首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies with soluble enzyme preparations from sage (Salvia officinalis) demonstrated that the monoterpene ketone (+)-camphor was synthesized by the cyclization of neryl pyrophosphate to (+)-bornyl pyrophosphate followed by hydrolysis of this unusual intermediate to (+)-borneol and then oxidation of the alcohol to camphor (R. Croteau, and F. Karp, 1977, Arch. Biochem. Biophys.184, 77–86). Preliminary investigation of the (+)-bornyl pyrophosphate synthetase in crude preparations indicated that both neryl pyrophosphate and geranyl pyrophosphate could be cyclized to (+)-bornyl pyrophosphate, but the presence of high levels of phosphatases in the extract prevented an accurate assessment of substrate specificity. The competing phosphatases were removed by combination of gel filtration on Sephadex G-150, chromatography on hydroxylapatite, and chromatography on O-(diethylaminoethyl)-cellulose. In these fractionation steps, activities for the cyclization of neryl pyrophosphate and geranyl pyrophosphate to bornyl pyrophosphate were coincident, and on the removal of competing phosphatases, the synthetase was shown to prefer geranyl pyrophosphate as substrate (VKm for geranyl pyrophosphate was 20-fold that of neryl pyrophosphate). No interconversion of geranyl and neryl pyrophosphates was detected. The partially purified bornyl pyrophosphate synthetase had an apparent molecular weight of 95,000, and required Mg2+ for catalytic activity (Km for Mg2+ ~ 3.5 mm). Mn2+ and other divalent cations were ineffective in promoting the formation of bornyl pyrophosphate. The enzyme exhibited a pH optimum at 6.2 and was strongly inhibited by both p-hydroxymercuribenzoate and diisopropylfluorophosphate. Bornyl pyrophosphate synthetase is the first monoterpene synthetase to be isolated free from competing phosphatases, and the first to show a strong preference for geranyl pyrophosphate as substrate. A mechanism for the cyclization of geranyl pyrophosphate to bornyl pyrophosphate is proposed.  相似文献   

2.
Soluble enzyme preparations from Salvia officinalis convert the acyclic precursor [1-3H2,G-14C]geranyl pyrophosphate to cyclic monoterpenes of the pinane (α-pinene,β-pinene), isocamphane (camphene), p-menthane (limonene,1,8-cineole), and bornane (bornyl pyrophosphate, determined as borneol) type without loss of tritium, and without significant conversion to other free acyclic intermediates. Similarly, [1-3H2,G-14C]geraniol is converted in intact S. officinalis leaves to the cyclic monoterpene olefins and 1,8-cineole, as well as to isothujone and camphor, without loss of tritium from C(1). These results clearly eliminate transcis isomerization of geranyl pyrophosphate to neryl pyrophosphate via aldehyde intermediates prior to cyclization, and they support a scheme whereby the trans precursor is cyclized directly by way of a bound linaloyl intermediate.  相似文献   

3.
A soluble enzyme preparation from the flavedo of Citrus limonum transforms [1-3H1]neryl pyrophosphate or [1-3H1]geranyl pyrophosphate into β-pinene, sabinene, α-pinene, and limonene. The enzyme has been partially purified and stabilized by precipitation with polyethyleneglycol. The enzymic cyclization requires the presence of Mn2+, which cannot be replaced with Mg2+. The addition of reagents containing sulfhydryl groups is essential for optimal activity. Allylic C10 monophosphates do not act as substrates, but they inhibit hydrocarbon formation. Inorganic pyrophosphate has a similar inhibitory effect. No interconversion of neryl and geranyl pyrophosphate has been observed. Possible pathways for the enzymic cyclization reactions are proposed.  相似文献   

