首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial swelling techniques were used to evaluate the effects of the aminoglycoside antibiotic gentamicin on renal cortical mitochondrial monovalent cation permeability. Gentamicin behaved like EDTA to enhance energy-dependent Na+- and K+-acetate uptake with a relatively greater effect on Na+-acetate uptake. Mg2+ prevented and reversed the effects of both EDTA and gentamicin. Neither agent affected energy-independent uptake of Na+ and K+-acetate. Gentamicin did not enhance energy-independent uptake of K+- and Na+-nitrate. Gentamicin enhanced energy-dependent swelling in a chloride- and phosphate-containing medium as a function of the medium Na+ and K+ concentration. This effect occurred simultaneously with gentamicin-induced stimulation of State 4 respiration and was blocked by Mg2+. Gentamicin did not affect phosphate transport. The results are taken to indicate a specific action of gentamicin to enhance mitochondrial monovalent cation permeability at an Mg2+-sensitive site and it is proposed that this accounts for the effects of gentamicin on mitochondrial respiration.  相似文献   

2.
The involvement of membrane (Na+ + K+)-ATPase (Mg2+-dependent, (Na+ + K+)-activated ATP phosphohydrolase, E.C. 3.6.1.3) in the oxygen consumption of rat brain cortical slices was studied in order to determine whether (Na+ + K+)-ATPase activity in intact cells can be estimated from oxygen consumption. The stimulation of brain slice respiration with K+ required the simultaneous presence of Na+. Ouabain, a specific inhibitor of (Na+ + K+)-ATPase, significantly inhibited the (Na+ + K+)-stimulation of respiration. These observations suggest that the (Na+ + K+)-stimulation of brain slice respiration is related to ADP production as a result of (Na+ + K+)-ATPase activity. However, ouabain also inhibited non-K+-stimulated respiration. Additionally, ouabain markedly reduced the stimulation of respiration by 2,4-dinitrophenol in a high (Na+ + K+)-medium. Thus, ouabain depresses brain slice respiration by reducing the availability of ADP through (Na+ + K+)-ATPase inhibition and acts additionally by increasing the intracellular Na+ concentration. These studies indicate that the use of ouabain results in an over-estimation of the respiration related to (Na+ + K+)-ATPase activity. This fraction of the respiration can be estimated more precisely from the difference between slice respiration in high Na+ and K+ media and that in choline, K+ media. Studies were performed with two (Na+ + K+)-ATPase inhibitors to determine whether administration of these agents to intact rats would produce changes in brain respiration and (Na+ + K+)-ATPase activity. The intraperitoneal injection of digitoxin in rats caused an inhibition of brain (Na+ + K+)-ATPase and related respiration, but chlorpromazine failed to alter either (Na+ + K+)-ATPase activity or related respiration.  相似文献   

3.
The Na+ and K+ permeability properties of rat brain mitochondria were determined to explain the influences of these cations upon respiration. A new procedure for isolating exceptionally intact mitochondria with minimal contamination by synaptosomes was developed for this purpose.Respiration was uncoupled by Na+ and less so by K+. Uncoupling was maximal in the presence of EDTA plus Pi and was decreased by Mg2+. Maximal uncoupler-stimulated respiration rates were inhibited by Na+ but largely unaffected by K+. The inhibition by Na+ was relatively insensitive to Mg2+. Membrane Na+ and K+ conductances as well as neutral exchanges (Na+/H+ and K+/H+ antiport activities) were determined by swelling measurements and correlated with metabolic effects of the cations.Cation conductance, i.e. electrophoretic Na+ or K+ permeation, was increased by EDTA (Na+ > K+) and decreased by Mg2+. Magnesium preferentially suppressed Na+ conductance so as to reverse the cation selectivity (K+ > Na+). Neutral cation/H+ exchange rates (Na+ > K+) were not influenced by chelator or Mg2+.The extent of cation-dependent uncoupling of respiration correlated best with the inner membrane conductance of the ion according to an empirical relationship derived with the model K+ conductor valinomycin. The metabolic influences of Na+ and K+ can be explained in terms of coupled flow of these ions with protons and their effect upon the H+ electrochemical gradient although alternative possibilities are discussed. These in vitro studies are compared to previous observations in situ to assess their physiological significance.  相似文献   

