, follow pseudo-first-order kinetics and can be investigated spectrophotometrically. These reactions are of the bimolecular AdN type where the non-dissociated form of carbonyl cyanide phenylhydrazones function as an electrophilic component, while the RS? ion plays the role of nucleophilic component in the case of thiols (the attack of the azomethine group).The reactivity of carbonyl cyanide phenylhydrazones with respect to thiols increases in the order carbonyl cyanide phenylhydrazone < carbonyl cyanide m-chlorophenylhydrazone < carbonyl cyanide p-trifluoromethoxyphenylhydrazone which corresponds to the order of decreasing values of the pKa constants. On the other hand, the reactivity of thiols increases with their basicity.The reactivity of carbonyl cyanide phynylhydrazone with thiols is comparable with the reactivity of phynyl isothiocyanate and N-ethylmaleimide. It was demostrated that carbonyl cyanide phenylhydrazone is an efficient inhibitor of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12).The results obtained are discussed in relation to the biological activity of carbonyl cyanide phenylhydrazones.  相似文献   

9.
Two enzymes containing thiosulfate sulfur transferase activity were purified fromChlorobium vibrioforme f.thiosulfatophilum by ion exchange chromatography, gel filtration and isoelectrofocusing. Enzyme I is a basic protein with an isoelectric point at pH 9.2 and has a molecular weight of 39,000. TheK m-values for thiosulfate and cyanide of the purified basic protein were 0.25 mM (thiosulfate) and 5 mM (cyanide). Enzyme II is an acidic protein. The enzyme has an isoelectric point at pH 4.6–4.7 and a molecular weight of 34,000. TheK m-values of the acidic protein were found to be 5 mM for thiosulfate and 125 mM for cyanide.In addition to thiosulfate sulfur transferase activity, cellfree extracts ofChlorobium vibrioforme f.thiosulfatophilum also contained low thiosulfate oxidase activity and negligible thiosulfate reductase activity. The percent distribution of thiosulfate sulfur transferase and thiosulfate oxidase activities in the organism was independent of the offered sulfur compound (thiosulfate, sulfide or both) in the medium.Abbreviations C Chlorobium - SDS sodium dodecylsulfate Dedicated to Prof. Dr. Norbert Pfennig on the occasion of his 60th birthday  相似文献   

10.
The specific activity of rat poly(adenosine diphosphate ribose) glycohydrolase was higher in the testis than in the liver, brain, spleen or kidney. The enzyme was found primarily in the soluble fraction of the testis. When the soluble enzyme was chromatographed on phosphocellulose, the activity eluted in two peaks, at 0.22 and 0.34 m KCl, respectively, referred to in the present study as enzyme A and B. Enzyme A has an optimal pH of 7.25 and was stimulated by 150 mm KCl. The optimal pH of enyzme B was 6.5, but it was not stimulated by KCl. For maximal activity both enzymes required 10 mm 2-mercaptoethanol, and they were strongly inhibited by 100 μmp-chloromercuribenzoate. The Km values of enzyme A and B for poly(adenosine diphosphate ribose) were 1.52 and 0.70 μm, respectively. Ribose 5′-phosphate, guanosine 3′,5′-monophosphate, adenosine 3′,5′-monophosphate and adenosine diphosphate ribose inhibited both enzymes. The two latter nucleotides behave as noncompetitive inhibitors. Denatured DNA and the homopolypurines poly(G), poly(I) and poly(A) were very potent inhibitors of both glycohydrolases. The mode of hydrolysis of poly(adenosine diphosphate ribose) by glycohydrolases A and B was exoglycosidic, yielding adenosine diphosphate ribose as the final product.  相似文献   

11.
1. Glucosyltransferase activity is present in hepatopancreas of Homarus americanus. The enzyme appears to have a specific requirement for UDP-glucose, and ADP-, CDP- or GDP-glucose do not substitute for it. The activity is mainly microsomal, exhibits a pH optimum at 7.9–8.1, and its apparent Km values are 2 mM and 0.3 mM for UDP-glucose and p-nitrophenol respectively. Microsomal glucosyltransferase activity increases with increasing temperature up to 45°.2. Hepatopancreas possesses a very active sulfotransferase which utilizes 3′-phosphoadenosine-5′-phosphosulfate for sulfoconjugation of p-nitrophenol. The activity is associated chiefly with the soluble fraction and amounts to about 16 nmoles/mg protein/30 min.3. No detectable glucuronidation of p-nitrophenol occurred when preparations of hepatopancreas fortified with UDP-glucuronic acid were incubated with p-nitrophenol.  相似文献   