4.
Previous studies with thyme (Thymus vulgaris L.) leaf slices indicated that γ-terpinene (1,4-p-menthadiene) is the precursor of the aromatic monoterpenes p-cymene (4-isopropyl toluene) and thymol (5-methyl-2-isopropyl phenol) (Poulose, A. and Croteau, R. (1978) Arch. Biochem. Biophys.187, 307–314). A 105,000g supernatant obtained from an extract of young thyme leaves catalyzed the cyclization of both [1-3H]neryl pyrophosphate and [1-3H]geranyl pyrophosphate to γ-[3-3H]terpinene. No evidence for the interconversion of the acyclic precursors was obtained, and isotopic dilution experiments suggested that γ-terpinene was synthesized directly from these acyclic precursors without the involvement of any free intermediates. Competing phosphatase activity in the soluble preparation was removed by ammonium sulfate fractionation followed by gel filtration on Sephadex G-150. In these fractionation steps, γ-terpinene synthetase activity co-purified with small amounts of α-thujene (1-isopropyl-4-methylbicyclo[3.1.0]-hex-3-ene) and α-terpineol (p-menth-1-en-8-ol) synthetase activities, and these three activities could not be resolved by subsequent hydroxylapatite chromatography, anion exchange chromatography on QAE-Sephadex, or affinity chromatography on neroic acid-substituted agarose. All the enzymatic products were identified by radio chromatography and by the synthesis of derivatives followed by radio chromatography or crystallization to constant specific activity. γ-Terpinene synthetase has an apparent molecular weight of 96,000, shows a pH optimum at about 6.8, and requires Mg2+ for catalytic activity. Mn2+ can partially substitute for Mg2+, but other divalent cations are ineffective. Estimated values of V and Km are 3.5 nmol/h/mg and 9 μm, respectively, for neryl pyrophosphate, and 3.0 nmol/h/mg and 14 μm, respectively, for geranyl pyrophosphate. Enzymic activity is inhibited by sulfhydryl-directed reagents and inorganic pyrophosphate, but not by γ-terpinene, p-cymene, or thymol. Based on the specific location of tritium in the product, a mechanism is proposed which involves the cyclization of the acyclic precursor, loss of a proton from C5 to form the Δ4 double bond, and a 1,2-hydride shift from C4 to C8 to give γ-terpinene. A similar mechanism, but with loss of the proton from C6 and the formation of a cyclopropane ring, would yield α-thujene.  相似文献   

5.
(+)-Pinene cyclase from sage (Salvia officinalis) catalyzes the isomerization and cyclization of geranyl pyrophosphate to (+)-alpha-pinene and (+)-camphene, and to lesser amounts of (+)-limonene, myrcene, and terpinolene, whereas (-)-pinene cyclase from this tissue catalyzes the conversion of the acyclic precursor to (-)-alpha-pinene, (-)-beta-pinene, and (-)-camphene, and to lesser quantities of (-)-limonene, myrcene, and terpinolene. The bicyclic products of these enzymes (pinene and camphene) are derived via the cyclization of the cisoid, anti-endo-conformers of the bound, tertiary allylic intermediates (3R)-linalyl pyrophosphate [+)-pinene cyclase) and (3S)-linalyl pyrophosphate [-)-pinene cyclase). When challenged with either enantiomer of linalyl pyrophosphate or with neryl pyrophosphate (cis-isomer of geranyl pyrophosphate) as substrate, both pinene cyclases synthesize disproportionately high levels of acyclic olefins (myrcene and ocimene) and monocyclic olefins (limonene and terpinolene), compared with the product mixtures generated from the natural geranyl precursor. Resolution of the limonene derived from linalyl pyrophosphate and neryl pyrophosphate demonstrated that this monocyclic olefin was formed via conformational foldings in addition to the cisoid,anti-endo-pattern. These results indicate that the alternate substrates are ionized by the cyclases prior to their achieving the optimum orientation for bicyclization. In the case of geranyl pyrophosphate, a preassociation mechanism is suggested in which optimum folding of the terpenyl chain precedes the initial ionization step.  相似文献   

6.
A partially purified enzyme (carbocyclase) from the flavedo of Citrus limonum formed α-pinene, β-pinene, limonene, and γ-terpinene from geranyl pyrophosphate (GPP) and neryl pyrophosphate. The maximum specific activities obtained were 7.0 and 3.6 nmol/ min/mg, respectively. Cross-inhibition by the two substrates were observed and the ability to utilize neryl pyrophosphate was almost completely lost with aging. Citronellyl pyrophosphate and dimethylallyl pyrophosphate were the most effective inhibitors of carbocyclase. Isopentenyl pyrophosphate, the monophosphate esters of nerol and geraniol, as well as inorganic pyrophosphate were much less effective inhibitors. The enzyme had an absolute requirement for Mn2+. It could be replaced with about 2% effectiveness by Mg2+ and Co2+. Kinetic studies showed that the observed reaction rate correlates with the calculated concentration of the GPP (Mn2+)2 species. Previous evidence with nonenzymatic reactions and the results presented support the view that the mechanism of carbocyclase may be the intramolecular analog of prenyltransferase.  相似文献   