4.
5.
A S Bloom  C O Haavik  D Strehlow 《Life sciences》1978,23(13):1399-1404
The effect of (?)-Δ9-THC on the activities of Mg2+?, Na+?K+? and Mg2+Ca2+-ATPases were studied in mouse brain subcellular fractions. In vitrotreatment with Δ9-THC produced a dose dependent stimulation of Mg2+ ATPase in the crude mitochondrial fraction and its subfractions and a dose-related inhibition of this activity in the microsomal fraction. Na+-K+- and Mg2+-Ca2+-ATPase activities were inhibited in a dose-related manner in all subcellular fractions studied.  相似文献   

6.
1. The effect of gossypol in the presence of K+ or Mg2+, or both, was studied on ATPase activity and respiration of rat liver mitochondria.2. Respiration was uncoupled in the presence of gossypol, Mg2+, and K+, whereas in the presence of gossypol and Mg2+ a partial inhibition was observed.3. Gossypol stimulated ATPase activity in the presence of K+ or Mg2+, but maximal activity was observed when both cations were in the incubation medium.4. Stimulation of ATPase activity in the presence of Mg2+ was dose related.5. EDTA reverted the stimulation produced by gossypol on ATPase activity.6. Gossypol had no effect on the ATPase activity of submitochondrial particles, which suggests an indirect action of gossypol on the enzyme.7. Mitochondrial membrane potential showed a higher collapse in the presence of gossypol and 1mM MgCl2.8. The observed effects of gossypol could be explained by the collapse of the mitochondrial membrane potential.  相似文献   

7.
Liver mitochondria from normal and alloxan diabetic rats, isolated in 0.25 M sucrose, were assayed with an oxygen electrode for ADP/O and Ca+2/O ratios, respiratory ratio, and respiratory control index. Mitochondria were incubated with two substrates, succinate and β-hydroxybutyrate; two types of ionic media, Na+ medium (Na+ the major monovalent cation) and K+ medium (K+ the major monovalent cation); and two respiratory stimulants, ADP (352 μM) and Ca+2 (187 μM). Significant differences between respiratory rates and ADP/O ratios were dependent upon the substrate and ionic medium employed. The results confirm previous studies which showed no alteration in ADP/O ratio but decreased State 3 respiratory rates under similar conditions of K+ medium with ADP stimulation in the diabetic. Furthermore, the State 3 respiration was prolonged compared to normal. Ca+2 stimulation was the same in normal and diabetic mitochondria in K+ medium. Studies in Na+ media revealed more significant differences in RCI's, respiratory rates, and ADP/O ratios that were substrate dependent as well as ion dependent. The results from these various studies can be accounted for by an hypothesis linking mitochondrial K+ interaction with alterations in the diabetic mitochondria.  相似文献   

8.
It is known that permeability of the inner mitochondrial membrane is low to most univalent cations (K+, Na+, H+) but high to Tl+. Swelling, state 4, state 3, and 2,4-dinitrophenol (DNP)-stimulated respiration as well as the membrane potential (ΔΨmito) of rat liver mitochondria were studied in media containing 0–75 mM TlNO3 either with 250 mM sucrose or with 125 mM nitrate salts of other monovalent cations (KNO3, or NaNO3, or NH4NO3). Tl+ increased permeability of the inner mitochondrial membrane to K+, Na+, and H+, that was manifested as stimulation of the swelling of nonenergized and energized mitochondria as well as via an increase of state 4 and dissipation of ΔΨmito. These effects of Tl+ increased in the order of sucrose <K+ <Na+ ≤ NH4+. They were stimulated by inorganic phosphate and decreased by ADP, Mg2+, and cyclosporine A. Contraction of energized mitochondria, swollen in the nitrate media, was markedly inhibited by quinine. It suggests participation of the mitochondrial K+/H+ exchanger in extruding of Tl+-induced excess of univalent cations from the mitochondrial matrix. It is discussed that Tl+ (like Cd2+ and other heavy metals) increases the ion permeability of the inner membrane of mitochondria regardless of their energization and stimulates the mitochondrial permeability transition pore in low conductance state. The observed decrease of state 3 and DNP-stimulated respiration in the nitrate media resulted from the mitochondrial swelling rather than from an inhibition of respiratory enzymes as is the case with the bivalent heavy metals.  相似文献   