12.
Biochemical properties of nucleotide pyrophosphatase/phosphodiesterase (NPP) in rat serum have been described by assessing its nucleotide phosphodiesterase activity, using p-nitrophenyl-5′-thymidine monophosphate (p-Nph-5′-TMP) as a substrate. It was demonstrated that NPP activity shares some typical characteristics described for other soluble NPP, such as divalent cation dependence, strong alkaline pH optimum (pH 10.5), inhibition by glycosaminoglycans, and K m for p-Nph-5′-TMP hydrolysis of 61.8 ± 5.2 μM. In order to characterize the relation between phosphodiesterase and pyrophosphatase activities of NPP, we have analyzed the effects of different natural nucleotides and nucleotide analogs. ATP, ADP, and AMP competitively inhibited p-Nph-5′-TMP hydrolysis with K i values ranging 13–43 μM. Nucleotide analogs, α,β-metATP, BzATP, 2-MeSATP, and dialATP behaved as competitive inhibitors, whereas α,β-metADP induced mixed inhibition, with K i ranging from 2 to 20 μM. Chromatographic analysis revealed that α,β-metATP, BzATP, and 2-MeSATP were catalytically degraded in the serum, whereas dialATP and α,β-metADP resisted hydrolysis, implying that the former act as substrates and the latter as true competitive inhibitors of serum NPP activity. Since NPP activity is involved in generation, breakdown, and recycling of extracellular adenine nucleotides in the vascular compartment, the results suggest that both hydrolyzable and non-hydrolyzable nucleotide analogs could alter the amplitude and direction of ATP actions and could have potential therapeutic application.  相似文献   

13.
14.
Comparative studies have been carried out on soluble and immobilized yeast hexokinase (ATP: D-hexose 6-phosphotransferase, EC 2.7.1.1). The enzyme was immobilized by covalent attachment to a polyacrylamide type support containing carboxylic functional groups. The effects of immobilization on the catalytic properties and stability of hexokinase were studied. As a result of immobilization, the pH optimum for catalytic activity was shifted in the alkaline direction to ~pH 9.7. The apparent optimum temperature of the immobilized enzyme was higher than that of the soluble enzyme. The apparent Km value with D-glucose as substrate increased, while that with ATP as substrate decreased, compared with the data for the soluble enzyme. Differences were found in the thermal inactivation processes and stabilities of the soluble and immobilized enzymes. The resistance to urea of the soluble enzyme was higher at alkaline pH values, while that for the immobilized enzyme was greatest at ~pH 6.0.  相似文献   

15.
Particulate cell fractions of mycelium of Mucor rouxii contain adenylate cyclase activity which can be partially solubilized by 2% Lubrol PX. The enzyme requires Mn2+ and its activity is not modified by NaF or guanosine nucleotides. Mycelial extracts also contain cyclic adenosine 3′:5′-monophosphate phosphodiesterase activity, 60% of which is soluble. This activity shows characteristic low Km (1 μm) for cyclic AMP and does not hydrolyze cyclic guanosine 3′:5′-monophosphate. It requires Mn2+ ions for maximal activity and is not inhibited by methylxanthines or activated by imidazole. Both enzymatic activities vary during the aerobic life cycle of the fungus. The spores have the highest levels of adenylate cyclase and cAMP phosphodiesterase, which decrease during the aerobic development. At the round cell stage, phosphodiesterase activity reaches 40% of the activity of the spores and varies only slightly thereafter. At this stage the specific activity of adenylate cyclase is 25% of the activity of ungerminated spores, and from this stage on, the activity increases up to the end of the logarithmic phase. Intracellular levels of cyclic AMP have been measured during aerobic germination. The variations of the intracellular level are tentatively explained by unequal variations in the activities of adenylate cyclase and cyclic AMP phosphodiesterase. A continuous increase of the extracellular cyclic AMP level during aerobic development has also been found, which cannot be accounted for solely by variations in the cyclase and diesterase activities.  相似文献   

16.
A two-step purification protocol was used in an attempt to separate the constitutive NAD(P)H-nitrate reductase [NAD(P)H-NR, pH 6.5; EC 1.6.6.2] activity from the nitric oxide and nitrogen dioxide (NO(x)) evolution activity extracted from soybean (Glycine max [L.] Merr.) leaflets. Both of these activities were eluted with NADPH from Blue Sepharose columns loaded with extracts from either wild-type or LNR-5 and LNR-6 (lack constitutive NADH-NR [pH 6.5]) mutant soybean plants regardless of nutrient growth conditions. Fast protein liquid chromatography-anion exchange (Mono Q column) chromatography following Blue Sepharose affinity chromatography was also unable to separate the two activities. These data provide strong evidence that the constitutive NAD(P)H-NR (pH 6.5) in soybean is the enzyme responsible for NO(x) formation. The Blue Sepharose-purified soybean enzyme has a pH optimum of 6.75, an apparent Km for nitrite of 0.49 millimolar, and an apparent Km for NADPH and NADH of 7.2 and 7.4 micromolar, respectively, for the NO(x) evolution activity. In addition to NAD(P)H, reduced flavin mononucleotide (FMNH2) and reduced methyl viologen (MV) can serve as electron donors for NO(x) evolution activity. The NADPH-, FMNH2-, and reduced MV-NO(x) evolution activities were all inhibited by cyanide. The NADPH activity was also inhibited by p-hydroxymer-curibenzoate, whereas, the FMNH2 and MV activities were relatively insensitive to inhibition. These data indicate that the terminal molybdenum-containing portion of the enzyme is involved in the reduction of nitrite to NO(x). NADPH eluted both NR and NO(x) evolution activities from Blue Sepharose columns loaded with extracts of either nitrate- or zero N-grown winged bean (Psophocarpus tetragonolobus [L.]), whereas NADH did not elute either type of activity. Winged bean appears to contain only one type of NR enzyme that is similar to the constitutive NAD(P)H-NR (pH 6.5) enzyme of soybean.  相似文献   