7.
A partially purified enzyme preparation from the flavedo of Citrus limonum utilized [1-3H]linalyl pyrophosphate as a substrate for cyclic terpene hydrocarbon formation more efficiently than the pyrophosphates of nerol and geraniol. The products formed from all three substrates are α-pinene, β-pinene, limonene, and γ-terpinene. Neryl and geranyl pyrophosphate inhibit the formation of these products from linalyl pyrophosphate. No free linalyl pyrophosphate could be detected during the enzymatic formation of cyclic terpene hydrocarbons from geranyl pyrophosphate. Mn2+ catalyzes the nonenzymatic solvolysis of linalyl pyrophosphate, forming myrcene and ocymenes and no bicyclic hydrocarbons. Linalyl pyrophosphate is a sterically plausible precursor of cyclic hydrocarbons, but the present data support only its role as an alternative substrate and not as an obligatory free intermediate in terpene biosynthesis.  相似文献   

8.
The heterocyclic monoterpene 1,8-cineole is one of the major components of the volatile oil produced by sage (Salvia officinalis), and soluble enzyme extracts prepared from young sage leaves catalyzed the anaerobic conversion of the acyclic precursor neryl pyrophosphate to 1,8-cineole. This enzymatic activity was partially purified by a combination of ammonium sulfate precipitation and chromatography on hydroxylapatite, and the bulk of the competing activities, including phosphatases, were removed from the preparation. Cineole synthetase activity had a pH optimum at 6.1. The rate of 1,8-cineole formation was linear up to 1 h, and up to a protein concentration of 450 μg/ml. A divalent cation was required for catalysis, and maximum activity was obtained with MnCl2 (1 mm). ZnCl2 was nearly as effective as MnCl2, and MgCl2 could substitute for MnCl2 only at tenfold higher concentrations. The apparent Km and V of the enzyme were 10?5m and 5.6 nmol/h-mg-ml, respectively. Inhibition of activity was observed at neryl pyrophosphate concentrations above 2 × 10?4m. Nerol, neryl phosphate, 6,7-dihydroneryl pyrophosphate, citronellyl pyrophosphate, and 3,7-dimethyloctyl pyrophosphate were inactive as substrates for 1,8-cineole biosynthesis, indicating that the pyrophosphate and both double bonds of neryl pyrophosphate were required for catalysis. Geranyl pyrophosphate and linaloyl pyrophosphate were converted to 1,8-cineole at only 9 and 15%, respectively, of the rate of neryl pyrophosphate. Thus, the enzyme was highly specific for neryl pyrophosphate. α-Terpineol and its phosphorylated derivatives were not converted to 1,8-cineole, and this observation, coupled with the resolution of cineole synthetase activity from α-terpineol synthetase activity, proved conclusively that α-terpineol was not an intermediate in 1,8-cineole biosynthesis. p-Hydroxymercuribenzoate strongly inhibited the conversion of neryl pyrophosphate to 1,8-cineole (90% inhibition at 4 × 10?5m); however, other thiol-directed reagents such as N-ethylmaleimide were much less effective. The enzyme was insensitive to NaF and to several other metabolic inhibitors. This is the first report on the properties of cineole synthetase, a novel enzyme which catalyzes both a carbocyclization and a heterocyclization.  相似文献   

9.
A soluble enzyme preparation obtained from young sage (Salvia officinalis) leaves catalyzes the conversion of neryl pyrophosphate to (+)-borneol and the oxidation of (+)-borneol to (+)-camphor. Attempts to purify the borneol synthetase activity by gel permeation column chromatography resulted in the apparent loss of catalytic capability; however, subsequent recombination of column fractions demonstrated that two separable enzymatic activities were required for the conversion of neryl pyrophosphate to borneol. Several lines of evidence indicated that a water-soluble, dialyzable intermediate was involved in this transformation. The intermediate was isolated and subsequently identified as bornyl pyrophosphate by direct chromatographic analysis and by the preparation of derivatives and chromatographic analysis of both the hydrogenolysis (LiAlH4) and enzymatic hydrolysis products of bornyl pyrophosphate. The results presented indicate that borneol is derived by cyclization of neryl pyrophosphate to bornyl pyrophosphate, followed by hydrolysis. This is the first demonstration of a cyclic pyrophosphorylated intermediate in the biosynthesis of bicyclic monoterpenes.  相似文献   