9.
Summary In the perfused rat liver administration of glucagon was shown to result in a transiently increased uptake of K+, indicating the possible involvement of the Na+, K+-ATPase. Direct measurement of the activity of Na+, K+-ATPase revealed a two-fold stimulation of the enzyme by glucagon. The effect of glucagon on the activity of the enzyme was immediate. Simultaneously with the increase in the activity of the Na+, K+-ATPase, the activity of Mg2+-ATPase decreased. In order to evaluate whether the activation of the Na+, K+-ATPase by glucagon is related to the metabolic effects of the hormone, experimental conditions known to interfere with the activity of the enzyme were employed and glucagon stimulation of Ca2+-efflux, mitochondrial metabolism and gluconeogenesis were measured. K+-free perfusate, high K+ perfusate or ouabain interfered to varying degrees with the glucagon stimulation of these responses. The combination of K+-free perfusate and ouabain almost completely abolished the glucagon stimulation of all three parameters. These results demonstrate the glucagon stimulation of Na+, K+-ATPase and raise the possibility that the activation of the enzyme by glucagon might be a necessary link for the manifestation of its metabolic effects.  相似文献   

10.
The Mg2+ dependent and Na+K+-activated ATPase activities of microsomal preparations from the rectum of Locusta migratoria were both stimulated, to varying extents, by crude extracts of the corpora cardiaca of this species. Mg2+ ATPase activity increased by approximately 549% whereas the hormonal stimulation of Na+K+-activated ATPase depended upon the concentration of sodium and potassium ions. At 100 mM Na+ and 20 mM K+, conditions which approximate to optimum for this enzyme system, Na+K+-activated ATPase activity increased by about 14%. At sub-optimum concentrations of these ions, i.e. 50 and 5 mM Na+ and K+ respectively, the increase in Na+K+-activated ATPase activity was about 205%. Ouabain at a concentration of 10?3 M completely abolished this stimulated activity and was consistently effective in partially reducing the stimulation of Mg2+ ATPase activity by corpora cardiaca extracts.  相似文献   

11.
The inhibition of NaK-ATPase (EC 3.6.1.3) from human red cells by Mg2+ is markedly dependent on the relative concentrations of Na+ and K+. Inhibition increases with increasing K+ and decreases with increasing Na+. The inhibition appears to be a combined effect of Mg2+ and K+ at sites distinct from the sites at which these cations activate the enzyme. The kinetics of activation of the enzyme by Na+ with inhibitory levels of Mg2+ and K+ are biphasic, indicating both low and high affinity Na+ sites. At noninhibitory levels of Mg2+ and K+ only high affinity Na+ sites are seen. The results are inconsistent with any model in which Mg2+ and K+ compete with Na+ at a single site. A kinetic model is proposed to explain the mechanism of inhibition by Mg2+ and K+.  相似文献   

12.
Quinine inhibits the respiration-dependent extrusion of K+ from Mg2+-depleted heart mitochondria and the passive osmotic swelling of these mitochondria in K+ and Na+ acetate at alkaline pH. These observations concur with those of Nakashima and Garlid (J. Biol. Chem. 257, 9252, 1982) using rat liver mitochondria. Quinine also inhibits the respiration-dependent contraction of heart mitochondria swollen passively in Na+ or K+ nitrate and the increment of elevated respiration associated with the extrusion of ions from these mitochondria. Quinine, at concentrations up to 0.5 mM, inhibits the respiration-dependent42K+/K+ exchange seen in the presence of mersalyl, but higher levels of the drug produce increased membrane permeability and net K+ loss from the matrix. These results are all consistent with an inhibition of the putative mitochondrial K+/H+ antiport by quinine. However, quinine has other effects on the mitochondrial membrane, and possible alternatives to this interpretation are discussed.  相似文献   