17.
The effects of various quantities of Ba, Be, Ca, Cd, Co, Cu, Mg, Mn, Sr, Zn and EDTA on the formation of 5α-reduced metabolites of testosterone (T) substrate and of 3α-/3β -reduced metabolites of 5α-dihydrotestosterone substrates by homogenates of 6 human hyperplastic prostate glands were studied in incubations at pH 7.4 with NADPH-generating system. Effects of these cations and EDTA on the VM and KM of the 5α-reductase and 3α-/3β-hydroxysteroid dehydrogenases (-HSD) were also measured. Quantities of 5α-reduced T metabolites were significantly increased by Cd, Cu and Zn supplementations. These increments were shown to result from significant augmentations of the VM but no change in KM of the NADPH-dependent 5α -reductase. Quantities of 3α -reduced DHT metabolites were significantly decreased by Cd and Cu supplementations and resulted from an increase of the KM of the NADPH-dependent 3α-HSD by Cd and both an increase of KM and a decrease of VM by Cu. Quantities of β-reduced DHT metabolites were significantly decreased by Cd and Cu supplementations. Increase of the KM of the NADPH-dependent 3β-HSD by Cd was found significant while Cu both increased the Am and decreased the VM of the enzyme. EDTA-related changes in 5α-reductase activity were shown to result from the EDTA-induced decrease of the pH of the medium. No effect of EDTA was observed on the activities of both 3α/3β-HSD.  相似文献   

18.
S1 nuclease (EC 3.1.30.1) of Aspergillus oryzae was found to catalyze the hydrolysis of 2′- or 3′-phosphomonoester groups from several mono- and oligonucleotides. The specificity of the enzyme for mononucleotide substrates was determined by steady-state kinetic measurements at pH 4.5. The values of V were similar for all ribonucleoside 3′-phosphates tested, and they were 50–400 times greater than those for the corresponding deoxyribonucleotides or ribonucleoside 2′-phosphates. Purine nucleotides had lower apparent Km values than pyrimidine nucleotides. Apparent Km values of mononucleotides were also strongly dependent on the type of sugar and the positions of phosphoryl groups. Substrate specificity, as expressed by VKm, occurred in the following order: ribonucleoside 3′,5′-bisphosphate > ribonucleoside 3′-phosphate > deoxyribonucleoside 3′,5'-bisphosphate > deoxyribonucleoside 3′-phosphate ≈ ribonucleoside 2′-phosphate. S1 nuclease also catalyzed the dephosphorylation of the dinucleotide ApAp at a high rate and the release of PPi from adenosine 3′-diphosphate 5′-phosphate at a low rate. The phosphomonoesterase activity of the enzyme was competitively inhibited by single-stranded DNA and 5′-nucleotides. Apparent Ki values for adenosine compounds occurred in the order ATP < ADP < AMP ? adenosine. Tests of S1 nuclease for phosphotransferase activity at pH 4.5 and 7.0 were negative.  相似文献   

19.
Egg extracts (obtained by washing intact Limulus eggs with either distilled water or artificial seawater, ASW) contain a sperm motility initiating factor (SMI). The SMI is heat stable (withstands boiling to dryness), passes through a dialysis membrane, and is retained by G-10 Sephadex (indicating a molecular weight of less than 700). Qualitative analysis (by X-ray fluorescence spectroscopy) and quantitative analysis (by atomic absorption spectroscopy) of SMI extracts revealed the presence of four divalent cations (Ca, Mg, Ni, and Cu) and one monovalent cation (K) that affect sperm motility. When assayed individually at high concentrations, all of the divalent cations initiate sperm motility and K+ inhibits motility initiation by the divalent cations. However, none of the divalent cations are present at concentrations high enough to produce the observed SMI activity, and since K+ is present when motility is initiated by SMI, K+ must not normally be an inhibitor. Therefore, if inorganic cations are involved in normal sperm motility initiation in Limulus, they are acting in conjunction with some other low molecular weight factor.  相似文献   

20.
5′-Nucleotidase (EC 3. 1. 3. 5) from alkalophilic Bacillus no. C-3 was purified to homogeneity. The molecular weight of the enzyme was 80,000 by gel filtration. The optimum pH for the activity was 9.5, and the enzyme was stable at pH 9.5–10.5 in a buffer containing 10 mM 2-mercaptoethanol. Substrate specificity study revealed that the enzyme acted on 5′-AMP strongly, on several 5′-nucleotides and ADP to a certain extent, but not on 3′-nucleotides, 2′-nucleotides, p-nitrophenyl phosphate, or ATP. The Km value for 5′-AMP was 3.0 × 10−4 M. The enzyme required no divalent cation for its activity. The enzyme was inhibited by borate and arsenite ions but not by 1 mM EDTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号