10.
A soluble enzyme preparation from immature sage (Salvia officinalis) leaves has been shown to catalyze the cation-dependent cyclization of geranyl pyrophosphate to the isomeric monoterpene olefins (+/-)-alpha-pinene and (-)-beta-pinene and to lesser amounts of camphene and limonene (Gambliel, H., and Croteau, R. (1982) J. Biol. Chem. 257, 2335-2342). This preparation was fractionated by gel filtration on Sephadex G-150 to afford two regions of enzymic activity termed geranyl pyrophosphate:pinene cyclase I (Mr approximately equal to 96,000), which catalyzed the conversion of geranyl pyrophosphate to the bicyclic olefin (+)-alpha-pinene, and to smaller quantities of the rearranged olefin (+)-camphene and the monocyclic olefin (+)-limonene, and geranyl pyrophosphate:pinene cyclase II (Mr approximately equal to 55,000), which transformed the acyclic precursor to (-)-alpha-pinene and (-)-beta-pinene, as well as to (-)-camphene, (-)-limonene, and the acyclic olefin myrcene. The multiple olefin biosynthetic activities co-purified with pinene cyclase I on four subsequent chromatographic and electrophoretic steps, and the ability to cyclize geranyl pyrophosphate and the related allylic pyrophosphates neryl pyrophosphate and linalyl pyrophosphate was likewise coincident throughout purification. Fractionation of pinene cyclase II by an identical sequence showed that the activities for the synthesis of the stereochemically related (-)-olefins co-purified, as did the ability to utilize the three acyclic precursors. The general properties of cyclase I and cyclase II were determined, and a scheme for the biosynthesis of the pinenes and related monoterpene olefins was proposed.  相似文献   

11.
Soluble enzyme preparations from sage (Salvia officinalis) leaves catalyze the hydrolysis of (+)-bornyl pyrophosphate to (+)-borneol, which is an essential step in the biosynthesis of the cyclic monoterpene (+)-camphor [(1R,4R)-bornan-2-one] in this tissue. Chromatography of the preparation on Sephadex G-150 allowed the separation of two regions of bornyl pyrophosphate hydrolase activity. One region was further separated into a pyrophosphate hydrolase and a monophosphate hydrolase by chromatography on hydroxylapatite, but the other contained pyrophosphate and monophosphate hydrolase activities which were inseparable by this or any other chromatographic technique tested. Each phosphatase and pyrophosphatase activity was characterized with respect to molecular weight, pH optimum, response to inhibitors, Km for bornyl phosphate or bornyl pyrophosphate, and substrate specificity, and each activity was distinctly different with regard to these properties. One pyrophosphatase activity was specific for pyrophosphate esters of sterically hindered monoterpenols such as bornyl pyrophosphate. The other preferred pyrophosphate esters of primary allylic alcohols such as geranyl pyrophosphate and neryl pyrophosphate, which are precursors of cyclic monoterpenes, and it hydrolyzed geranyl pyrophosphate at faster rates than neryl pyrophosphate. The monophosphate hydrolase activities were similar in substrate specificity, showing a preference for phosphate esters of primary allylic alcohols. The terpenyl pyrophosphate hydrolase exhibiting specificity for bornyl pyrophosphate may be involved in camphor biosynthesis in vivo, while the terpenyl pyrophosphate hydrolase more specific for geranyl pyrophosphate was shown to be a source of potential interference in studies on monoterpene cyclization processes.  相似文献   