13.
In an effort to determine the subcellular localization of sodium- and potassium-activated adenosine triphosphatase (Na+, K+-ATPase) in the pseudobranch of the pinfish Lagodon rhomboides, this tissue was fractionated by differential centrifugation and the activities of several marker enzymes in the fractions were measured. Cytochrome c oxidase was found primarily in the mitochondrial-light mitochondrial (M+L) fraction. Phosphoglucomutase appeared almost exclusively in the soluble (S) fraction. Monoamine oxidase was concentrated in the nuclear (N) fraction, with a significant amount also in the microsomal (P) fraction but little in M+L or S. Na+, K+-ATPase and ouabain insensitive Mg2+-ATPase were distributed in N, M+L, and P, the former having its highest specific activity in P and the latter in M+L. Rate sedimentation analysis of the M+L fraction indicated that cytochrome c oxidase and Mg2+-ATPase were associated with a rapidly sedimenting particle population (presumably mitochondria), while Na+, K+-ATPase was found primarily in a slowly sedimenting component. At least 75% of the Na+, K+-ATPase in M+L appeared to be associated with structures containing no Mg2+-ATPase. Kinetic properties of the two ATPases were studied in the P fraction and were typical of these enzymes in other tissues. Na+, K+-ATPase activity was highly dependent on the ratio of Na+ and K+ concentrations but independent of absolute concentrations over at least a fourfold range.  相似文献   

14.
Dopamine inhibits Mg2+,Na+,K+- and Na+,K+-ATPase activities but does not modify Mg2+-ATPase activity of nerve ending membranes isolated from rat cerebral cortex. In the presence of the soluble fraction of brain, dopamine activates total, Na+,K+-, and Mg2+-ATPases. Dopamine stimulation of nerve ending membrane ATPases is achieved when soluble fractions of brain, kidney, or liver are used. On the other hand, dopamine effects are not observed on kidney or heart ATPase preparations. These results indicate tissue specificity of dopamine effects with respect to the enzyme source; there is no tissue specificity for the requirement of the soluble fraction to achieve stimulation of ATPases by dopamine.  相似文献   

15.
Two types of Na+-independent Mg2+ efflux exist in erythrocytes: (1) Mg2+ efflux in sucrose medium and (2) Mg2+ efflux in high Cl media such as KCl-, LiCl- or choline Cl-medium. The mechanism of Na+-independent Mg2+ efflux in choline Cl medium was investigated in this study. Non-selective transport by the following transport mechanisms has been excluded: K+,Cl- and Na+,K+,Cl-symport, Na+/H+-, Na+/Mg2+-, Na+/Ca2+- and K+(Na+)/H+ antiport, Ca2+-activated K+ channel and Mg2+ leak flux. We suggest that, in choline Cl medium, Na+-independent Mg2+ efflux can be performed by non-selective transport via the choline exchanger. This was supported through inhibition of Mg2+ efflux by hemicholinum-3 (HC-3), dodecyltrimethylammonium bromide (DoTMA) and cinchona alkaloids, which are inhibitors of the choline exchanger. Increasing concentrations of HC-3 inhibited the efflux of choline and efflux of Mg2+ to the same degree. The Kd value for inhibition of [14C]choline efflux and for inhibition of Mg2+ efflux by HC-3 were the same within the experimental error. Inhibition of choline efflux and of Mg2+ efflux in choline medium occurred as follows: quinine>cinchonine>HC-3>DoTMA. Mg2+ efflux was reduced to the same degree by these inhibitors as was the [14C]choline efflux.  相似文献   

16.
A factorial experiment was designed to study the effects of Mg2+, K+, and Na+ on the growth and biochemistry of Chlorella sorokiniana. Raising Mg2+ or K+ concentration in the nutrient medium increased growth rates as well as total N levels and Mg2+ and K+ accumulation by the cells. The total N effect was Mg2+-dependent—if Mg2+ was below a certain level in the medium—increasing the K+ concentration did not raise the total N level of cells. Low nutrient levels of K+ decreased the levels of unsaturated fatty acids (especially 18:1 and 18:3), while increasing the levels of palmitic acid (16:0), total fatty acids, and total lipid. Increasing nutrient K+ concentrations were accompanied by increases in levels of some unsaturated fatty acids, with a concomitant reduction in 16:0, total fatty acids and total lipid. Low Mg2+ levels in the nutrient medium reduced the cellular levels of palmitic acid, total fatty acids, total lipid, and certain unsaturated fatty acids (though this last effect also depended on the nutrient level of K+). These relationships indicate that Mg2+ may be important in the initial steps of fatty acid synthesis, whereas K+ may be necessary for the formation of certain unsaturated fatty acids. Variations in Na+ concentration did not have any significant effect on the growth and biochemistry of C. sorokiniana.  相似文献   