12.
Leucoplasts of immature calamondin and satsuma fruits were incubated with [1-14C] isopentenyl pyrophosphate under various conditions. Optimal incorporation of the tracer into geranyl pyrophosphate and monoterpene hydrocarbons occurred in the presence of exogenous dimethylallyl pyrophosphate and Mn2+ which was more effective than Mg2+. The dependence of dimethylallyl pyrophosphate showed that about 10 moles were required for 1 mole of isopentenyl pyrophosphate for the best recovery in monoterpene hydrocarbon biosynthesis. A time-course incorporation of isopentenyl pyrophosphate revealed that the C10 hydrocarbon elaboration was dependent on the geranyl pyrophosphate production and at no time neryl pyrophosphate was synthesized by leucoplasts. The amount of labelled farnesyl pyrophosphate was rather low whatever the conditions used in the experiments and sesquiterpene hydrocarbon biosynthesis was never observed.Abbreviations DMAPP dimethylallyl pyrophosphate - FPP farnesyl pyrophosphate - GPP geranyl pyrophosphate - IPP isopentenyl pyrophosphate - LPP linalyl pyrophosphate - NPP neryl pyrophosphate  相似文献   

13.
To determine whether the bicyclic monoterpene olefins (-)-alpha-pinene and (-)-beta-pinene arise biosynthetically from the same monoterpene cyclase by alternate deprotonations of a common carbocationic intermediate, the product distributions arising from the acyclic precursor [10-2H3,1-3H]geranyl pyrophosphate were compared with those resulting from incubation of [1-3H]geranyl pyrophosphate with (-)-pinene cyclase from Salvia officinalis. Alteration in proportions of the olefinic products generated by the partially purified pinene cyclase resulted from the suppression of the formation of (-)-beta-pinene (C10 deprotonation) by a primary deuterium isotope effect with a compensating stimulation of the formation of (-)-alpha-pinene (C4 deprotonation). (-)-Pinene cyclase as well as (+)-pinene cyclase also exhibited a decrease in the proportion of the acyclic olefin myrcene generated from the deuteriated substrate, accompanied by a corresponding increase in the commitment to cyclized products. The observation of isotopically sensitive branching, in conjunction with quantitation of the magnitude of the secondary deuterium isotope effect on the overall rate of product formation by the (+)- and (-)-pinene cyclases as well as two other monoterpene cyclases from the same tissue, supports the biosynthetic origin of (-)-alpha-pinene and (-)-beta-pinene by alternative deprotonations of a common enzymatic intermediate. A biogenetic scheme consistent with these results is presented, and alternate proposals for the origin of the pinenes are addressed.  相似文献   

14.
The chromatographic analysis of the volatile leaf oil of Pinus pinaster Ait. showed 42% of monoterpene hydrocarbons (α-pinene, camphene, β-pinene, myrcene, 3-carene, limonene, cis-ocimene, terpinolene, para-cymene, 35% of sesquiterpene hydrocarbons (cubebene, copaene, caryophyllene, humulene, germacrene D, α- and γ-muurolenes, δ- and γ-cadinenes) and 23% of oxygenated compounds including esters (linalyl, bornyl, geranyl, neryl and farnesyl acetates), alcohols (cis-hexenol, linalool, α-fenchol, trans-pinocarveol, terpinen-4-ol, α-terpineol, dihydrocarveol, guaiol, junenol and α-cadinol), one aldehyde (hexenal) and one ketone (piperitone). Three non terpenoid phenylethyl esters were also identified: phenylethyl isovalerate, methyl-2 burtyate and 3-3 dimethylacrylate. Some alcohols and mainly α-terpineol and linalool seemed to be formed during the steam distillation process, they were absent when the leaf oil was obtained by maceration of small portions of leaves in the usual solvents of terpenes.  相似文献   

15.
A protein fraction has been purified from Gossypium hirsutum var. Coker 413 which synthesized all four geometrical isomers of farnesyl pyrophosphate from isopentenyl pyrophosphate alone, from isopentenyl pyrophosphate and geranyl or neryl pyrophosphate. Electrophoretic analysis showed that this protein fraction consisted of three proteins. One of these proteins contained isopentenyl pyrophosphate /ag dimethylallyl pyrophosphate isomerase activity. The other two proteins were insufficiently pure to characterize. Estimation of molecular weights by electrophoresis of the three proteins revealed values in the order of 3 × 104 to 1.3 × 105. However the same protein fraction eluted as one peak from Sepharose 6B molecular sieve columns, indicative of a larger protein component as could be accounted for by the electrophoretic molecular weight estimation. From these results and from the different products synthesized it is proposed that isopentenyl pyrophosphate /ag dimethylallyl pyrophosphate isomerase and prenyltransferase (farnesyl pyrophosphate synthetase) exists as a multiprotein complex in G. hirsutum.  相似文献   