17.
Addition of LiCl (1–25 mM) to serum-free cultures of MHA hamster thymocytes, lymph node cells, or splenocytes stimulated with concanavalin A had a biphasic effect on [3H]thymidine incorporation. These concentrations of LiCl enhanced stimulation of [3H]thymidine incorporation by suboptimal levels of concanavalin A but inhibited stimulation of optimal and supraoptimal concentrations of concanavalin A. This effect was specific for Li+ since it was not observed when similar concentrations of Na+, K+, or Mg2+ were added to cultures stimulated by concanavalin A. The inhibitory effect of LiCl on concanavalin A stimulation was not reversed by addition of Na+, Ca2+, Mg2+, or Ca2+ + Mg2+ to the cultures. Significant reversal of LiCl inhibition of stimulation was observed when KCl was added to the cultures. However none of the ions tested blocked the Li-induced enhancement of [3H]thymidine incorporation in the presence of suboptimal concentrations of concanavalin A.  相似文献   

18.
1. An adenosine triphosphatase membrane system, dependent on Mg2+ and activated further by Na++K+, was prepared from goldfish anterior intestine by differential centrifugation of homogenized intestinal scrapings. 2. The affinity of this preparation for Na+ in the presence of K++Mg2+, for K+ in the presence of Na++Mg2+ and for Mg2+ alone, measured at 37°, did not depend on the previous environmental temperature of the fish. When Na++K+ were added to preparations from 8°-acclimatized fish the affinity for Mg2+ increased; this was not seen with preparations from 30°-acclimatized fish. 3. Part of the Mg2+-activated adenosine triphosphatase was inhibited by Na+ and the amount of inhibition appeared to increase at high acclimatization temperatures. 4. This Na+-inhibited adenosine triphosphatase was separated from the (Na++K+)-activated enzyme by centrifugation on sucrose density gradients. 5. Preparations from 8°-acclimatized fish contained less Mg2+-activated and more (Na++K+)-activated adenosine triphosphatase than did similar fractions from 30°-acclimatized fish. 6. Acclimatization to different environmental temperatures might involve one form of adenosine triphosphatase changing to another. The origin of various membranes seen in microsomal fractions must, however, be established before this hypothesis can be tested further.  相似文献   

19.
Ca2+ inhibited the Mg2+-dependent and K+-stimulated p-nitrophenylphosphatase activity of a highly purified preparation of dog kidney (Na+ + K+)-ATPase. In the absence of K+, however, a Mg2+-dependent and Ca2+-stimulated phosphatase was observed, the maximal velocity of which, at pH 7.2, was about 20% of that of the K+-stimulated phosphatase. The Ca2+-stimulated phosphatase, like the K+-stimulated activity, was inhibited by either ouabain or Na+ or ATP. Ouabain sensitivity was decreased with increase in Ca2+, but the K0.5 values of the inhibitory effects of Na+ and ATP were independent of Ca2+ concentration. Optimal pH was 7.0 for Ca2+-stimulated activity, and 7.8–8.2 for the K+-stimulated activity. The ratio of the two activities was the same in several enzyme preparations in different states of purity. The data indicate that (a) Ca2+-stimulated phosphatase is catalyzed by (Na+ + K+)-ATPase; (b) there is a site of Ca2+ action different from the site at which Ca2+ inhibits in competition with Mg2+; and (c) Ca2+ stimulation can not be explained easily by the action of Ca2+ at either the Na+ site or the K+ site.  相似文献   

20.
The specific activity of (Na+ + Mg2+)-dependent ATPase is three times greater in the microsomes of sea-water eels than in freshwater eels; the specific activity is one quarter of that of (Na+ + K+ + Mg2+)-dependent ATPase in both cases.(Na+ + Mg2+)-dependent ATPase is optimally active in a medium containing 8 mM NaCl, 4 mM MgCI2, 4 mM ATP, pH 8.8 and at 30 °C; the enzyme is inhibited by ouabain, by NaCl concentrations > 100 mM and by treatment with urea.It is concluded that the (Na+ + Mg2+)-dependent ATPase activity of gills arises from the presence of a (Na+ + K+ + Mg2+)-dependent ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号