16.
(1R)-1-3H-labeled and (1S)-1-3H-labeled geranyl pyrophosphate and neryl pyrophosphate were prepared from the corresponding 1-3H-labeled aldehydes by a combination of enzymatic and synthetic procedures. Following admixture with the corresponding 2-14C-labeled internal standard, each substrate was converted to (+)-bornyl pyrophosphate and (-)-bornyl pyrophosphate by cell-free enzyme preparations from sage (Salvia officinalis) and tansy (Tanacetum vulgare), respectively. Each pyrophosphate ester was hydrolyzed, and the resulting borneol was oxidized to camphor. The stereochemistry of labeling at C-3 of the derived ketone was determined by base-catalyzed exchange, taking advantage of the known selective exchange of the exo-alpha-protons. By comparison of such exchange rates to those of product generated from (1RS)-2-14C,1-3H2-labeled substrate, it was demonstrated that geranyl pyrophosphate was cyclized to bornyl pyrophosphate with net retention of configuration at C-1 of the acyclic precursor, whereas neryl pyrophosphate was cyclized to product with inversion of configuration at C-1. The observed stereochemistry is consistent with a reaction mechanism whereby geranyl pyrophosphate is first stereospecifically isomerized to linalyl pyrophosphate which, following rotation about C-2-C-3 to the cisoid conformer, cyclizes from the anti-endo configuration. Neryl pyrophosphate cyclizes either directly or via the linalyl intermediate without the attendant rotation.  相似文献   

17.
MEVALONIC acid (MVA) is generally believed to be converted in higher plants into isopentenyl and 3,3-dimethylallyl pyrophosphates which in turn condense to form geranyl and neryl pyrophosphates, the presumed precursors of acyclic and cyclic monoterpenes respectively. Some of the individual steps have been demonstrated1–3; radioactive MVA has been incorporated without scrambling of tracer into several monoterpenes4–6; and the various classes of monoterpenes are thought to be biosynthesized from geranyl and neryl pyrophosphates by routes outlined by Ruzicka et al.7.  相似文献   

18.
Conversion of geranyl pyrophosphate to cyclic monoterpenes is considered to involve the preliminary isomerization of this acyclic precursor to enzyme-bound linalyl pyrophosphate and the cyclization of this tertiary intermediate. 2-Fluorogeranyl pyrophosphate and 2-fluorolinalyl pyrophosphate are effective competitive inhibitors of the cyclization of geranyl pyrophosphate by several different monoterpene cyclases, and the electron withdrawing alpha-fluorine substituent was shown to suppress the rate of cyclic product formation from both tritium-labeled analogs by at least two orders of cyclic These results indicate that both steps of the coupled isomerization-cyclization sequence are initiated by ionization of an allylic pyrophosphate, and they confirm the electrophilic nature of this enzymatic reaction type and its similarity to the prenyltransferase reaction.  相似文献   

19.
A protein fraction capable of catalysing the formation of all four geometrical isomers of farnesyl pyrophosphate has been isolated from cotton roots. Using neryl pyrophosphate and isopentenyl pyrophosphate as substrates the product was found to be cis-cis farnesyl pyrophosphate and possibly trans-cis farnesyl pyrophosphate. Geranyl pyrophosphate and isopentenyl pyrophosphate as substrates yielded trans-trans and possible cis-trans farnesyl pyrophosphate. During purification of the active protein fraction, the ratio of utilization of geranyl pyrophosphate and neryl pyrophosphate did not remain constant, indicating that two enzymes may be involved, one specific for cis C10-substrate and the other for trans C10-substrate.  相似文献   

20.
Kinetic analysis of the nonenzymic solvolysis of neryl and geranyl pyrophosphate (NPP and GPP, respectively) showed that the dissociation constants of the bis-metallic complexes with Mg2+ and Mn2+ were larger for NPP than for GPP by approximately one order of magnitude. Rate constants for reaction of the bis-metallic complexes were larger for NPP than for GPP. Qualitatively similar behavior was observed with complexes of Co2+. Extents of elimination and cyclization were increased by metal ions. Carbocyclase-catalyzed formation of cyclic monoterpene hydrocarbons in the presence of Mg2+ involved bis-metallic complexes as the “true” substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号